DOI: 10.1515/awutp -2015-0020

CALCULATION OF THE JUDD - OFELT PARAMETERS OF THE ZnAl₂O₄: Eu³⁺

S.Constantin and M.L. Stanciu

Department of Physics, West University of Timisoara, 3200223 Timisoara, Romania

Article Info

Received: 6September 2011 Accepted: 29 February 2012

Keywords:normal spinel, Judd-Ofelt parameters, branching ratio, quality factor

Abstract

Zinc aluminate (ZnAl₂O₄) doped with rare earth metal ions has been investigated most frequently because of the unique luminescent properties resulting from its stability and high emission quantum yields. The present work is devoted to calculate the Judd-Ofelt parameters $(\Omega_2,\Omega_4 \text{ and } \Omega_6)$ of the trivalent europium doped in ZnAl₂O₄ spinel, the quality factor (Q) and the branching ratio (β).

1. Introduction

Zinc aluminate doped with rare earth metal ions has been investigated most frequently because of the unique luminescent properties resulting from its stability and high emission quantum yields. Recently, rare earth metal ions activated ZnAl₂O₄ phosphors have been studied thanks to the unique luminescent properties resulting from its stability and high emission quantum yields [1-4].

The structure of the zinc aluminate spinel ZnAl₂O₄ is presented in the fig. 1.

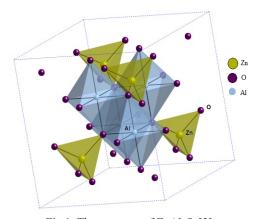


Fig.1. The structure of ZnAl₂O₄[3]

The normal spinel ZnAl₂O₄ belongs to the orthorhombic Fd3m space group with the unit cell parameters a = b = c = 8.0875 Å [3-4]. The Eu³⁺ ion will substitute the Al³⁺ ion in an octahedral site in the ZnAl₂O₄ spinel, without charge compensation.

The present work is devoted to calculate the Judd-Ofelt parameters $(\Omega_2, \Omega_4 \text{ and } \Omega_6)$ [5, 6] of the trivalent europium doped in ZnAl₂O₄ spinel, the quality factor (Q) and the branching ratio (β) .

The experimental support of our calculations is the paper [3].

2. Judd-Ofelt Theory

Judd-Ofelt theory briefly describes the transition intensities for lanthanides and actinides in solids and solutions. Judd-Ofelt utility theory is that it provides a theoretical way of determining the spectral line intensity of a transition [5, 6]:

$$S_{ED} = e^{2} \sum_{t=2,4,6} \Omega_{t} \left| \left\langle f^{n}[SL]J \right| U^{(t)} \right| f^{n}[S'L']J' \right\rangle^{2}$$
(1)

By this expression, Judd-Ofelt theory takes into account the probabilities of transition from a surface to another surface that can cause radiative life times and radiation emission branching reports. Judd-Ofelt analysis is based on more precise measurements of absorption and in particular the integral absorption cross section than the wavelength for a large variety of surfaces. Using the integral absorption cross section can be found so-called line strength, S_m , from the relationship:

$$S_{m} = \frac{3ch(2J+1)}{8\pi^{3}e^{2}\overline{\lambda}}n\left(\frac{3}{n^{2}+2}\right)^{2}\int_{\text{superfitta}}\sigma(\lambda)d(\lambda)$$
 (2)

where:

- J is total angular momentum of the initial energy state, found the notation $^{2S+1}L_{\rm J}.$

 $\Box\Box\Box(\Box)$ is the absorption cross section as a function of wavelength.

Integral absorption cross section is known as wavelength *bandsum*. Average wavelength, $\overline{\lambda}$ can be found at the beginning of the absorption cross section data:

$$\overline{\lambda} = \frac{\sum \sigma(\lambda)}{\sum \lambda \sigma(\lambda)} \tag{3}$$

Judd-Ofelt analysis minimizes the squared difference between S_m and the S_{ED} with Ω_t adjustable parameters. Basically Judd-Ofelt theory is used to determine a set of phenomenological parameters Ω_{λ} (λ = 2, 4, 6), by fitting the experimental data on absorption,

eq. (2), or emission measurements, in a minimum amount of square differences, with Judd-Ofelt expression (1).

The Judd-Ofelt parameters for rare-earth ion-host combination are determined by fitting the observed oscillator strength from equation:

$$f[|[S,L]J\rangle, |[S',L']J'\rangle] = \frac{mc}{\pi e^2 N} \int \alpha(v) dv$$
 (4)

where:

- m is the electron mass,
- N the concentration of rare-earth ions in the sample,
- $\alpha(v)$ are the absorption coefficient as a function of the frequency v, and the integral must be taken over the frequency range of the transition.

The quality factor is given by $Q = \frac{\Omega_4}{\Omega_6}$ (5) and the branching ratio (β) for the transition from an initial level, characterized by the quantum numbers [(S', L')J'] to a lower level [(S, L)J] is defined by equation:

$$\beta[\left|\left[S^{'},L^{'}\right]J^{'}\right\rangle,\left|\left[S,L\right]J\right\rangle] = A[\left|\left[S^{'},L^{'}\right]J^{'}\right\rangle,\left|\left[S,L\right]J\right\rangle]\tau_{rad} = \frac{A[\left|\left[S^{'},L^{'}\right]J^{'}\right\rangle,\left|\left[S,L\right]J\right\rangle]}{\sum_{S,L,H}A[\left|\left[S^{'},L^{'}\right]J^{'}\right\rangle,\left|\left[S,L\right]J\right\rangle]}$$
(6).

Once Judd-Ofelt parameters are determined they can be used to calculate transition probabilities, A(J, J') for all excited states with the equation:

$$A(J';J) = \frac{64\pi^4 e^2}{3h(2J'+1)\overline{\lambda}^3} \left[n \left(\frac{n^2 + 2}{3} \right)^2 S_{ED} + n^2 S_{MD} \right]$$
 (7)

where:

- n is the refractive index of solid
- S_{ED} and S_{MD} is the electric dipole line intensities and magnetic respectively.

In this equation J 'is the total angular momentum of the upper excited state.

Electric dipole line S_{ED} intensity and magnetic dipole line S_{MD} intensity is calculated for each excited state to all lower states of equation (1) and equation (8) using the matrix elements $U^{(\lambda)}$ and Judd-Ofelt parameters and are expressed [7-9]:

$$S_{MD} = \mu_B^2 \left| \left\langle f^n [SL] J \middle| L + 2S \middle| f^n [S'L'] J' \right\rangle \right|^2$$
 (8)

3. Results and discussion

Using the emission spectra represented in the Fig. 2, Judd-Ofelt (J-O) analysis was performed to determine the J-O parameters Ω_2 , Ω_4 and Ω_6 are tabulated in the Table 1. The emission peak around 578, 591, 613, 653 and 701 cm⁻¹ correspond to the transitions from state of 5D_0 to the correspond states of 7F_0 , 7F_1 , 7F_2 , 7F_3 and 7F_4 . The fluorescence branching ratio of transitions is given by equation (6). The total radiative transition probabilities A_{total} for five emission transitions 7F_0 , 7F_1 , 7F_2 , 7F_3 and 7F_4 are summed up to obtain the τ_{rad} for transitions from 5D_0 state to the 7F_0 , 7F_1 , 7F_2 , 7F_3 and 7F_4 states using equation $\tau_{\text{rad}} = 1/A_{\text{total}}$.

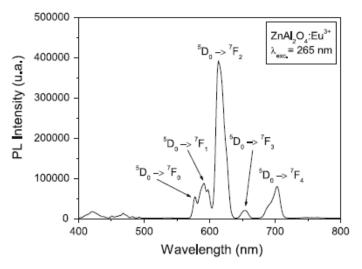


Fig.2. The emission spectra for ZnAl₂O₄ doped with Eu³⁺ [3].

Table 1. The Judd-Ofelt parameters

Wavelength	Energy	Transitions	Area	Reduced matrix elements				
$\lambda(nm)$	(<i>cm</i> ⁻¹)		$\int E(\gamma)d\gamma$	$[U_2]^2$	$[U_4]^2$	$[U_6]^2$		
578	17301	$^{5}D_{0} \rightarrow ^{7}F_{0}$	49.744*10 ⁶	0.0000	0.0000	0.0000		
591	16920	$^{5}D_{0} \rightarrow ^{7}F_{1}$	1.0849*10 ⁶	0.0000	0.0000	0.0000		
613	16313	$^{5}D_{0} \rightarrow ^{7}F_{2}$	6.0134*10 ⁶	0.0032	0.0000	0.0000		
653	15314	$^{5}D_{0} \rightarrow ^{7}F_{3}$	17.873*10 ⁶	0.0000	0.0000	0.0000		
701	14225	$^{5}D_{0} \rightarrow ^{7}F_{4}$	1.0696*10 ⁶	0.0000	0.0023	0.0000		
Judd-Ofelt parameters (cm²): $\Omega_2 = 1.08 * 10^{-20}$, $\Omega_4 = 4.82 * 10^{-20}$, $\Omega_6 = 1.79 * 10^{-20}$								

The quality factor is calculated using the expression (5) and we have the value 2.69. The electric dipole line intensities and the magnetic dipole line intensities are presented in the Table 2.

Table 2. The branching ratio (β) and the transition probabilities $A(s^{-1})$

Wavelength	S_{ED}	$S_{ m MD}$	A(s ⁻¹)	B _{mas} (%)	B _{calc} (%)
$\lambda(nm)$					
578	0	0	0	0	0
591	0	5.01*10 ⁻²⁵	1.40*10 ⁻¹⁷	0.112	0.034
613	2.83*10 ⁻⁶³	2.50*10 ⁻²⁴	4.68*10 ⁻¹⁷	0.680	0.114
653	0	7.02*10 ⁻²⁴	1.13*10 ⁻¹⁶	0.020	0.278
701	6.52*10 ⁻⁶³	1.50*10 ⁻²³	2.33*10 ⁻¹⁶	0.120	0.572

4. Conclusions

In the present paper has been performed the Judd-Ofelt theory for Eu³⁺ doped in ZnAl₂O₄ spinel.

The Judd-Ofelt parameters (Ω_2 , Ω_4 and Ω_6) for rare-earth ions are determined by fitting the observed oscillator strength.

The intensity parameters (Ω) , the quality ratio (Q), the branching ratio (β) and the transition probabilities (A) were successfully calculated based upon the experimental emission spectrum and the Judd-Ofelt theory.

References:

- [1] Z. Lou, J. Hao, Thin Solid Films, 450 (2004) 334;
- [2] M. Zawadzki, J. Wrzyszcz, W. Strek, D. Hreniak, J. Alloys Compounds, 323 (2001) 279;
- [3] A. S. S. de Camargo, L. A. O. Nunes, J. F. Silva, A. C. F. M. Costa, B. S. Barros, J. E. C. Silva, G. F. de Sá, S. Alves Jr., J. Phys. Condens. Matter, 19 (2010) 1;
- [4] B. S. Barros, P. S. Melo, R. H. G. A. Kiminani, A. C. F. M. Costa, G. F. de Sá, S. Alves Jr., J. Mater Sci, 41 (2006) 4744;
- [5] B.R Judd, Phys. Rev. 127 (1962) 750;
- [6] G.S. Ofelt, J. Chem. Phys. 37 (1962) 511;
- [7] B. M. Walsh, N. P. Barnes, B. Di Bartolo, J. Appl. Phys., 83 (1998) 2772;
- [8] C. W. Nielson, G. F. Koster, Spectroscopic coefficients of the p^n , d^n , and f^n configurations, The M.I.T. Press, Cambridge, MA (1963);
- [9] B. M. Walsh, Advances in Spectroscopy for Lasers and Sensing, ed. B. Di Bartolo and O. Forte, Springer, Netherlands (2006), 403.