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Related G-metrics and Fixed Points

Yaé Ulrich O. Gaba12

Abstract. For a single valued mapping T in a G-complete G-
metric space (X, d), we show that if Tn, for some n > 1, is a
contraction, then T itself is a contraction under another related
G-metric d′. We establish moreover that if T is uniformly contin-
uous, then d′ is G-complete.
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1 Introduction and Preliminaries

After disproving most of the claims about the topology of D-metrics (see
[12]), Mustafa and Sim introduced a more appropriate notion of generalized
metrics, called G-metrics. In his PhD thesis (see [10]), Mustafa provided
many examples of G-metric spaces and developed some of their properties.
For instance, he proved that G-metric spaces are provided with a T2 topology
which makes them a convenient framework for topological notions like con-
vergent sequences, Cauchy sequences, continuous mappings, completeness,
etc. We also know from Mustafa [12, Proposition 5] that every G-metric
space is topologically equivalent to a metric space but G-metric spaces and
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metric spaces are “isometrically” distinct. As the theory around G-metrics
unfolds, the natural direction was to look at fixed points for mappings de-
fined on these type of spaces. The Banach contractive mapping principle is
the most celebrated result in fixed point theory and therefore represented the
default starting point for fixed point theory in G-metrics. Hence we read the
following result in [10] as:

Theorem 1.1. ([10])
Let (X,G) be a G-complete G-metric space and let T : X → X be a

mapping such that there exists λ ∈ [0, 1) satisfying

G(Tx, Ty, Tz) ≤ λ G(x, y, z), (1.1)

whenever x, y, z ∈ X. Then T has a unique fixed point. In fact, T is a
Picard operator.

We give the following corollary, extension to the G-metric case, of a result
by Bryant[2], and which seems to appear nowhere in the literature.

Corollary 1.2. (Compare[2])
Let (X,G) be a G-complete G-metric space and let T : X → X be a

mapping such that there exists λ ∈ [0, 1) satisfying

G(T nx, T ny, T nz) ≤ λ G(x, y, z),

for some n > 1, whenever x, y, z ∈ X. Then T has a unique fixed point.

Proof. By Theorem 1.1, T n has a unique fixed point, say x ∈ X with T n(x) =
x. Since

T n+1x = T (T nx) = Tx = T n(Tx),

it follows that T (x) is a fixed point of T n, and thus, by the uniqueness of x,
we have Tx = x, that is, T has a fixed point. Since, the fixed point of T is
necessarily a fixed point of T n, so it is unique.

A mapping T , satisfying condition (1.1) is called a contraction with con-
traction constant λ. The result of Corollary 1.2, for which the proof is quite
trivial, establishes that if a power of a map T is a contraction, then T has a
unique fixed point. Moreover observe, in the formulation, that the mapping
T is not even assumed to be continuous3. The aim of this paper is to show

3In some applications, it is often the case that the mapping T is Lipschitzian, and
therefore does not need to be a contraction, whereas some power of Tn is a contraction
mapping.
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that, if a mapping T defined on a G-metric space (X,G) is not a contraction
but admits a power, say n, for which T n is a contraction, therefore there
exists a related G-metric G′ such that T is a contraction on (X,G′).

The elementary facts about G-metric spaces can be found in [12]. We
give here a shortened form of these prerequisites.

Definition 1.3. (Compare [12, Definition 3]) Let X be a nonempty set, and
let the function G : X ×X ×X → [0,∞) satisfy the following properties:

(G1) G(x, y, z) = 0 if x = y = z whenever x, y, z ∈ X;

(G2) G(x, x, y) > 0 whenever x, y ∈ X with x 6= y;

(G3) G(x, x, y) ≤ G(x, y, z) whenever x, y, z ∈ X with z 6= y;

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . ., (symmetry in all three vari-
ables);

(G5)
G(x, y, z) ≤ [G(x, a, a) +G(a, y, z)]

for any points x, y, z, a ∈ X.

Then (X,G) is called a G-metric space.

Definition 1.4. (Compare [13, Definition 1.4])
Let (X,G) be a G-metric space and let {xn} be a sequence of points of

X. We say {xn} is G-convergent to x ∈ X if lim
n,m→∞

G(x, xn, xm) = 0, that

is for any each ε > 0 there exists N ∈ N such that G(x, xn, xm) < ε for all
n,m ≥ N . We call x the limit of the sequence {xn} and we write xn → x or
lim
n→∞

xn = x.

Proposition 1.5. (Compare [12, Proposition 6]) Let (X,G) be a G-metric
space. Define on X the metric dG by dG(x, y) = G(x, y, y) +G(x, x, y) when-
ever x, y ∈ X. Then for a sequence (xn) ⊆ X, the following are equivalent

(i) (xn) is G-convergent to x ∈ X.

(ii) limn,m→∞G(x, xn, xm) = 0.

(iii) limn→∞ dG(xn, x) = 0.

(iv) limn→∞G(x, xn, xn) = 0.

(v) limn→∞G(xn, x, x) = 0.
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Definition 1.6. (Compare [13, Defintion 1.4]) Let (X,G) be a G-metric
space. A sequence {xn} is called a G-Cauchy sequence if for any each ε > 0
there exists N ∈ N such that G(xn, xm, xl) < ε for all n,m, l ≥ N , that is
G(xn, xm, xl)→ 0 as n,m, l→∞.

Proposition 1.7. (Compare [12, Proposition 9])
In a G-metric space (X,G), the following are equivalent

(i) The sequence (xn) ⊆ X is G-Cauchy.

(ii) For each ε > 0 there exists N ∈ N such that G(xn, xm, xm) < ε for all
m,n ≥ N .

Definition 1.8. (Compare [12, Definition 9]) A G-metric space (X,G) is G-
complete if every G-Cauchy sequence of elements of (X,G) is G-convergent
in (X,G).

Definition 1.9. Two G-metrics d1 and d2 on a set X are said to be equivalent
if there exist α, β ≥ 0 such that

αd1(x, y, z) ≤ d2(x, y, z) ≤ βd1(x, y, z), for all x, y, z ∈ X.

Definition 1.10. Given G-metric spaces (X, d1) and (Y, d2), a function T :
X → Y is called uniformly continuous if for every real number ε > 0 there
exists δ > 0 such that for every x, y, z ∈ X with d1(x, y, z) < δ, we have that
d2(Tx, Ty, Tz) < ε.

Finally, we point out that many results about the fixed point theory in
G-metric spaces can be read in [1–9,11–15].

2 The results

Theorem 2.1. Let d be a G-metric on a space X and T : (X, d)→ (X, d) a
self mapping such that:

d(T nx, T ny, T nz) ≤ Kd(x, y, z),

for some n > 1 and 0 < K < 1, whenever x, y, z ∈ X. If λ is a nonnega-
tive real such that

K
1
n <

1

λ
< 1,
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then the application d′ : X3 → [0,∞) defined by :

d′(x, y, z) =
n−1∑
i=0

λid(T ix, T iy, T iz), whenever x, y, z ∈ X,

satisfies:

i) d′ is a G-metric on the space X;

ii) T : (X, d′)→ (X, d′) a self mapping such that:

d′(Tx, Ty, Tz) ≤ 1

λ
d′(x, y, z).4

Proof. We first prove that d′ is a G-metric:

(G1) Indeed for x, y, z ∈ X, if x = y = z, then

d′(x, y, z) = 0.

(G2) For all x, y ∈ X with x 6= y, it is clear that

0 < d(x, x, y) ≤ d′(x, x, y).

(G3) For all x, y, z ∈ X with z 6= y, since

0 < λid(T ix, T ix, T iy) ≤ λid(T ix, T iy, T iz), then

0 < d′(x, x, y) =
n−1∑
i=0

λid(T ix, T ix, T iy)

≤
n−1∑
i=0

λid(T ix, T iy, T iz)

= d′(x, y, z).

(G4) Trivially d′(x, y, z) = d′(x, z, y) = d′(y, z, x) = . . ., (symmetry in all
three variables).

4i.e. T is a contraction with constant 1
λ with respect to d′.
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(G5) For all x, y, z, a ∈ X, since

λid(T ix, T iy, T iz) ≤ λi[d(T ix, T ia, T ia) + d(T ia, T iy, T iz)],

we get

d′(x, y, z) =
n−1∑
i=0

λid(T ix, T iy, T iz)

≤
n−1∑
i=0

λi[d(T ix, T ia, T ia) + d(T ia, T iy, T iz)]

=
n−1∑
i=0

λid(T ix, T ia, T ia) +
n−1∑
i=0

λid(T ia, T iy, T iz)

= d′(x, a, a) + d′(a, y, z).

Hence, d′ is a G-metric on X.

We now prove that T : (X, d′)→ (X, d′) is a contraction with constant 1
λ
.

It is readily seen, by a simple computation, that

d′(Tx, Ty, Tz) =
1

λ
[d′(x, y, z)− d(x, y, z)] + λn−1d(T nx, T ny, T nz).

Since T n : (X, d)→ (X, d) is a contraction with constant K, it follows that

d′(Tx, Ty, Tz) ≤ 1

λ
[d′(x, y, z)− d(x, y, z)] +Kλn−1d(x, y, z)

=
1

λ
d′(x, y, z) +

(
K − 1

λn

)
λn−1d(x, y, z)

≤ 1

λ
d′(x, y, z),

because of the choice K
1
n < 1

λ
. This completes the proof.

Remark 2.2. The map d′ can be thought of as an approximation of order n−1
of a certain G-metric h, equivalent to d′. Indeed, under the assumptions of
Theorem 2.1, it is readily seen that
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d′(x, y, z) ≤
∞∑
i=0

λid(T ix, T iy, T iz)

≤ d′(x, y, z) + λnKd′(x, y, z) + λ2nK2d′(x, y, z) + · · ·

=
1

1− λnK
d′(x, y, z).

The sum h(x, y, z) :=
∑∞

i=0 λ
id(T ix, T iy, T iz) therefore defines aG-metric

h, equivalent to d′, as long as the series happen to converge for some λ > 1.
Moreover, whenever h is finite, the map T : (X, h)→ (X, h) is a contraction
with contraction constant 1

λ
.

Next, we establish that whenever the mapping T : (X, d) → (X, d) is
uniformly continuous and the G-metric d is G-complete, then the G-metric
d′ is also G-complete.

Theorem 2.3. We repeat the assumptions of Theorem 2.1. If T is uniformly
continuous and the G-metric d is G-complete, then so is the G-metric d′.

Proof. Since d(x, y, z) ≤ d′(x, y, z) for any x, y, z ∈ X, any G-Cauchy se-
quence in (X, d′) is also a G-Cauchy sequence in (X, d). It is therefore enough
to prove that, under uniform continuiy of T in (X, d), any G-convergent se-
quence in (X, d) is also G-convergent in (X, d′).

So let {xn} be a sequence in the G-metric space (X, d) such that {xn}
G-converges to some ξ ∈ (X, d). Set M = max{λi, i = 1, · · · , n − 1} and
observe that

M ≥ λ > 1.

Since all the powers of T are also uniformly continuous in (X, d), we can
write that, for any ε > 0, there exists η > 0 such that for all x, y, z ∈ X, and
i = 1, · · · , n− 1

d(x, y, z) < η =⇒ d(T ix, T iy, T iz) <
ε

Mn
.

Since {xn} G-converges to some ξ ∈ (X, d), there exists n0 ∈ N such that

p ≥ n0 =⇒ d(ξ, xp, xp) < η.

Then

p > n0 =⇒ d(T iξ, T ixp, T
ixp) <

ε

Mn
for i = 1, · · · , n− 1,
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i.e.

d′(ξ, xp, xp) <
ε

n

[
1

M
+

λ

M
+ · · ·+ λn−1

M

]
< ε.

Thus {xn} G-converges to ξ with respect to the G-metric d′.

We conclude this paper by an example, illustrating the importance of the
requirement for T to be uniformly continuous.

Example 2.4. Let X = [0, 3] be endowed with the G-metric d, defined as

d(x, y, z) = max{|x− y|, |y − z|, |z − x|} for all x, y, z ∈ [0, 3].

Define T : [0, 3]→ [0, 3] by

Tx =

{
1, if 0 ≤ x ≤ 2

2, if 2 < x ≤ 3.

The mapping T is discontinuous at x = 2 but T 2x = 1 for all x, y, z ∈ [0, 3],
i.e. T 2 is a contraction and the unique fixed point is x = 1. Moreover, any
real K ∈ (0, 1) can be used as contraction constant for T 2. We can then
apply Theorem 2.1 with any λ such that λ > 1. From Theorem 2.1, the
G-metric d′ is given by

d′(x, y, z) =

{
d(x, y, z), if x, y, z ≤ 2 or x, y, z > 2,

d(x, y, z) + λ, otherwise.

The G-metric d′ is not G-complete. Indeed the sequence {xn} given by
xn = 2 + 1

n
is G-Cauchy in (X, d′) but does not G-converge; as the only

candidate for a limit is 2 but

d′(xn, xn, 2) =
1

n
+ λ > λ for all n.

The above example shows that, unless one assumes at least pointwise
continuity, the conclusion of Theorem 2.3 can fail.
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