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1 Introduction

Iterated function systems, whose foundations are due to J. Hutchinson (see
[26]), represent one of the basic ways to construct fractals.

Two directions of generalization of this concept are the following:
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– to consider more general domains or ranges of the iterated function
systems (see, for example, [6], [10], [13], [14], [24], [30], [33] and [45]).

– to work with more general contractive conditions on the constitutive
functions of the iterated function systems (see, for example, [18], [34], [36],
[37], [38], [39], [45], [48], [52], [53], [57] and [58]).

Concerning the first line of generalization, we emphasize the papers [10],
[14] and [45], were iterated function systems in the setting of b-metric spaces
are studied. The notion of b-metric space was introduced by I. A. Bakhtin
(see [8]) and S. Czerwik (see [15] and [16]). In the last years a lot of fixed
point results in the framework of b-metric spaces have been obtained (see,
for example, [1], [7], [9], [11], [12], [17], [27], [28], [29], [31], [40], [41], [42],
[44], [46], [47], [49], [50], [51], [55], [56] and [59]).

Concerning the second line of generalization, of special interest for the
present study, is the paper [39] where the notion of iterated function sys-
tem consisting of convex contractions is introduced and the existence and
uniqueness of the attractor of such a system were obtained. The concept of
generalized convex contraction was introduced by V. Istrăţescu and studied
also by S. András (see [4], [5], [19], [20] and [21]):

Definition 1.1. Given a complete metric space (X, d), a continuos func-
tion f : X → X is called a generalized convex contraction provided that

there exist m ∈ N∗ and α0, α1, . . . , αm−1 ≥ 0 such that
m−1∑
i=0

αi < 1 and

d(f [m](x), f [m](y)) ≤
m−1∑
k=0

αkd(f [k](x), f [k](y)) for all x, y ∈ X, where by f [k]

we mean the composition of f by itself k times.

They proved that each continuous generalized convex contraction is a
Picard operator. We note that for m = 2 one obtains the concept of convex
contraction. For other generalizations of Istrăţescu’s result see [2], [23], [25],
[32], [35] and [43].

The result presented in this paper fits into both directions of generaliza-
tions presented above. More precisely, we study iterated function systems
consisting of generalized convex contractions (illustrating the second direc-
tion) on the framework of complete (strong) b-metric spaces (illustrating the
first direction).

On the one hand, it is our duty to underline the strong influence of the
paper [39] on our work, the main lines of arguments used in this article being
adaptations of the ones used there to the framework of b-metric spaces. The
proofs of Propositions 3.6 and 3.7 are unchanged with respect to those from
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the aforementioned paper, but we included them for the sake of completeness
of the presentation.

On the other hand, we should emphasize that there are some big differ-
ences between the setting of metric spaces and the one of b-metric spaces
which give raise to some problems in certain approaches. Given a b-metric
space (X, d, s), x ∈ X, r > 0, (xn)n∈N and (yn)n∈N sequences of elements
from X and u, v ∈ X such that lim

n→∞
xn = u and lim

n→∞
yn = v, we mention

some of these differences:
– {y ∈ X | d(x, y) < r} is not necessary open (see [3]);
– {y ∈ X | d(x, y) ≤ r} is not necessary closed;
– d is not necessary continuous (actually we have

1

s2
d(u, v) ≤ lim

n→∞
d(xn, yn) ≤ lim

n→∞
d(xn, yn) ≤ s2d(u, v)

and
1

s
d(u, x) ≤ lim

n→∞
d(xn, x) ≤ lim

n→∞
d(xn, x) ≤ sd(u, x)

see [42], [44] and [49]).

2 Preliminaries

I. Notations concerning functions and sets

In the sequel, f [n] designates the composition of the function f : X → X
by itself n times.

For a family of functions (fi)i∈I , where fi : X → X, α1, α2, ..., αn ∈ I and
Y ⊆ X, we use the following notations:

fα1 ◦ fα2 ◦ ... ◦ fαn

not
= fα1α2...αn

fα1α2...αn(Y )
not
= Yα1α2...αn .

BA means the set of functions from A to B.
For a set I, we use the following notations:

IN
∗ not

= Λ(I);

so the elements of Λ(I) can be presented as infinite words ω = ω1ω2...ωn...
with letters from I

I{1,2,...,m}
not
= Λm(I);
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hence the elements of Λ(I) are words ω = ω1ω2...ωm with m letters from I

Λ0(I) ∪ Λ1(I) ∪ ... ∪ Λm−1(I)
not
= Vm(I),

where Λ0(I) = {λ} is the set consisting on the empty word; hence Vm(I) is
the set of all words having at most m− 1 letters from I⋃

n∈N

Λn(I)
not
= Λ∗(I);

thus Λ∗(I) is the set of all finite words with letters from I.
For a function f : X → X, by fλ we mean IdX : X → X given by

IdX(x) = x,

for every x ∈ X.
For α ∈ Λ(I)∪Λn(I) and m,n ∈ N, m ≤ n, we use the following notation:

α1α2....αm
not
= [α]m.

Given the words α ∈ Λ∗(I) and β ∈ Λ(I) ∪ Λ∗(I), by αβ we understand
the concatenation of them.

II. Basic facts concerning b-metric spaces

The original impulse of the study of b-metric spaces comes from measure
theory.

Definition 2.1. Given a nonempty set X and a real number s ∈ [1,∞), a
function d : X × X → [0,∞) is called b-metric if it satisfies the following
properties:

i) d(x, y) = 0 if and only if x = y;
ii) d(x, y) = d(y, x) for all x, y ∈ X;
iii) d(x, y) ≤ s(d(x, z) + d((z, y)) for all x, y, z ∈ X.

We denote such a system by (X, d, s) and we call it a b-metric space with
constant s.

The classic examples of b-metric spaces are lp(R) and Lp[0, 1], where p ∈
(0, 1). Some other examples of b-metric spaces could be found in [7], [9], [12],
[15] and [16].

Remark 2.1. Every metric space is a b-metric space with constant 1, but
there exist b-metric spaces which are not metric spaces.
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Indeed, let X = {0, 1, 2} and set

d(0, 0) = d(1, 1) = d(2, 2) = 0,

d(0, 1) = d(1, 0) = d(0, 2) = d(2, 0) = 1

and
d(1, 2) = d(2, 1) = 3.

Then:
– (X, d) is a b-metric space since

d(x, y) ≤ 3

2
(d(x, z) + d(z, y)),

for all x, y, z ∈ X;
– (X, d) is not a metric space since

d(1, 2) = 3 > d(1, 0) + d(0, 2) = 2.

For similar examples see [12], [15] and [16].

Lemma 2.1. (see [15] and [16]). For every b-metric space (X, d, s), p ∈ N
and x0, x1, ..., xp ∈ X we have

d(x0, xp) ≤
p∑
i=1

sid(xi−1, xi),

Definition 2.2. A sequence (xn)n∈N of elements from a b-metric space (X, d, s)
is called:

– convergent if there exists l ∈ R such that

lim
n→∞

d(xn, l) = 0;

– Cauchy if lim
m,n→∞

d(xm, xn) = 0 , i.e. for every ε > 0 there exists nε ∈ N
such that

d(xm, xn) < ε,

for all m,n ∈ N, m,n ≥ nε.
The b-metric space (X, d, s) is called complete if every Cauchy sequence

of elements from X is convergent.

The next result turns out to be a crucial tool in the proof of Propositions
3.1 and 3.2.



124 F. Georgescu An. U.V.T.

Lemma 2.2. (see Corollary 2.8 from [40]). Let (xn)n∈N be a sequence of
elements from a b -metric space (X, d, s). If there exists α > 1 such that the

series
∞∑
n=1

αnd(xn, xn+1) is convergent, then the sequence (xn)n∈N is Cauchy.

Remark 2.2. We endow a b-metric space with the topology induced by its
convergence.

In particular:

– the closure Y of a subset of a b-metric space (X, d, s) is defined in the
following way:

Y = {x ∈ X | there exists (xn)n∈N a sequence of elements from Y

such that lim
n→∞

xn = x};

– a function f : A→ X, where A is a subset of a b-metric space (X, d, s),
is continuous if lim

n→∞
f(xn) = f(l) for every sequence (xn)n∈N of elements from

A converging to l ∈ A.

Since, as we have mentioned in the Introduction, in an arbitrary b-metric
space, the distance d is not necessary continuous, we introduce a strengt-
hening of the notion of b-metric space which eludes this drawback.

Definition 2.3. Given a nonempty set X and a real number s ∈ [1,∞), a
function d : X × X → [0,∞) is called a strong b-metric if it satisfies the
following properties:

i) d(x, y) = 0 if and only if x = y;

ii) d(x, y) = d(y, x) for all x, y ∈ X;

iii) d(x, y) ≤ d(x, z) + sd(z, y) for all x, y, z ∈ X.

By abuse of notation, we denote such a system by (X, d, s) and we call it
a strong b-metric space with constant s.

Remark 2.3. Every metric space is a strong 1 -metric space. Every strong
b-metric space with constant s is a b-metric space with constant s.

Proposition 2.3. (see pages 122 and 123 from [29]). Let (X, d, s) be a strong
b -metric space. Then lim

n→∞
d(xn, yn) = d(x, y) for every (xn)n∈N, (yn)n∈N

sequences of elements of X and x, y ∈ X such that lim
n→∞

xn = x and lim
n→∞

yn =

y, i.e. d is continuous.
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III. Basic facts concerning the Hausdorff-Pompeiu generalized
metric in the setting of b-metric spaces

Following the notations from [10], we shall deal with the following families
of subsets of a b-metric space (X, d, s):

– P(X) = {Y | Y ⊆ X}
– P (X) = {Y ∈ P(X) | Y 6= ∅}
– Pb(X) = {Y ∈ P (X) | Y is bounded} = {Y ∈ P (X) | sup

x,y∈Y
d(x, y) <

∞}
– Pcl(X) = {Y ∈ P (X) | Y is closed}, where Y closed means that for

every sequence of elements of Y converging to x ∈ X we have x ∈ Y
– Pb,cl(X) = Pb(X) ∩ Pcl(X)

– Pcp(X) = {Y ∈ P (X) | Y is compact}, where Y compact means that
for every sequence of elements of Y there exists a subsequence converging to
an element of Y .

Note that one can easily check, using the technique used in the case of
the metric spaces with very minor changes, that:

Pcp(X) ⊆ Pb,cl(X).

Definition 2.4. For a b−metric space (X, d, s), we consider the Hausdorff-
Pompeiu generalized metric H : P(X)× P(X)→ [0,+∞] described by

H(A,B) = max{sup
x∈A

( inf
y∈B

d(x, y)), sup
x∈B

(inf
y∈A

d(x, y))} =

= inf{δ ∈ [0,∞] | A ⊆ Eδ(B) and B ⊆ Eδ(A)},
for every A,B ∈ P(X), where Eδ(A) is the δ-expansion of A, i.e.

Eδ(A) =
⋃
x∈A

B(x, δ) = {y ∈ X | there exists x ∈ A such that d(x, y) < δ}.

Proposition 2.4. i) For a strong b- metric space (X, d, s), we have:

H(A,B) = H(A,B),

for every A,B ∈ P(X);
ii) For a b- metric space (X, d, s), we have:

H(A ∪B,C ∪D) ≤ max{H(A,C), H(B,D)},
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for every A,B,C,D ∈ P(X). Moreover, we have

H

(⋃
i∈I

Ai,
⋃
i∈I

Bi

)
≤ sup

i∈I
H(Ai, Bi),

for every families (Ai)i∈I , (Bi)i∈I of elements from P(X).

Proof.
i) Let us consider arbitrary, but fixed, A,B ∈ P(X).
We claim that

sup
x∈A

( inf
y∈B

d(x, y)) = sup
x∈A

( inf
y∈B

d(x, y)). (1)

Indeed, it is clear that, for a fixed x ∈ X, we have inf
y∈B

d(x, y) ≤ inf
y∈B

d(x, y).

If, by reductio ad absurdum, inf
y∈B

d(x, y) < inf
y∈B

d(x, y), then there exists c ∈

R such that inf
y∈B

d(x, y) < c < inf
y∈B

d(x, y) and, consequently, one can find

y0 ∈ B such that d(x, y0) < c. Thus, there exists a sequence (un)n∈N of
elements from B having the property that lim

n→∞
un = y0. Since d(x, y0) <

c < inf
y∈B

d(x, y) ≤ d(x, un) for all n ∈ N, by passing to limit as n goes to

∞ in the previous inequality and taking into account Proposition 2.3, we
get the contradiction d(x, y0) < d(x, y0). Therefore inf

y∈B
d(x, y) = inf

y∈B
d(x, y)

for every x ∈ A. Consequently sup
x∈A

( inf
y∈B

d(x, y)) ≤ sup
x∈A

( inf
y∈B

d(x, y)). If, by

reductio ad absurdum, sup
x∈A

( inf
y∈B

d(x, y)) < sup
x∈A

( inf
y∈B

d(x, y)), there is c ∈ R

such that sup
x∈A

( inf
y∈B

d(x, y)) < c < sup
x∈A

( inf
y∈B

d(x, y)) and, consequently, one can

find x0 ∈ A such that c < inf
y∈B

d(x0, y). There exists a sequence (vn)n∈N

of elements from A having the property that lim
n→∞

vn = x0. Since, for an

arbitrary, but fixed, n ∈ N, we have d(x0, y) ≤ d(vn, y) + sd(vn, x0) for
every y ∈ B, we get inf

y∈B
d(x0, y) − inf

y∈B
d(vn, y) ≤ sd(vn, x0). Interchanging

the roles of x0 and vn, one obtains inf
y∈B

d(vn, y) − inf
y∈B

d(x0, y) ≤ sd(vn, x0).

Consequenly

∣∣∣∣ inf
y∈B

d(x0, y)− inf
y∈B

d(vn, y)

∣∣∣∣ ≤ sd(vn, x0) for all n ∈ N and since

lim
n→∞

d(vn, x0) = 0, we get

lim
n→∞

inf
y∈B

d(vn, y) = inf
y∈B

d(x0, y). (2)
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Therefore, since

inf
y∈B

d(vn, y) = inf
y∈B

d(vn, y) ≤ sup
x∈A

( inf
y∈B

d(x, y)) < c < inf
y∈B

d(x0, y)

for all n ∈ N, by passing to limit as n goes to ∞ in the previous inequality
and taking into account (2), we get the contradiction inf

y∈B
d(x0, y) ≤ c <

inf
y∈B

d(x0, y). Thus sup
x∈A

( inf
y∈B

d(x, y)) = sup
x∈A

( inf
y∈B

d(x, y)).

In a similar way one can prove that

sup
x∈B

(inf
y∈A

d(x, y)) = sup
x∈B

(inf
y∈A

d(x, y)). (3)

From (1) and (3) we conclude that H(A,B) = H(A,B).
ii) The proof runs like the one for the classic framework of metric spaces

(see Theorem 1.13, page 22, from [54]). For the first part of ii) one can also
consult [45]. �

Proposition 2.5. (see [16]) If the b-metric space (X, d, s) is complete, then
(Pcp(X), H, s) and (Pcl(X), H, s) are complete b- metric spaces.

Moreover,

H(A,B) ≤ s(H(A,C) +H(C,B)),

for every A,B,C ∈ P(X).

Definition 2.5. For a b-metric space (X, d, s), we consider the function
δ : Pcp(X)× Pcp(X)→ [0,+∞) defined by

δ(K1, K2) = sup
x∈K1,y∈K2

d(x, y),

for all K1, K2 ∈ Pcp(X).
In particular, for every K ∈ Pcp(X), we consider

diam(K)
def
= δ(K,K) = sup

x,y∈K
d(x, y).

One can easily check the following:

Remark 2.4. For a b-metric space (X, d, s), we have

H(K1, K2) ≤ δ(K1, K2),

for all K1, K2 ∈ Pcp(X).
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Justification. Let us consider K1, K2 ∈ Pcp(X) arbitrarily chosen, but
fixed. For all x ∈ K1 and y ∈ K2, we have inf

y∈K2

d(x, y) ≤ d(x, y) ≤
sup

x∈K1,y∈K2

d(x, y) = δ(K1, K2), so sup
x∈K1

inf
y∈K2

d(x, y) ≤ δ(K1, K2). In a simi-

lar way one can prove that sup
x∈K2

inf
y∈K1

d(x, y) ≤ δ(K1, K2). Consequently

max{ sup
x∈K1

inf
y∈K2

d(x, y), sup
x∈K2

inf
y∈K1

d(x, y)} ≤ δ(K1, K2), i.e. H(K1, K2) ≤ δ(K1, K2).

�

Proposition 2.6. Let (X, d, s) be a complete strong b−metric space,
(Kn)n∈N ⊆ Pcp(X) and K ∈ Pcp(X) such that lim

n→∞
H(Kn, K) = 0. Then

L
def
= K ∪

(
∞⋃
n=0

Kn

)
∈ Pcp(X).

The proof of the above proposition runs in a similar way to that of Propo-
sition 2.8 from [39] adapting the classic techniques from the metric spaces
framework.

IV. The concept of Picard operator

Definition 2.6. A function f : X → X, where (X, d, s) is a b−metric space,
is called Picard operator if there exists a unique x∗ ∈ X such that f(x∗) = x∗

and lim
k→∞

f [k](x) = x∗ for every x ∈ X.

3 The main result

Definition 3.1. Given a natural number m, an iterated function system
consisting of generalized convex contractions on a complete b- metric space
(X, d, s) consists of a finite family of continuous functions (fi)i∈I , where
fi : X → X, having the following property: for every ω ∈ Λm(I) there exists
a family of positive numbers (aω,v)v∈Vm(I) such that:

α) max
ω∈Λm(I)

∑
v∈Vm(I)

aω,v <
1
sm

;

β) d(fω(x), fω(y)) ≤
∑

v∈Vm(I)

aω,vd(fv(x), fv(y)), for all ω∈Λm(I), x, y∈X.

Such a system will be denoted by

S = ((X, d, s),m, (fi)i∈I).
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One can associate to such a system the function FS : Pcp(X) → Pcp(X)
given by

FS(K) =
⋃
i∈I

fi(K)

for every K ∈ Pcp(X).
A fixed point of FS is called attractor of S.

In the sequel, for an iterated function system consisting of generalized
convex contractions on a complete b-metric space S = ((X, d, s),m, (fi)i∈I)
we use the following notations:

–
∑

v∈Vm(I)

aω,v
not
= Aω, where ω ∈ Λm(I);

– max
ω∈Λm(I)

Aω
not
= A <

1

sm
;

– A · sm not
= C < 1;

– xn(K1, K2)
not
= max{δ(fω(K1), fω(K2)) | ω ∈ Λn(I)}, where

K1, K2 ∈ Pcp(X), n ∈ N∗

– yn(K1, K2) = max{xn(K1, K2), ..., xn−m+2(K1, K2), xn−m+1(K1, K2)},
where n ∈ N∗, n ≥ m− 1 and K1, K2 ∈ Pcp(X).

When there is no danger of confusion, for the sake of simplicity, we shall
use the following notations:

yn(K1, K2)
not
= yn and xn(K1, K2)

not
= xn.

Proposition 3.1. For every iterated function system consisting of genera-
lzed convex contractions on a complete b-metric space S=((X, d,s),m, (fi)i∈I)

there exists AS ∈ Pcp(X) such that the sequence (F
[n]
S (K))n∈N∗ converges in

the Hausdorff-Pompeiu metric to AS for every K ∈ Pcp(X).

Proof. Our proof is divided into four steps.

The first step is to show that the sequence (yk+m(K1, K2))k∈N is de-
creasing for all K1, K2 ∈ Pcp(X).

Justification of the first step. Let us considerK1, K2 ∈ Pcp(X)
and k ∈ N∗ arbitrarily chosen, but fixed. For u1 ∈ K1, u2 ∈ K2 and
ω ∈ Λk+m(I), considering u ∈ Λm(I) and v ∈ Λk(I) with the property
that ω = uv, we get

d(fω(u1), fω(u2)) = d(fuv(u1), fuv(u2)) =



130 F. Georgescu An. U.V.T.

= d(fu(fv(u1)), fu(fv(u2)))
β) from Def. 3.1

≤

≤
∑
w∈Vm

au,wd(fw(fv(u1)), fw(fv(u2))) =

=
∑
w∈Vm

au,wd(fwv(u1), fwv(u2))
Defin. of xn
≤

≤ auxk +
∑

w∈Λ1(I)

au,wxk+1 + ...+
∑

w∈Λm−1(I)

au,wxk+m−1 ≤

≤ max{xk+m−1, ..., xk+1, xk}(au +
∑

w∈Λ1(I)

au,w + ...+
∑

w∈Λm−1(I)

au,w) ≤

≤ yk+m−1

∑
w∈Vm(I)

au,w = Auyk+m−1 ≤ Ayk+m−1.

Consequently we obtain

max
u1∈K1,u2∈K2

d(fω(u1), fω(u2)) = δ(fω(K1), fω(K2)) ≤ Ayk+m−1,

for every ω ∈ Λk+m(I) and therefore we get

xk+m = sup
ω∈Λk+m(I)

δ(fω(K1), fω(K2)) ≤ Ayk+m−1 < yk+m−1. (1)

Taking into account that
xk+1, xk+2, ..., xk+m−1 ≤ max{xk+m−1, ..., xk+1, xk} = yk+m−1,
we conclude that yk+m = max{xk+m, xk+m−1, ..., xk+1} ≤ yk+m−1.

The second step is to prove that the series
∞∑
k=m

skyk(K1, K2) is conver-

gent for all K1, K2 ∈ Pcp(X).

Justification of the second step. For K1, K2 ∈ Pcp(X) arbitrarily
chosen, but fixed, we have

yk+2m−1 = max{xk+2m−1, xk+2m−2, ..., xk+m}
(1)

≤

≤ max{Ayk+2m−2, Ayk+2m−3, ..., Ayk+m−1}
first step

= Ayk+m−1,

for every k ∈ N∗. Hence yjm+l ≤ Aj−1ym+l

first step

≤ Aj−1ym for every j ∈ N∗
and every l ∈ {0, 1, ...,m − 1}. The multiplication of the last inequality by
sjm+l yields sjm+lyjm+l ≤ Aj−1(sm)j−1sl+mym ≤ (Asm)j−1s2mym, i.e.

sjm+lyjm+l ≤ Cj−1s2mym, (2)
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for every j ∈ N∗ and every l ∈ {0, 1, ...,m− 1}.
Let us note that for every n ∈ N, n ≥ m, there exists j ∈ N∗ and

l ∈ {0, 1, ...,m− 1} such that n = jm+ l, so

n∑
k=m

skyk =
2m−1∑
k=m

skyk +
3m−1∑
k=2m

skyk + ...+

jm−1∑
k=(j−1)m

skyk +
n∑

k=jm

skyk
(2)

≤

≤
2m−1∑
k=m

s2mymC
0+

3m−1∑
k=2m

s2mymC
1+...+

jm−1∑
k=(j−1)m

s2mymC
j−2+

n∑
k=jm

s2mymC
j−1 ≤

≤ ms2mym(1 + C + ...+ Cj−2) + s2mym(n+ 1− jm)Cj−1 ≤

≤ ms2mym(1+C+ ...+Cj−2)+ms2mymC
j−1 = ms2mym(1+C+ ...+Cj−1) =

= ms2mym
1− Cj

1− C
<
ms2mym
1− C

.

Consequently, the sequence of the partial sums of the series
∞∑
k=m

skyk is

bounded. As it is obviously increasing, we conclude that it is convergent,

i.e. the series
∞∑
k=m

skyk is convergent.

Let us note that, taking into account the comparison test, using (1), we

infer that the series
∞∑

k=m+1

skxk,
∞∑

k=m+1

xk and
∞∑

k=m+1

yk are convergent. In

particular, we deduce that lim
k→∞

yk(K1, K2) = lim
k→∞

xk(K1, K2) = 0 for all

K1, K2 ∈ Pcp(X).

The third step is to justify that the sequence (F
[k]
S (K))k∈N∗ is conver-

gent for every K ∈ Pcp(X).

Justification of the third step. Note forK1, K2 ∈ Pcp(X) arbitra-
rily chosen, we have

H(F
[k]
S (K1), F

[k]
S (K2)) = H(

⋃
ω∈Λk(I)

fω(K1),
⋃

ω∈Λk(I)

fω(K2))
Prop. 2.4, ii)

≤

≤ max{H(fω(K1), fω(K2)) | ω ∈ Λk(I)}
Remark 2.4

≤ xk. (3)

Therefore, as lim
k→∞

xk(K1, K2) = 0, we get

lim
k→∞

H(F
[k]
S (K1), F

[k]
S (K2)) = 0. (4)
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Now, taking K1 = K ∈ Pcp(X) and K2 = FS(K) ∈ Pcp(X), based on (3),
the convergence of the series

∑
k∈N∗

skxk and the comparison test, we come to

the conclusion that the series
∑
k∈N∗

skH(F
[k+1]
S (K), F

[k]
S (K)) is convergent for

all K ∈ Pcp(X). Hence, in view of Lemma 2.2, (F
[k]
S (K))k∈N∗ is a Cauchy

sequence and, because (Pcp(X), H, s) is complete (see Proposition 2.5), it is
convergent.

The Fourth step is to prove that all the sequences (F
[k]
S (K))k∈N∗ , where

K ∈ Pcp(X), have the same limit.

Justification of the fourth step.

According to the third step, for everyK1,K2∈Pcp(X), there existAK1 , AK2∈
∈ Pcp(X) such that

lim
k→∞

H(F
[k]
S (K1), AK1) = 0 and lim

k→∞
H(F

[k]
S (K2), AK2) = 0. (5)

Since

H(AK1 , AK2)
Prop. 2.5

≤ s(H(AK1 , F
[k]
S (K1)) +H(F

[k]
S (K1), AK2))

Prop.2.5

≤

≤ sH(AK1 , F
[k]
S (K1)) + s2(H(F

[k]
S (K1), F

[k]
S (K2)) +H(F

[k]
S (K2), AK2)),

for all k ∈ N∗, by passing to limit as k goes to ∞, using (4) and (5) we get
that H(AK1 , AK2) = 0, so AK1 = AK2 for every K1, K2 ∈ Pcp(X).

Finally, denoting by AS the common limit of the sequences (F
[k]
S (K))k∈N∗ ,

where K ∈ Pcp(X), we conclude that lim
k→∞

H(F
[k]
S (K), AS) = 0 for every

K ∈ Pcp(X)
�

Proposition 3.2. For every iterated function system consisting of genera-
lized convex contractions on a complete b-metric space S=((X, d, s),m, (fi)i∈I)
and every ω ∈ Λ(I) there exists Aω ∈ Pcp(X) such that

lim
k→∞

H(f[ω]k(K), Aω) = 0,

for every K ∈ Pcp(X).

Proof. For ω ∈ Λ(I) and K1, K2 ∈ Pcp(X) arbitrarily chosen, but fixed, we
have

0 ≤ H(f[ω]n(K1), f[ω]n(K2))
Remark 2.4

≤ δ(f[ω]n(K1), f[ω]n(K2)) ≤ xn
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for every n ∈ N∗.
The fact that lim

n→∞
xn = 0 yields

lim
n→∞

δ(f[ω]n(K1), f[ω]n(K2)) = lim
n→∞

H(f[ω]n(K1), f[ω]n(K2)) = 0. (1)

Since, for every K1 ∈ Pcp(X), the series
∑
n∈N∗

snxn(K1, FS(K1)) is conver-

gent and

snH(f[ω]n(K1), f[ω]n+1(K1))
Remark 2.4

≤ snδ(f[ω]n(K1), f[ω]n+1(K1)) ≤

≤ snδ(f[ω]n(K1), f[ω]n(FS(K1))) ≤ snxn(K1, FS(K1))

for each n ∈ N∗, the comparison criterion assures us that the series∑
n∈N∗

snH(f[ω]n(K1), f[ω]n+1(K1)) is convergent. Based on Lemma 2.2, we infer

that the sequence (f[ω]n(K1))n∈N∗ is Cauchy and as, (Pcp(X), H, s) is complete
(see Proposition 2.5), there exists AK1

ω ∈ Pcp(X) such that

lim
n→∞

H(f[ω]n(K1), AK1
ω ) = 0. (2)

Similarly, for K2 ∈ Pcp(X), there exists AK2
ω ∈ Pcp(X) such that

lim
n→∞

H(f[ω]n(K2), AK2
ω ) = 0. (3)

From (1), (2) and (3) we obtain that

AK1
ω = AK2

ω

def
= Aω.

for each K1, K2 ∈ Pcp(X).

Finally, by denoting byAω the common limit of the sequences (F
[k]
S (K))k∈N∗ ,

where K ∈ Pcp(X), we conclude that lim
n→∞

H(f[ω]n(K), Aω) = 0, for every

K ∈ Pcp(X).

The following two lemmas give more details about the convergence pre-
sented by Proposition 3.2.

Lemma 3.3. In the framework of Proposition 3.2, we have

lim
n→∞

sup
ω∈Λ(I)

H(f[ω]n(K), Aω) = 0,

for every K ∈ Pcp(X), i.e. the convergence described in the aforementioned
Proposition is uniform with respect to ω ∈ Λ(I).
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Proof. Let us fix K ∈ Pcp(X). We have

H(f[ω]n(K), Aω)
Lemma 2.1

≤

≤
p∑

k=n

sk−n+2H(f[ω]k(K), f[ω]k+1
(K)) + sH(f[ω]p+1(K), Aω),

(1)

for every p, n ∈ N, p ≥ n and ω ∈ Λ(I).
Passing to limit as p→∞ in (1) and using Proposition 3.2, we obtain

H(f[ω]n(K), Aω) ≤
∑
k≥n

sk−n+2H(f[ω]k(K), f[ω]k+1
(K))

Remark 2.14

≤

≤
∑
k≥n

sk−n+2δ(f[ω]k(K), f[ω]k(FS(K))) ≤
∑
k≥n

sk−n+2xk(K,FS(K))

for every ω ∈ Λ(I) and every n ∈ N. Thus

sup
ω∈Λ(I)

H(f[ω]n(K), Aω) ≤
∑
k≥n

sk−n+2xk(K,FS(K)) = s2−n
∑
k≥2

skxk(K,FS(K))

(2)
for every n ∈ N.

Taking into account the convergence of the series
∑
k

skxk(K,FS(K)) and

the fact that lim
n→∞

s2−n = 0, by passing to limit as n→∞ in (2) we conclude

that lim
n→∞

sup
ω∈Λ(I)

H(f[ω]n(K), Aω) = 0.

Lemma 3.4. In the framework of Proposition 3.2, the set Aω has just one
element which we denote by aω.

Proof. Let us fix K0 ∈ Pcp(X) and ε > 0. Taking into account (1) from
the proof of Proposition 3.2, we infer that lim

n→∞
diam(f[ω]n(K0)) = 0, so there

exists n1
ε ∈ N∗ such that

diam(f[ω]n(K0)) <
ε

3
, (1)

for all n ∈ N, n ≥ n1
ε.

Proposition 3.2 provides n2
ε ∈ N∗ such that

H(f[ω]n(K0), Aω) <
ε

3
, (2)

for all n ∈ N, n ≥ n2
ε.
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With the notation nε = max{n1
ε, n

2
ε}, from (2) and the definition of H,

we get the existence of δ0 between 0 and ε
3

such that

Aω ⊆ Eδ0(f[ω]nε
(K0)) =

⋃
x∈f[ω]nε

(K0)

B(x, δ0). (3)

For every x, y ∈ Aω, based on (3), there exist u, v ∈ f[ω]nε
(K0) such that

d(x, u) < δ0 and d(y, v) < δ0. Hence

d(x, y) ≤ s2(d(x, u) + d(u, v) + d(v, y)) ≤

≤ s2(2δ0 + diam(f[ω]nε
(K0)))

(1)
< s2(2

ε

3
+
ε

3
) = s2ε.

Thus
diam(Aω) = sup

x,y∈Aω

d(x, y) ≤ s2ε,

for every ε > 0 and this implies that the set Aω is a singleton.

The above Remarks can be synthesized in the following way:

lim
n→∞

sup
ω∈Λ(I)

H(f[ω]n(K), {aω}) = 0,

for every K ∈ Pcp(X).
The next proposition gives, for the case of strong b-metric spaces, a

description of AS using the elements aω.

Proposition 3.5. For every iterated function system consisting of gene-
ralized convex contractions on a complete strong b-metric space S =
((X, d, s),m, (fi)i∈I), with the notations used in the above Remarks, AS is
the closure of the set {aω | ω ∈ Λ(I)}.

Proof. We are going to prove that H(AS, {aω | ω ∈ Λ(I)}) = 0, which, taking
into account Proposition 2.5, implies the conclusion, i.e.

AS = {aω | ω ∈ Λ(I)}.

Since

H(AS, {aω | ω ∈ Λ(I)})
Prop. 2.5

≤

≤ sH(AS, F
[n]
S (K)) + sH(F

[n]
S (K), {aω | ω ∈ Λ(I)}) ≤ sH(AS, F

[n]
S (K))+

+sH

 ⋃
ω∈Λn(I)

⋃
α∈Λ(I)

f[ωα]n(K),
⋃

ω∈Λn(I)

⋃
α∈Λ(I)

{aωα
∣∣α ∈ Λ(I)}

 ≤
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Prop.2.4, ii)

≤ sH(AS, F
[n]
S (K)) + s max

ω∈Λn(I)
sup
α∈Λ(I)

H(fω(K), {aωα}),

for all n ∈ N∗ and K ∈ Pcp(X), lim
n→∞

H(F
[n]
S (K), AS)

Prop. 3.1
= 0 and

lim
n→∞

sup
ω∈Λn(I)

sup
α∈Λ(I)

H(fω(K), {aωα})
Lemma 3.3

= 0, by passing to limit as n goes

to∞ in the above inequality, we infer that H(AS, {aω | ω ∈ Λ(I)}) = 0 which
implies, using Proposition 2.4, i), that H(AS, {aω | ω ∈ Λ(I)}) = 0.

Proposition 3.6. For every iterated function system consisting of genera-
lized convex contractions on a complete strong b -metric space S =
((X, d, s),m, (fi)i∈I), FS is continuous.

Proof. We are going to prove that for every (Kn)n∈N ⊆ Pcp(X) and K ∈
Pcp(X) the following implication is valid:

lim
n→∞

H(Kn, K) = 0⇒ lim
n→∞

H(FS(Kn), FS(K)) = 0.

Indeed, let us fix an arbitrary ε > 0.

Let us note that the continuity of the functions fi on L
def
= K ∪ (

∞
∪
n=0

Kn)

Prop. 2.6
∈ Pcp(X), assures the existence of δε > 0 such that

d(fi(x), fi(y)) < ε, (1)

for every i ∈ I and every x, y ∈ L such that d(x, y) < δε.
Since lim

n→∞
H(Kn, K) = 0, there exists nε ∈ N such that

H(Kn, K) <
δε
2
, (2)

for every n ∈ N, n ≥ nε.
Let us consider i ∈ I and n ∈ N, n ≥ nε.
For every x ∈ Kn there exists yx ∈ K such that

d(x, yx) < inf
y∈K

d(x, y) +
δε
2
< H(Kn, K) +

δε
2

(2)
<
δε
2

+
δε
2

= δε,

so, taking into account (1), we have inf
v∈fi(K)

d(fi(x), v) ≤ d(fi(x), fi(yx)) < ε.

Consequently sup
x∈Kn

( inf
v∈fi(K)

d(fi(x), v)) ≤ ε, i.e.

sup
u∈fi(Kn)

( inf
v∈fi(K)

d(u, v)) ≤ ε. (3)
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Similarly we obtain

sup
u∈fi(K)

( inf
v∈fi(Kn)

d(u, v)) ≤ ε. (4)

Thus

H(FS(Kn), FS(K))
Prop. 2.4, ii)

≤ max
i∈I

H(fi(Kn), fi(K)) =

= max
i∈I
{max{ sup

u∈fi(Kn)

( inf
v∈fi(K)

d(u, v)), sup
u∈fi(K)

( inf
v∈fi(Kn)

d(u, v))}}
(3) & (4)

≤ ε,

for every n ∈ N, n ≥ nε. In other words, lim
n→∞

H(FS(Kn), FS(K)) = 0.

Proposition 3.7. For every iterated function system consisting of genera-
lized convex contractions on a complete strong b-metric space S = ((X, d, s),m, (fi)i∈I),
FS is a Picard operator.

Proof. Let us fix K ∈ Pcp(X).

Since, according to Proposition 3.1, we have lim
k→∞

H(F
[k]
S (K), AS) = 0,

using Proposition 3.6, we deduce that lim
k→∞

H(FS(F
[k]
S (K)), FS(AS)) = 0,

i.e. lim
k→∞

H(F
[k+1]
S (K), FS(AS)) = 0.

Uniqueness of the limit of a sequence assures us that AS is a fixed point
of FS.

If A1 ∈ Pcp(X) is a fixed point of FS, we have F
[k]
S (A1) = A1, so

lim
k→∞

H(F
[k]
S (A1), A1) = H(A1, A1) = 0.

But lim
k→∞

H(F
[k]
S (A1), AS)

Prop. 3.1
= 0, and, again, the uniqueness of the limit

of a sequence implies that A1 = AS, i.e AS is the unique fixed point of FS.
We conclude that there is a unique AS ∈ Pcp(X) such that FS(AS) = AS

and lim
k→∞

H(F
[k]
S (K), AS) = 0 for every K ∈ Pcp(X), i.e. FS is a Picard

operator.

4 Final remarks

We can reformulate the previous proposition in the following way:

Theorem 4.1. Every iterated function system consisting of generalized con-
vex contractions on a complete strong b-metric space has a
unique attractor.
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Remark 4.1. Proposition 3.1 explains why AS is called the attractor of S,
namely because it ”attracts” all the elements of Pcp(X).

Remark 4.2. The general method to prove the existence and uniqueness of
the attractor of an iterated function system S consisting on elements from a
certain class of contractions which are Picard operators is to show that FS

belongs to that class. As a consequence, one can infer that FS has a unique
fixed point AS and that

lim
k→∞

H(F
[k]
S (K), AS) = 0, (*)

for every K ∈ Pcp(X).
Our approach was totally different, namely we first proved (∗) (see Propo-

sition 3.1) and then, using it, we come to the conclusion that AS is the unique
fixed point of FS.

Remark 4.3. The case s = 1 was treated in [22]. In case that the set I has
one element, ((X, d, 1),m, (fi)i∈I) is nothing else but the notion of generalized
convex contraction. The notion of iterated function system consisting of con-
vex contractions from [39] is a particular case of the one of iterated function
system consisting of generalized convex contractions (just take m = 2).

Remark 4.4. Proposition 3.1, Proposition 3.2 and Lemma 3.4 are valid
under certain weaker hypotheses. More precisely, the proofs of the afore-

mentioned results are valid if instead of s we use a ∈ (1, m

√
1
A

). Conse-

quently, hypothesis α) from Definition 3.1 can be replaced by the following
one: max

ω∈Λm(I)

∑
v∈Vm(I)

aω,v < 1.
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[11] Boriceanu M., Petruşel A., and Rus A.I., Fixed point theorems for some mul-
tivalued generalized contraction in b-metric spaces, Int. J. Math. Stat., 6, (2010),
65–76.

[12] Bota M., Molnár A., and Varga C., On Ekeland’s variational principle in b-metric
spaces, Fixed Point Theory, 12, (2011), 21–28.
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