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1 Introduction

The theory of fuzzy mathematics was initiated in [10] and the notion of fuzzy
order relation was first defined in [11]. Later [8] developed a systematic
framework of fuzzy ordered sets paralleling that of classical partially ordered
sets. This naturally led to the studies on fuzzy Riesz spaces in [4], fuzzy
ordered linear spaces in [5], fuzzy Archimedean spaces in [6] and σ-complete
fuzzy Riesz spaces in [1]. [3] provides a good review of the key results in
this direction. The purpose of this paper is to define and study fuzzy Riesz
subspaces, fuzzy ideals fuzzy bands and fuzzy projection bands.
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We fix some notations for our presentation. Unless otherwise stated, N
denotes the set of natural numbers; R denotes the set of real numbers; R+

denotes the set of nonnegative real numbers; Greek letters α, β, ... denote
either indices or real numbers; the symbols ≤ and > are used with respect
to the usual order on R; all functions are assumed to be real-valued.

The remainder of the paper is organized as follows. Section 2 provide
readers with some preliminaries; most material in this section can be found
in the papers cited above; we give a few counterexamples to complement the
existing literature; for a detailed treatment of fuzzy set theory, we refer to
[9] and [12]; for a comprehensive treatment of the classical theory of Riesz
spaces, we refer to [7]. Section 3 defines fuzzy ideals and studies their basic
properties. Section 4 defines fuzzy bands and gives several important prop-
erties. Section 5 is devoted to the investigation of fuzzy projection bands.

2 Preliminaries

2.1 Fuzzy ordered sets and fuzzy lattices

Definition 2.1. [10] Let X be a space of points, with a generic element of X
denoted by x. A fuzzy set A on X is a membership function µA : X → [0, 1],
with the value of µA(x) at x representing the “grade of membership” of x in
A. The nearer the value µA(x) to unity, the higher the grade of membership
of x in A.

Remark 2.1. To distinguish a fuzzy set from an ordinary set, we call an
ordinary set a crisp set.

Definition 2.2. [11] Let X be a crisp set. A fuzzy order on X is a fuzzy
subset of X ×X whose membership function µ satisfies

(i) (reflexivity) x ∈ X implies µ(x, x) = 1;

(ii) (antisymmetric) x, y ∈ X and µ(x, y) + µ(y, x) > 1 implies x = y;

(iii) (transitivity) x, z ∈ X implies µ(x, z) ≥ ∨y∈X [µ(x, y) ∧ µ(y, z)], where
∨ and ∧ denote supremum and infimum with respect to the usual order,
respectively.

A set with a fuzzy order defined on it is called a fuzzy ordered set (or foset
for short.)
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Notation 2.1. [8] Let X be a foset and x ∈ X. ↑ x denotes the fuzzy set
on X defined by (↑ x)(y) = µ(x, y) for all y ∈ X. Likewise, ↓ x denotes the
fuzzy set on X defined by (↓ x)(y) = µ(y, x) for all y ∈ X. If A is a crisp
subset of X, ↑ A = ∪x∈A(↑ x) and ↓ A = ∪x∈A(↓ x).

Definition 2.3. [8] Let A be a crisp subset of a foset X. The upper bound
U(A) of A is the fuzzy set on X defined as

U(A)(y) =

{
0, if (↑ x)(y) ≤ 1/2 for some x ∈ A;
(∩x∈A ↑ x) (y), otherwise.

Likewise, the lower bound L(A) of A is the fuzzy set on X defined as

L(A)(y) =

{
0, if (↓ x)(y) ≤ 1/2 for some x ∈ A;
(∩x∈A ↓ x) (y), otherwise.

If U(A)(x) > 0 for some x ∈ X, we write x ∈ U(A); in this case we say A is
bounded above and we call x an upper bound of A. Similarly, if L(A)(x) > 0,
we write x ∈ L(A); in this case we say A is bounded below and we call x
a lower bound of A. A is said to be bounded if it is both bounded above
and bounded below. An element z ∈ X is said to be a supremum of A
if (i) z ∈ U(A) and (ii) y ∈ U(A) implies y ∈ U(z). An element z ∈ X
is said to be a infimum of A if (i) z ∈ L(A) and (ii) y ∈ L(A) implies
y ∈ L(z). For a fuzzy subset S of a foset X, U(S) denotes U(suppS), where
S = {x ∈ X | µS(x) > 0} is called the support of S. Similarly, L(S) denotes
L(suppS).

Theorem 2.1. [8] Let A be a subset of a foset X. Then

(i) inf A, if it exists, is unique;

(ii) supA, if it exists, is unique.

Notation 2.2. [8] x ∨ y = sup{x, y} and x ∧ y = inf{x, y}.
Theorem 2.2. [8] Let X be a foset. Then the following identities hold,
whenever the expressions referred to exist.

(i) (idempotent) x ∧ x = x and x ∨ x = x.

(ii) (commutative) x ∧ y = y ∧ x and x ∧ y = y ∧ x.

(iii) (absorption) x ∧ (x ∨ y) = x ∨ (x ∧ y) = x.

(iv) µ(x, y) > 1/2 if and only if x ∧ y = x if and only if x ∨ y = y.

Definition 2.4. [8] A foset X is called a fuzzy lattice (or F-lattice for short)
if all finite subsets of X have suprema and infima. A fuzzy lattice is said to
be complete if every subset of X has a supremum and an infimum.
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2.2 Fuzzy Riesz spaces

Definition 2.5. [5] A real vector space X is said to be a fuzzy ordered vector
space if X is a foset and the fuzzy order on X is compatible with the vector
structure of X in the sense that it satisfies the following two properties:

(i) if x, y ∈ X satisfies µ(x, y) > 1/2, then µ(x, y) ≤ µ(x+ z, y + z) for all
z ∈ X;

(ii) if x, y ∈ X satisfies µ(x, y) > 1/2, then µ(x, y) ≤ µ(λx, λy) for all
λ ∈ R+.

Remark 2.2. It follows from the transitivity of µ and condition (i) that if
µ(x1, x2) > 1/2 and µ(x3, x4) > 1/2, then µ(x1 + x3, x2 + x4) > 1/2. A more
intuitive definition would be replacing µ(x, y) > 1/2 by µ(x, y) > µ(y, x)
(pointed by the reviewer). However, the above observation (consequently
many subsequent results) may not hold under such a definition unless we
modify Definition 2.2 which is well-established in the fuzzy math literature.

Definition 2.6. [5] Let X be a fuzzy ordered vector space and x ∈ X. x is
said to be positive if µ(0, x) > 1/2; x is said to be negative if µ(x, 0) > 1/2;
x is said to be nonnegative if x is not negative.

Definition 2.7. [6] Let D be a subset of foset X.

(i) D is said to be directed to the right if for every finite subset E of D,
D ∩ U(E) 6= φ.

(ii) D is said to be directed to the left if for every finite subset E of D,
D ∩ L(E) 6= φ.

(iii) D is said to be directed if it is both directed to the right and directed
to the left.

A directed fuzzy ordered vector space is a fuzzy vector space which is directed.

Theorem 2.3. [5] Let X be a fuzzy ordered vector space, x, y, z ∈ X and
α, β ∈ R. Then the following statements hold.

(i) If µ(0, x) > 1/2 and µ(0, y) > 1/2, then µ(0, x+ y) > 1/2.

(ii) If µ(0, x) > 1/2 and µ(0,−x) > 1/2, then x = 0.

(iii) If µ(0, x) > 1/2 and α ≥ 0, then µ(0, αx) > 1/2.

(iv) If µ(x1, x2) > 1/2 and α ≤ 0, then µ(αx2, αx1) > 1/2.
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(v) If µ(0, x) > 1/2 and α ≤ β, then µ(αx, βx) > 1/2.

Theorem 2.4. [5] Let {xj}j∈J be a family of elements in a fuzzy ordered
vector space.

(i) If λ ≥ 0, then ∨j∈J(λxi) exists, and

∨j∈J(λxi) = λ (∨j∈Jxj) .

(ii) If λ < 0, then ∧j∈J(λxi) exists, and

∧j∈J(λxi) = λ (∨j∈Jxj) .

Theorem 2.5. [5] Let {xj}j∈J and {yl}l∈L be two families of elements in a
fuzzy ordered vector space. If ∨j∈Jxj and ∨l∈Lyl exist, then

∨j∈J,l∈L(xj + yl) = ∨j∈Jxj + ∨l∈Lyl.

Definition 2.8. [4] A fuzzy ordered vector space is called a fuzzy Riesz
space if it is also a fuzzy lattice at the same time.

[4] and [5] gave several examples of fuzzy ordered linear spaces and fuzzy
Riesz spaces. Below we give an example to show that a fuzzy ordered linear
space need not be a fuzzy Riesz space.

Example 2.1. Let X = D(R) be the set of all differential functions on
R with coordinate algebraic operations. Define a membership function µ :
X ×X → [0, 1] by

µ(f, g) =


1, if f ≡ g;
2/3, if f(t) ≤ g(t) for all t ∈ R and f 6≡ g;
0, otherwise.

It is routine to verify that X equipped with µ is a fuzzy ordered linear space.
However, X fails to be a fuzzy Riesz space. To see this, take f(t) = t and
g(t) = −t in X. Put k(t) = |t|. Then µ(f, k) > 1/2 and µ(g, k) > 1/2, that
is, k ∈ U({f, g}). If h ∈ U({f, g}), then µ(f, h) > 1/2 and µ(g, h) > 1/2;
hence f(t) = t ≤ h(t) and g(t) = −t ≤ h(t) for all t ∈ [0, 1], implying
h(t) ≥ |t| for all t ∈ [0, 1], that is, h ∈ U(k). This shows that f ∨ g = k. But
(f ∨ g)(t) = |t| is not differentiable at t = 0. Thus, f ∨ g 6∈ X, proving that
X is not a fuzzy Riesz space.
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Definition 2.9. [4] Let X be a fuzzy Riesz space and x ∈ X. The positive
part of x is defined by x+ = x ∧ 0; the negative part of x− = (−x) ∨ 0; the
absolute value of x is defined by |x| = x ∨ (−x).

Theorem 2.6. [4] Let X be a fuzzy Riesz space and x, y ∈ X. Then the
absolute value has the following properties:

(i) µ(|x+ y|, |x|+ |y|) > 1/2;

(ii) |λx| = |λ||x| for all λ ∈ R;

(iii) µ(|x| − |y|, |x− y|) > 1/2;

(iv) |x− y| = (x ∨ y)− (x ∧ y).

Theorem 2.7. [4] Let X be a fuzzy Riesz space, x, y ∈ X and λ > 0. Then
the following equalities and inequalities hold.

(i) µ((x+ y)+, x+ + y+) > 1/2;

(ii) µ((x+ y)−, x− + y−) > 1/2;

(iii) (λx)+ = λx+;

(iv) (λx)− = λx−.

Theorem 2.8. [4] If X is a fuzzy Riesz space and x1, x2 ∈ X, then

x1 + x2 = x1 ∨ x2 + x1 ∧ x2.

The following theorem is called the Riesz decomposition theorem for fuzzy
Riesz spaces and the property exhibited in the theorem is called the Riesz
decomposition property of fuzzy Riesz spaces.

Theorem 2.9. [4] Let X be a fuzzy Riesz space and x, y1, ...yn ∈ X. If
µ(|x|, |y1 + ...+ yn|) > 1/2, then there exists elements x1, .., xn ∈ X such that
µ(|xi|, |yi|) > 1/2 for all i = 1, ..., n and x = x1 + ... + xn. Moreover, if x is
positive, then x1, ..., xn can be chosen to be positive.

Definition 2.10. [4] Let X be a fuzzy Riesz space.

(i) Two elements x1, x2 ∈ X are said to be disjoint or orthogonal, denoted
by x1⊥x2, if |x1| ∧ |x2| = 0.

(ii) An element x ∈ X is said to be disjoint or orthogonal to a subset A of
X, denoted by x⊥A, if x⊥y for all y ∈ A.
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(iii) Two subsets A1, A2 ∈ X are said to be disjoint or orthogonal, denoted
by A1⊥A2, if x1⊥x2 for all x1 ∈ A1 and x2 ∈ A2.

Theorem 2.10. [4] Let X be a fuzzy Riesz space.

(i) If x⊥x1 and x⊥x2, then x⊥(ax1 + bx2) for all a, b ∈ R.

(ii) If x = ∨j∈Jxj and y⊥xj for all j ∈ J , then y⊥x.

Definition 2.11. [5] A directed ordered fuzzy ordered vector space X is
said to be a fuzzy Arhimedean space if the set {λx | λ > 0} is not bounded
above for any nonnegative element x ∈ X. In this case, we also say the space
X is fuzzy Archimedean.

Remark 2.3. A fuzzy Riesz space is directed. Hence, we say a fuzzy Riesz
space X is fuzzy Archimedean if the set {λx | λ > 0} is not bounded above
for any nonnegative element x ∈ X.

Theorem 2.11. [4] Let X be a directed fuzzy ordered vector space. Then X
is fuzzy Archimedean if and only if for each nonnegative element x ∈ X the
sequence {nx}n∈N is not bounded above.

Theorem 2.12. [4] Let X be a directed fuzzy ordered vector space. Then
X is fuzzy Archimedean if and only if ∧n∈N{1/n x} = 0 for any positive
element x ∈ X.

We conclude this section by recalling some definitions in linear algebra.
Let V be a vector space. An operator P : V → V is called a projection on V
if P 2 = P . Let A1, A2 be two subsets of V . Then the algebraic sum A1 +A2

is defined as

A1 + A2 = {x1 + x2 | x1 ∈ A1, x1 ∈ A2}.

If A1 ∩A2 = φ, we write A1 +A2 as A1⊕A2 and call it the direct sum of A1

and A2.

3 Fuzzy Riesz subspaces

Definition 3.1. Let X be a fuzzy Riesz space.

(i) A vector subspace Y of X is said to be a fuzzy Riesz subspace if for all
x, y ∈ Y the elements x ∨ y and x ∧ y belong to Y .
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(ii) A subset A of X is said to be fuzzy solid if it follows from µ(|x|, |y|) >
1/2 and y ∈ A that x ∈ A. In this case, we also we A is a fuzzy solid
subset of X.

Remark 3.1. It is clear from Theorem 2.4 that a vector subspace Y of a
fuzzy Riesz space X is a fuzzy Riesz subspace if and only if x, y ∈ Y implies
x ∨ y ∈ Y .

Remark 3.2. Every fuzzy solid set A of fuzzy Riesz space is circled (also
called balanced), that is, x ∈ A implies λx ∈ A for all |λ| ≤ 1.

The next example shows that a vector subspace of a fuzzy Riesz space
need not be a fuzzy Riesz subspace.

Example 3.1. Let X = C(R) be the set of all continuous functions on
R with coordinate algebraic operations. Define a membership function µ :
X ×X → [0, 1] by

µ(f, g) =


1, if f ≡ g;
2/3, if f(t) ≤ g(t) for all t ∈ R and f 6≡ g;
0, otherwise.

Then it is easy to see that X is a fuzzy Riesz space. Now let Y = D(R)
be the set of all differentiable functions on R. Then Y is clearly a vector
subspace of X. However, Example 2.1 shows that Y is not a fuzzy Riesz
subspace of X.

Definition 3.2. Let A be a subset of a fuzzy Riesz space X. The smallest
solid fuzzy subset containing A is called the fuzzy solid hull of A and is denote
dy SolF (A).

Remark 3.3. It is easy to see that the fuzzy solid hull SolF (A) is given by

SolF (A) = {x | ∃y ∈ A such that µ(|x|, |y|) > 1/2}.

Theorem 3.1. Let X be a fuzzy Riesz space and J be an arbitrary index set.
Then the following two statements hold.

(i) If Y1 is a fuzzy Riesz subspace of X and Y2 is a fuzzy Riesz subspace of
Y1, then Y2 is a fuzzy Riesz subspace of X.

(ii) If Yj is a fuzzy Riesz subspace of X for all j ∈ J , then Y = ∩j∈JYj is
a fuzzy Riesz subspace of X.
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Proof. (i) Let x, y ∈ Y2. Then x, y ∈ X; hence z = supX{x, y} exists,
where supX denotes the supremum taken in X. We need to show that
z ∈ Y2. Since x, y ∈ Y1 and Y1 is a fuzzy Riesz subspace, we have
z ∈ Y1. Therefore, z ∈ UY1({x, y}), where the subscript Y1 denotes
that the upper bound is taken in Y1. Now let w ∈ UY1({x, y}). Then
UY1(x, y)(w) > 0, implying UX(x, y)(w) > 0; hence w ∈ UX(x, y). This
implies that z ∈ UX(w). In view of z ∈ Y1, we have z ∈ UY1(w).
Therefore, z = supY1{x, y}. Since Y2 is a fuzzy Riesz subspace of Y ,
we have z ∈ Y2. This proves that Y2 is a fuzzy Riesz subspace of X.

(ii) It is evident that Y is a vector subspace of X. Let x, y ∈ Y . Then the
hypothesis implies x, y ∈ Yj for all j ∈ J . Hence, x ∨ y ∈ Yj for all
j ∈ J , showing that x ∨ y ∈ Y . Therefore, Y is a fuzzy Riesz subspace
of X.

[5] defined the notion of sequential convergence in fuzzy order relation;
[1] further investigated the properties of this mode of convergence. Below we
define the notion of convergence of nets in fuzzy order relation and provide
some basic properties.

Definition 3.3. Let X be a foset. A net {xα}α∈A in X is said to be increas-
ing, denoted by xα ↑, if µ(xα, xβ) > 1/2 when the indices α and β satisfy
α ≤ β. If in addition x = supα∈A{xα} exists, then we write xα ↑ x. Likewise,
we can define decreasing nets in X. The notations xα ↓ and xα ↓ x should
be interpreted similarly.

Notation 3.1. Let X be a foset and D be a subset of X. We will use the
symbol D ↑ to denote the fact that D is directed to the right; likewise, D ↓
denotes the fact that D is directed to the left. The symbol D ↑ x means D ↑
and x = supD; similarly, D ↓ x means D ↓ and x = inf D.

Definition 3.4. A net {xα}α∈A in a fuzzy Riesz space X is said to converge

in fuzzy order to an element x ∈ X, denoted by xα
oF−→ x, if there exists

another net {yα}α∈A such that µ(|xα−x|, yα) > 1/2 and yα ↓ 0. In this case,
x is said to be the fuzzy order limit of {xα}α∈A.

Theorem 3.2. The fuzzy order convergence has the following properties.

(i) If xα
oF−→ x and xα

oF−→ y, then x = y. That is, the fuzzy order limit is
unique.

(ii) A fuzzy order convergent net is bounded.



86 L.Hong An. U.V.T.

(iii) If xα
oF−→ x, yα

oF−→ y and µ(xα, yα) > 1/2 for all α ∈ A, then µ(x, y) >
1/2.

(iv) If xα ↑ (or xα ↓), then xα
oF−→ x if and only if If xα ↑ x (xα ↓ x

respectively).

(v) If xα
oF−→ x, then any subnet of xα converges to x in fuzzy order.

(vi) If xα
oF−→ x, zα

oF−→ x, and µ(xα, yα) > 1/2 and µ(yα, zα) > 1/2 for all

α ∈ A, then yα
oF−→ x.

(vii) If xα
oF−→ x, then x+α

oF−→ x+, x−α
oF−→ x−, and |xα|

oF−→ |x|.

(viii) xα ∨ yβ
oF−→
(α,β)

x ∨ y and xα ∧ yβ
oF−→
(α,β)

x ∧ y.

(ix) If xα
oF−→ x and yβ

oF−→ y, then axα + byβ
oF−→
(α,β)

ax+ by, for all a, b ∈ R.

Proof. We show (ix) only since the proofs of (i)-(vii) are completely analogous
to the proofs of corresponding results for sequences in [1] and [5].

(ix) Since xα
oF−→ x and yβ

oF−→ y, there exist two nets {zα} and {wβ}
such that µ(|xα − x|, zα) > 1/2, µ(|yβ − y|, wβ) > 1/2, zα ↓ 0, and
wβ ↓ 0. By the remark following Definition 2.5 and Theorem 2.6, we
have µ((axα + byβ) − (ax + by), |a||xα − x| + |b||yβ − y|) > 1/2 and
µ(|a||xα − x| + |b||yβ − y|, |a|zα + |b|wβ) > 1/2. Therefore, µ((axα +
byβ)−(ax+by), |a|zα+|b|wβ) > 1/2. It is clear that |a|zα+|b|wβ ↓(α,β) 0.

Hence, axα + byβ
oF−→
(α,β)

ax+ by.

Definition 3.5. Let X be a fuzzy Riesz space. The set of all positive ele-
ments in X is called the positive cone of X and is often denoted by X+, that
is, X+ = {x ∈ X | µ(0, x) > 1/2}.

Definition 3.6. Let S be a subset of a fuzzy Riesz space X.

(i) S is said to be fuzzy σ-order closed if it follows from {xn}n∈N ⊂ S and

xn
oF−→x that x ∈ S.

(ii) S is said to be fuzzy order closed if it follows from {xα}α∈A ⊂ S and

xα
oF−→x that x ∈ S.

Theorem 3.3. Let S be a fuzzy solid subset of fuzzy Riesz space X. Then
the following two statements hold.
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(i) S is fuzzy σ-order closed if and only if xn ↑ x implies x ∈ S for all
increasing sequence {xn} in S+.

(ii) S is fuzzy order closed if and only if xα ↑ x implies x ∈ S for all
increasing net {xα} in S+.

Proof. (i) Suppose {xn} is an increasing sequence in S+ such that xn ↑ x.

Then Theorem 3.2 (iv) shows that xn
oF−→ x. Since S is fuzzy σ-order

closed, we have x ∈ S. For the converse, let {xn} be a sequence in S

such that xn
oF−→ x. Then there exists a sequence {yn} in S such that

µ(|xn−x|, yn) > 1/2 and yn ↓ 0. Thus, µ(x−xn, yn) > 1/2; this implies
µ(x, |xn| + yn) > 1/2 which further implies µ(|x|, |xn| + yn) > 1/2.
It follows that µ((|x| − yn)+, |xn|) > 1/2. By the fuzzy solidness of
S, we have {(|x| − yn)+} ⊂ S. On the other hand, it is clear that
(|x|−yn)+ ↑ |x|. Hence, the hypothesis implies |x| ∈ S. It follows from
the fuzzy solidness of S that x ∈ S, proving that S is fuzzy σ-order
closed.

(ii) Similar to the proof of (i).

4 Fuzzy ideals

Definition 4.1. Let X be a fuzzy Riesz space. A fuzzy solid vector subspace
I of X is called a fuzzy ideal of X.

Remark 1. Our definition of fuzzy ideals is different from the notion of
weak ideal defined in [8]. It is clear that a fuzzy ideal is a weak ideal while
the converse need not be true.

Remark 2. It is easy to see that Definition 4.1 is equivalent to saying that
a vector subspace I of X is a fuzzy ideal if it satisfies the following two
conditions:

(1) x ∈ I if and only if |x| ∈ I;

(2) if x a positive element in X, µ(x, y) > 1/2 and y ∈ I, then x ∈ I.

Remark 3. It is clear from Definition 3.1 that a vector subspace of I of a
fuzzy Riesz space X is a fuzzy ideal if it satisfies the following two conditions:
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(1) x ∈ I if and only if |x| ∈ I;

(2) if x, y ∈ X+ and y ∈ I, then x ∧ y ∈ I.

Theorem 4.1. Let X be a fuzzy Riesz space and J be an arbitrary index set.
Then the following two statements hold.

(i) If I1 is a fuzzy ideal of X and I2 is a fuzzy ideal of I1, then I2 is a fuzzy
ideal of X.

(ii) If Ij is a fuzzy ideal of X for all j ∈ J , then I = ∩j∈JIj is a fuzzy ideal
of X.

Proof. (i) By Theorem 3.1 (i), we know that I2 is a fuzzy Riesz subspace
of X. Thus, it suffices to show that I2 is a fuzzy solid subset of X. To
this end, let x ∈ X and y ∈ I2 with µ(|x|, |y|) > 1/2. Then y ∈ I1.
Since I1 is a fuzzy ideal of X, we have x ∈ I1. Therefore, we have
x ∈ I1, y ∈ I2 and µ(|x|, |y|) > 1/2. Now the fact that I2 is a fuzzy
ideal of I1 implies x ∈ I2. This shows that that I2 is a fuzzy ideal of
X.

(ii) By Theorem 3.1 (ii), I is a fuzzy Riesz subspace of X. Let x ∈ X and
y ∈ Y with µ(|x|, |y|) > 1/2. Then y ∈ Ij for each j ∈ J . Hence, the
fuzzy solidness of Ij implies x ∈ Ij for all j ∈ J , showing that x ∈ I.
This proves that I is a fuzzy ideal of X.

Example 4.1. Let X = C(R) be the set of all continuous functions on
R with coordinate algebraic operations. Define a membership function µ :
X ×X → [0, 1] by

µ(f, g) =


1, if f(t) ≡ g(t);
2/3, if f(t) ≤ g(t) for all t ∈ R and f 6≡ g;
0, otherwise.

Then X is a fuzzy Riesz space. Consider I = L1(R), i.e., the set of all
integrable functions on R. We claim that I is a fuzzy ideal of X. To see this,
let f ∈ X and g ∈ Y with µ(|f |, |g|) > 1/2. Then the definition of µ implies
either f ≡ g or f(t) ≤ g(t), for all t ∈ R and f 6≡ g. In either case, we have∫
R
|f(t)|dt ≤

∫
R
|g(t)dt <∞, showing that f is integrable, i.e., f ∈ I. Thus,

I is a fuzzy ideal of X.

However, the next two examples show that a fuzzy Riesz subspace need
not be a fuzzy ideal.
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Example 4.2. Let X = C(R) be the set of all continuous functions on
R with coordinate algebraic operations. Define a membership function µ :
X ×X → [0, 1] by

µ(f, g) =


1, if f ≡ g;
2/3, if f(t) ≤ g(t) for all t ∈ R and f 6≡ g;
0, otherwise.

Then X is a fuzzy Riesz space. Consider the set

Y = {f | f is a constant function on R}.

Then Y is clearly a fuzzy Riesz subspace of X. But Y is not a fuzzy ideal of
X. To see this, let

f(t) =

{
1− e−t, if t ≥ 0;
0, otherwise.

and g(t) = 2 for all t ∈ R. Then µ(|f |, |g|) > 1/2 and g ∈ Y . However,
f 6∈ Y .

Example 4.3. Let X = RR be the set of all real-valued functions on R with
coordinate algebraic operations. Define a membership function µ : X×X →
[0, 1] by

µ(f, g) =


1, if f ≡ g;
2/3, if f(t) ≤ g(t) for all t ∈ R and f 6≡ g;
0, otherwise.

Then X is a fuzzy Riesz space. Consider the set

Y = {f | f is a continuous function on R}.

Then Y is clearly a fuzzy Riesz subspace of X. But Y is not a fuzzy ideal of
X. To see this, put

f(t) =

{
1, if t ≥ 0;
−1, if t < 0.

and g(t) = 2 for all t ∈ R. Then µ(|f |, |g|) > 1/2 and g ∈ Y . However,
f 6∈ Y .

Definition 4.2. Let D be a subset of a fuzzy Riesz space X. The smallest
fuzzy ideal of X that contains D is called the fuzzy ideal generated by D and
is denoted by ID. If D is a singleton, that is, D = {x} for some x ∈ X, then
ID is often written as Ix and is called the principal fuzzy ideal generated by
x.
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Theorem 4.2. Let D be a subset of a fuzzy Riesz space X.

(i) ID exists and is unique.

(ii) ID can be descried as follows.

ID = {x ∈ X | ∃x1, ..., xn ∈ D,λ ≥ 0 such that µ(|x|, λ
n∑
i=1

|xi|) > 1/2}.(4.1)

Proof. (i) By Theorem 4.1, the intersection of all fuzzy ideals containing
D is a fuzzy ideal. Clearly, this fuzzy ideal is unique and it is the
smallest fuzzy ideal that contains D.

(ii) Let Ĩ denotes the set on the right-hand side of Equation (4.1). By

taking n = 1 and x1 = x, we know that D ⊂ Ĩ. If x ∈ X and y ∈ Ĩ
with µ(|x|, |y|) > 1/2, then there exist x1, ..., xn ∈ D and λ ≥ 0 such
that µ(|y|, λ

∑n
i=1 |xi|) > 1/2. It follows that µ(|x|, λ

∑n
i=1 |xi|) > 1/2,

implying x ∈ Ĩ. This shows that Ĩ is a fuzzy ideal containing D. Hence,
ID ⊂ Ĩ. Conversely, for x ∈ Ĩ, there exist x1, ..., xn ∈ D and λ ≥ 0 such
that µ(|x|, λ

∑n
i=1 |xi|) > 1/2. Thus, x ∈ ID. This shows that Ĩ ⊂ ID.

Therefore, ID = Ĩ, establishing (4.1).

Corollary 4.3. Let X be a fuzzy Riesz space and y ∈ X. Then principal
fuzzy ideal Ix can be described as

Ix = {y ∈ X | ∃λ ≥ 0 such that µ(|y|, λ|x|) > 1/2}.

Theorem 4.4. Let X be a fuzzy Riesz space and I1, I2 be two fuzzy ideals of
X. Then the following statements hold.

(i) I1 + I2 is a fuzzy ideal of X.

(ii) I+1 + I+2 = (I1 + I2)
+.

(iii) If I1∩I2 = φ, x = x1 +x2, y = y1 +y2, where x1, y1 ∈ I1 and x2, y2 ∈ I2,
then µ(x, y) > 1/2 implies µ(x1, y1) > 1/2 and µ(x2, y2) > 1/2.

Proof. (i) Let x ∈ X and y ∈ I1 + I2 with µ(|x|, |y|) > 1/2. Write y =
y1+y2, where y1 ∈ I1 and y2 ∈ I2. Since µ(x+, |x|) > 1/2 and µ(|y|, |y1+
y2|) > 1/2, we have µ(x+, |y1| + |y2|) > 1/2. A fuzzy Riesz space has
the Riesz decomposition property; therefore, there exist two positive
elements x1, x2 such that µ(x1, |y1|) > 1/2, µ(x2, |y2|) > 1/2 and x =
x1 + x2. As y1 ∈ I1 and y2 ∈ I, we have x1 ∈ I1 and x2 ∈ I2, showing
that x ∈ I1 + I2. Thus, I1 + I2 is a fuzzy ideal of X.
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(ii) Take x ∈ (I1 + I2)
+. Then x = x1 + x2, where x1 ∈ I1 and x2 ∈ I2. We

have µ(x, |x1| + |x2|) > 1/2. Thus, the Riesz decomposition theorem
implies that there exist positive elements x̃1 and x̃2 in X such that
µ(x̃1, |x1|) > 1/2, µ(x̃2, |x2|) > 1/2 and x = x̃1 + x̃2. Since x1 ∈ I1 and
x2 ∈ I2, it follows that x̃1 ∈ I+1 and x̃2 ∈ I+2 . Thus, x = x̃1 + x̃2 ∈
I+1 + I+2 . This shows that (I1 + I2)

+ ⊂ I+1 + I+2 . It is obvious that
I+1 + I+2 ⊂ (I1 + I2)

+. Therefore, I+1 + I+2 = (I1 + I2)
+.

(iii) Since I1 ∩ I2 = φ, we have a unique decomposition y− x = (y1− x1) +
(y2 − x2), where y1 − x1 ∈ I1 and y2 − x2 ∈ I2. By the hypothesis
µ(x, y) > 1/2, we know that y − x ∈ (I1 + I2)

+. It follows from (ii)
that µ(x1, y1) > 1/2 and µ(x2, y2) > 1/2.

Definition 4.3. Let X be a fuzzy Riesz space and A ⊂ X. The set

Ad = {x ∈ X | x⊥y, ∀y ∈ A}

is called the disjoint complement of A. The notation Add denotes the disjoint
complement of Ad, i.e., Add = (Ad)d. Notations Addd, Adddd, ... should be
interpreted in the same manner.

Remark. Evidently, if A1 and A2 are two subsets of a fuzzy Riesz space
such that A1 ⊂ A2, then Ad2 ⊂ Ad1.

Theorem 4.5. Let A be a subset of a fuzzy Riesz space X. Then the following
statements hold.

(i) A ⊂ Add.

(ii) Ad = Addd.

(iii) Ad ∩ Add = {0}.

(iv) If Ad = {0}, then Add = X.

(v) Ad is a fuzzy ideal of X.

(vi) If A is a fuzzy ideal of X, then for every nonzero element x ∈ Add there
exists a nonzero element y ∈ A such that µ(|y|, |x|) > 1/2.

Proof. (i) Let x ∈ A. Then for all y ∈ Ad, we have x⊥y. Thus, x ∈ Add.
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(ii) It is obvious from (i) that Ad ⊂ Addd. Conversely, it follows from (i)
and the remark following Definition 4.3 that Addd ⊂ Ad. Therefore,
A = Addd.

(iii) It is clear from Definition 2.10 that 0⊥x for all x ∈ X. Thus, {0} ⊂
Ad ∩ Add. For the converse, let x ∈ Ad ∩ Add. Then the definition of
Add implies |x|⊥|x|. Therefore, x = 0, showing that Ad ∩ Add ⊂ {0}.
It follows that Ad ∩ Add = {0}.

(iv) Since 0⊥x for all x ∈ X, we have {0}d = X by Definition 2.10. There-
fore, the conclusion follows.

(v) It is clear from Theorem 2.4 and Theorem 2.10 that Ad is a vector
subspace of X. Let x ∈ X and y ∈ Ad with µ(|x|, |y|) > 1/2. Then
|y| ∧ |z| = 0 for all z ∈ A. Since |x| ∧ |y| = |x| by Theorem 2.2, for all
z ∈ A we have

|x| ∧ |z| = (|x| ∧ |y|) ∧ |z| = |x| ∧ (|y| ∧ |z|) = 0.

Thus, x ∈ Ad. This shows that Ad is a fuzzy ideal.

(vi) Suppose not. Let x ∈ Add and x 6= 0. If there exists some z ∈ A such
that |x| ∧ |z| 6= 0, then the fuzzy solidness of A implies |x| ∧ |z| ∈ A. It
is evident that µ(|x| ∧ |z|, |x|) > 1/2; this contradicts our hypothesis.
Thus, |x| ∧ |z| = 0 for all z ∈ A, that is x ∈ Ad. It follows from (iii)
that x = 0, contradicting the hypothesis that x 6= 0. Therefore, Add

must possess the stated property.

Remark. It is clear that the proof of (iii) yields a slightly stronger state-
ment: If A and B be two disjoint subsets of a fuzzy Riesz space, then either
A ∩B = φ or A ∩B = {0}.

Theorem 4.6. Let I be a fuzzy ideal of a fuzzy Riesz space X.

(i) Idd is the largest fuzzy ideal Ĩ in X having the property that for every

nonzero element x ∈ Ĩ there exists a nonzero element y ∈ I such that
µ(|y|, |x|) > 1/2.

(ii) Id = {0} if and only if for every nonzero element x ∈ X there exists a
nonzero element y ∈ I such that µ(|y|, |x|) > 1/2.
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Proof. (i) By Theorem 4.5 (vi), Idd has the stated property. It suffices
to show that Idd is the largest fuzzy ideal having the stated property.
Suppose not. Let Ĩ be a fuzzy ideal of X with the stated property.
Then there exist x ∈ Ĩ and y ∈ Id such that |x| ∧ |y| 6= 0. Since

(|x| ∧ |y|, |x|) > 1/2, (|x| ∧ |y|, |y|) > 1/2 and Id and Ĩ are both fuzzy

solid, we have |x|∧ |y| ∈ Ĩ ∩ Id. From the hypothesis we may find some
nonzero element z ∈ I such that such that µ(|z|, |x| ∧ |y|) > 1/2. Since

Ĩ∩Id is a fuzzy ideal ofX, we have z ∈ I∩Id = {0}, contradicting z 6= 0.
Therefore, Idd is the largest fuzzy ideal having the stated property.

(ii) The conclusion follows readily from (i) and Theorem 4.5 (iv).

Definition 4.4. Let X be a fuzzy Riesz space. A fuzzy Riesz subspace Y of
X is said to be fuzzy order dense in X if for every nonzero positive element
x ∈ X there exists a nonzero element y ∈ Y such that µ(y, x) > 1/2.

Theorem 4.7. Let X be a fuzzy Riesz space and I be a fuzzy ideal of X.
Then the following statements hold.

(i) I is a fuzzy order dense in X if and only if Id = {0}.

(ii) I ⊕ Id is a fuzzy order dense ideal of X.

(iii) I is fuzzy order dense in Idd.

Proof. (i) Suppose I is fuzzy order dense in X and let x ∈ X+ ∩ Id.
If x 6= 0, then there exists some nonzero element y ∈ I such that
µ(y, x) > 1/2. Hence, y ∈ I∩Id = {0}, implying y = 0; this contradicts
the hypothesis that y 6= 0. Thus, we must have x = 0, i.e., Id = {0}.
Conversely, suppose Id = {0}. Let x be a nonzero element in X+. If
x∧y = 0 for all y ∈ I+, then x would belong to Id = {0}, contradicting
the hypothesis that x 6= 0. Thus, there exists some y ∈ I+ such that
x∧y 6= 0. Since µ(x∧y, x) > 1/2 and I is fuzzy solid, we have x∧y ∈ I.
This proves that I is fuzzy order dense.

(ii) By Theorem 4.4 (i) and the remark following Theorem 4.5, we know
that I ⊕ Id is a fuzzy ideal of X. Next, take x ∈ (I ⊕ Id)d. Then x⊥I
and x⊥Id, implying x ∈ Id and I ∩ Idd, respectively. Thus, x = 0,
showing that (I ⊕ Id)d = {0}. It follows from (i) that I ⊕ Id is fuzzy
order dense in X.

(iii) Since the disjoint complement of I in Idd is Id ∩ Idd, the conclusion
follows from (i) and Theorem 4.5 (iii).



94 L.Hong An. U.V.T.

5 Fuzzy bands

Definition 5.1. Let X be a fuzzy Riesz space and I be a fuzzy ideal of X.

(i) If I is fuzzy σ-order closed, we say I is a fuzzy σ-ideal of X. .

(ii) If I is fuzzy order-closed, we say I is a fuzzy band of X.

Remark. It is clear that a fuzzy ideal B of a fuzzy Riesz space X is a fuzzy
band if and only if D ⊂ B and x = supD implies x ∈ B.

Theorem 3.3 immediately implies the following theorem.

Theorem 5.1. Let I be a fuzzy ideal of a fuzzy Riesz space X. Then the
following two statements hold.

(i) I is a fuzzy σ-ideal if and only if xn ↑ x implies x ∈ I for all increasing
sequence {xn} in I+.

(ii) I is a band if and only if xα ↑ x implies x ∈ I for all increasing net
{xα} in I+.

Example 5.1. Consider X = L1([0, 1]) the set of all integrable functions
on [0, 1] with coordinate algebraic operations. Define a membership function
µ : X ×X → [0, 1] by

µ(f, g) =


1, if f ≡ g;
2/3, if f(t) ≤ g(t) for all t ∈ [0, 1] and f 6≡ g;
0, otherwise.

ThenX is a fuzzy Riesz space. LetB = {f ∈ L1([0, 1]) | f(x) = 0 a.e. on [0, 1]},
that is, the set of almost zero integrable functions on [0, 1]. We claim that
B is a fuzzy band of X. To see this, let h ∈ X and g ∈ I such that
µ(|h|, |g|) > 1/2. Then we have 0 ≤ |h(t)| ≤ |g(t)| for all t ∈ [0, 1]. Since
g = 0 a.e. on [0, 1], it follows h = 0 a.e. on [0, 1]. Thus, h ∈ B, showing that

B is a fuzzy ideal of X. Next, let {fα} be a net in B such that fα
oF−→ f .Then

there exists a net {gα} in X such that µ(|fα − f |, |gα|) > 1/2 and gα ↓ 0.
If f 6∈ B, that is, f 6= 0 a.e on [0, 1], then there exists a positive integer m
such that such that ν(Em) > 0, where Em = {x ∈ [0, 1] | f(t) > 1/m} and
ν is the Lebesgue measure on [0, 1]. Take a sequence {fn} of {fα} such that

gn ↓ g. Then we have fn
oF−→ f and µ(|fn − f |, |gn|) > 1/2. Also, there exists

a Lebesgue measurable subset Fm ⊂ Em such that ν(Fm) > 0, fn ≡ 0 on
Fm for all n ∈ N , and f(t) > 1/m for all t ∈ F . But each fn = 0 a.e. on
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[0, 1]; hence we have |fn(t) − f(t)| > 0 a.e. on Fm for all n ∈ N . Therefore,
µ(1/(m + 1), |fn − f |) = 2/3, implying µ(1/(m + 1), |gn|) > 1/2. It follows
that 1/(m+ 1) ∈ L({gn}), contradicting the fact that inf{gn} = 0.

The next example shows that a fuzzy ideal need not be a fuzzy band.

Example 5.2. Consider X = RR the set of all real-valued functions on
R with coordinate algebraic operations. Define a membership function µ :
X ×X → [0, 1] by

µ(f, g) =


1, if f ≡ g;
2/3, if f(t) ≤ g(t) for all t ∈ R and f 6≡ g;
0, otherwise.

Then X is a fuzzy Riesz space. Let I = {f ∈ X | f(0) = 0}, i.e., the
set of real-valued functions vanishing at 0. We claim that I is a fuzzy ideal
but not a fuzzy band of X. To see this, let f ∈ X and g ∈ I such that
µ(|f |, |g|) > 1/2. If µ(|f |, |g|) = 1, then |f | = |g|; hence f(0) = g(0) showing
that f ∈ I. If µ(|f |, |g|) = 2/3, then |f(0)| ≤ |g(0)| = 0 implying f(0) = 0;
it follows that f ∈ I. In either case, we have f ∈ I; therefore, I is a fuzzy
ideal of X. However, I fails to be a fuzzy band of X. To see this, consider
D = {fn}n∈N , where fn is defined as

fn(t) =

{
nt, if t ≤ 1/n;
1, otherwise.

Let f(t) = 1 for all t ∈ [0, 1]. Then fn(t) ≤ f(t), for all t ∈ [0, 1]. Thus,
µ(fn, f) > 1/2 for all n ∈ N , implying f ∈ U(D). Now for any g ∈ U(D) we
have µ(fn, g) > 1/2 for all n ∈ N . By definition of µ, we know fn(t) ≤ g(t)
for all t ∈ [0, 1] and all n ∈ N ; hence 1 ≤ g(t) for all t ∈ [1/n, 1] and all
n ∈ N , implying f ≡ 1 ≤ g(t) on [0, t]. Thus, µ(f, g) > 1/2, showing that
g ∈ U(f). Therefore, f = supD. Since f(0) = 1 6= 0, f 6∈ I. This shows
that I is not a fuzzy band of X.

Theorem 5.2. Let X be a fuzzy Riesz space and J be an arbitrary index set.
Then the following two statements hold.

(i) If B1 is a fuzzy band of X and B2 is a fuzzy band B1, then B2 is a fuzzy
band of X.

(ii) If Bj is a fuzzy band of X for all j ∈ J , then B = ∩j∈JBj is a fuzzy
band of X.
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Proof. (i) By Theorem 4.1 (i), B2 is a fuzzy ideal of X. It remains to show
that B2 is fuzzy order-closed in X. To this end, let {xα} be a net in

B2 such that xα
oF−→ x in X. Since B2 ⊂ B1 and B1 is a fuzzy band of

X, we have x ∈ B1. Thus, xα
oF−→ x in B1. As B2 is a fuzzy band of

B1, we have x ∈ B2, proving that B2 is a fuzzy band of X.

(ii) By Theorem 4.1 (ii), B = ∩j∈JBj is a fuzzy ideal of X. Since the
intersection of fuzzy order-closed sets is obviously fuzzy order-closed,
B is a fuzzy band of X.

Definition 5.2. Let D be a subset of a fuzzy Riesz space X. The smallest
band in X that contains D is called the fuzzy band generated by D and is
denoted by BD. If D is a singleton, that is, D = {x} for some x ∈ D, then
BD is often written as Bx and is called the principal fuzzy band generated by
x.

Theorem 5.3. Let D be a subset of a fuzzy Riesz space X.

(i) BD exists and is unique.

(ii) BD can be descried as follows.

BD = {x ∈ X | there exists a net {xα}α∈A ∈ I+D such that xα ↑ |x|}.
(5.1)

Proof. (i) Theorem 5.2 shows that the intersection of all fuzzy bands con-
taining D is a fuzzy ideal. Clearly, this fuzzy band is unique and it is
the smallest fuzzy band that contains D.

(ii) Let B̃ denote the left-hand side of (5.1). From Theorem 5.1, we see

that if a fuzzy band B contains D, then it evidently contains B̃. Also,
it is clear that D ⊂ B̃. Thus, it suffices to show that B̃ is a fuzzy
band of X. To this end, let x, y ∈ B̃. Then there are two nets {xα}α∈A
and {yβ}β∈B such that xα ↑ |x| and yβ ↑ |y|. For indices α1 ≤ α2 and
β1 ≤ β2, we have µ(xα1 , xα2) > 1/2 and µ(yβ1 , yβ2) > 1/2. It follows
that µ(xα1 + yβ1 , xα2 + yβ2) > 1/2, that is, xα + yβ ↑α,β. Then Theorem
3.2 shows that |x + y| ∧ (xα + yβ) ↑α,β |x + y|. Similarly, we have

|λ|xα ↑ |λx| for each λ ∈ R. Therefore, B̃ is a vector subspace of X.
Next, let z ∈ X such that µ(|z|, |x|) > 1/2. Since µ(|z| ∧ xα, xα) > 1/2
and µ(xα, x) > 1/2, we have µ(|z| ∧ xα, x) > 1/2 for each α. It follows
from the fuzzy solidness of ID that {|z| ∧ xα} ⊂ I+D . Clearly, the net
{|z| ∧ xα} is increasing. Hence, Theorem 3.2 implies that |z| ∧ xα ↑
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|z|. Thus, z ∈ B, showing that B is a fuzzy ideal of X. Finally, let

{wα}α∈A ⊂ B̃+ such that wα ↑ w. Define E = {v ∈ I+D | µ(v, wα) >
1/2 for some α ∈ A}. Then E ⊂ I+D and sup(E) = supα∈A{supEα},
where Eα = {v ∈ I+D | µ(v, wα) > 1/2}. Therefore, B̃ is a fuzzy band

of X, establishing BD = B̃.

Corollary 5.4. Let X be a fuzzy Riesz space and x ∈ X. Then the principal
fuzzy band Bx can be described as

Bx = {y ∈ X | |y| ∧ (n|x|) ↑ |y|}.

Proof. Let y ∈ Dx and Ix be the principal fuzzy ideal generated by x. Then
Theorem 5.3 shows that there exists a net {yα}α∈A ⊂ Ix such that yα ↑ y. It
follows from Theorem 4.2 that for each α ∈ A there exists a positive integer
n such that µ(yα, n|x|) > 1/2. Since y = sup{yα}, we have µ(yα, y) > 1/2 for
all α ∈ A. Thus, µ(yα, y∧n|x|) > 1/2 for all α ∈ A and µ(y∧n|x|, |y|) > 1/2.
In view of the fact that yα ↑ y, we conclude that y∧n|x| ↑ |y|. This completes
the proof.

The next theorem shows that a disjoint complement in a fuzzy Riesz space
is always a fuzzy band.

Theorem 5.5. If A is a subset of a fuzzy Riesz space X. Then Ad is a fuzzy
band in X.

Proof. The theorem follows from Theorem 4.5 (v) and Theorem 2.10 (ii).

Theorem 4.4 says that the sum of two fuzzy ideals is a fuzzy ideal. How-
ever, the sum of two fuzzy bands need not be a fuzzy band as the next
example shows.

Example 5.3. Let a be a fixed positive number. Consider X = C([−a, a])
the set of all continuous functions on [−a, a] with coordinate algebraic oper-
ations. Define a membership function µ : X ×X → [0, 1] by

µ(f, g) =


1, if f ≡ g;
2/3, if f(t) ≤ g(t) for all t ∈ [−a, a] and f 6≡ g;
0, otherwise.

Then X is a fuzzy Riesz space. Let B1 = {f ∈ X | f(t) = 0 for all t ∈ [0, a]}
and B2 = {f ∈ X | f(t) = 0, for all t ∈ [−a, 0]}. We claim that B1 and
B2 are fuzzy bands in X. To see this, let {fα} ⊂ B1 such that {fα} ↑ f .
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In view of Theorem 5.1, we need to show that f ∈ B1. Suppose not. Then
there exists b ∈ [0, a] such that f(b) 6= 0. Without loss of generality, we may
assume b 6= 0 and f(b) > 0. By the continuity of f , there exists ε > 0 such
that f(t) 6= 0 for all t ∈ [b− ε, b+ ε] ⊂ [0, a]. Let m = maxt∈[b−ε,b+ε] f(t) and
take a number c such that 0 < c < min{m, f(b)}. Then define a function
g1 ≡ c on [b− ε, b+ ε] and extend it continuously to a nonnegative function
on [0, a] using the Tietze Extension Theorem. Next, define a function g on
[−a, a] by

g(t) =

{
g1(t), if t ∈ [0, a];
f(t), otherwise.

Then g ∈ B1 and µ(g, f) > 1/2, showing that g 6∈ U(f). It is obvious that
µ(fα, g) > 1/2 for all α, that is, g ∈ U({fα}). But g is strictly less than f on
the interval [b− ε, b+ ε]; this means g 6∈ U(f), contradicting f = sup{fα}. It
follows by contraposition that f ∈ B1. Therefore, B1 is a fuzzy band of X.
Similarly, we can show that B2 is a fuzzy band of X.

Evidently, B1 ∩ B2 = {0}; hence Theorem 4.4 shows that B1 + B2 =
B1⊕B2 = {f ∈ X | f(0) = 0} is a fuzzy ideal of X. However, B1 +B2 is not
a fuzzy band. To see this, consider a sequence of function {fn} in X defined
by

fn(t) =


1, if 1/n ≤ t ≤ a;
nt, if 0 ≤ t < 1/n;
−nt, if −1/n < t ≤ 0;
1, if −a ≤ t ≤ −1/n.

Then {fn} ⊂ B1 + B2. Let f ≡ 1. It is clear that f ∈ U({fn}). Let
h ∈ U({fn}). Then µ(fn, h) > 1/2 for each n. Hence, g(t) ≥ 1 for all
t ∈ [−a,−1/n] ∪ [1/n, a] for each n, implying that g(t) ≥ f(t) ≡ 1 for all
t ∈ [−a, a]. Thus, µ(f, g) > 1/2, implying that f ∈ U(g). This shows that
f = sup{fn}. But f 6∈ B1 + B2. Therefore, B1 + B2 is not a fuzzy band of
X.

Theorem 5.6. Let B1 and B2 be two fuzzy ideals of a fuzzy Riesz space X.
If X = B1 ⊕ B2, then B1 and B2 are fuzzy bands satisfying B1 = Bd

2 and
B2 = Bd

1 . In this case, we have B1 = Bdd
1 and B2 = Bdd

2 .

Proof. Take x ∈ B1 and y ∈ B2. Since µ(|x| ∧ |y|, |x|) > 1/2 and µ(|x| ∧
|y|, |y|) > 1/2, the fuzzy solidness of B1 and B2 implies |x| ∧ |y| ∈ B1 ∩B2 =
{0}. Therefore, B1⊥B2 and B2 ⊂ Bd

1 . On the other hand, take x ∈ Bd
1

such that µ(0, x) > 1/2. The hypothesis implies the existence of two positive
elements x1 ∈ B1 and x2 ∈ B2 such that x = x1 + x2. Since µ(0, x2) > 1/2
µ(x1, x1) = 1 > 1/2, we have µ(x1, x) > 1/2. Since Bd

1 is a fuzzy ideal,
x1 ∈ Bd

1 ⊂ B2. Hence, x1 ∈ B1 ∩ B2 = {0}. It follows that x = x2 ∈ B2,
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showing that Bd
1 ⊂ B2. Therefore, B2 = Bd

1 . By symmetry, we also have
Bd

2 = B1. The second statement follows from Theorem 4.5.

Lemma 5.7. Let D be a nonempty subset of a fuzzy Riesz space X. Then
Dd = IdD = Bd

D, where ID and BD are the fuzzy ideal and fuzzy band generated
by D, respectively.

Proof. It suffices to show that Dd = Bd
D. Since D ⊂ BD, we have Bd

D ⊂ Dd.
For the converse, take x ∈ Dd. Then x⊥y for all y ∈ D. By Theorem 2.10
and Theorem 5.1, we have x ∈ Bd

D, implying that Dd ⊂ Bd
D. Therefore,

Dd = Bd
D.

Theorem 5.8. Let X be a fuzzy Riesz space. Then X is fuzzy Archimedean
if and only if B = Bdd for all fuzzy band B of X.

Proof. Assume that X is a fuzzy Archimedean Riesz space and B is a fuzzy
band of X. By Theorem 4.5, we have B ⊂ Bdd. Thus, to show that B = Bdd,
it suffices to show that Bdd ⊂ B. To this end, take x ∈ Bdd and put

Dx = {y ∈ B+ | y 6= 0, y 6= x, µ(y, x) > 1/2}.

Clearly, Dx 6= φ, Dx ↑ and x ∈ U(Dx). We show that Dx ↑ x, that is,
x = supDx. Assume x 6= supDx. Then there exists some z ∈ X+ such that
z ∈ U(Dx) but z 6∈ U(x), i.e., µ(y, z) > 1/2 for all y ∈ Dx and µ(z, x) > 1/2.
Since x 6= z, x − z ∈ Bdd and Bd ∩ Bdd = {0}, we have x − z 6∈ Bd. This
implies that there exists some w ∈ B+ such that v = w ∧ (x − z) 6= 0. As
µ(v, w) > 1/2 and w ∈ B, the solidness of B implies v ∈ B. In view of
µ(v, x − z) > 1/2 and µ(x − z, x) > 1/2, we have µ(v, x) > 1/2. Evidently,
0 6= v ∈ B+; hence v ∈ Dx. Thus, µ(v, z) > 1/2. It follows that 0 6= 2v ∈ Dx

and µ(2v, x) = µ(v + v, (x − z) + z) > 1/2. By induction on n, we have
0 6= nv ∈ Dx and µ(nv, x) > 1/2, that is, the sequence {nv} is bounded
above, contradicting Theorem 2.11. This proves that x = supDx. AsDx ⊂ B
and B is a fuzzy band, we have x ∈ B. Hence, Bdd ⊂ B. Conversely, we
assume that B = Bdd. Suppose X is not fuzzy Archimedean. Then there
exists nonnegative elements x, y ∈ X such that y ∈ U({nx}n∈N). Let Ix
be the fuzzy ideal generated by x in X and put I = Ix ⊕ Idx . If z⊥I, then
z⊥Ix and z⊥Idx , showing that z ∈ Ix ∩ Idx = {0}. Thus, Id = {0}, implying
X = Idd. It follows from Lemma 5.7 and the hypothesis that X = BI , where
BI is the fuzzy band generated by I in X. Thus, y ∈ BI and y = supDy,
where

Dy = {z | z ∈ I+, µ(z, y) > 1/2}.
Next, let z ∈ Dy. Then Theorem 4.4 shows that z = z1 + z2, where z1 ∈ I+x ,
z2 ∈ (Idx)+, µ(z1, z) > 1/2 and µ(z2, z) > 1/2. In view of Theorem 4.2, there
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exists some k ∈ N such that µ(z1, kx) > 1/2. Hence, µ(z1+x, (k+1)x) > 1/2,
showing that z1 + x ∈ Ix. Therefore, (z1 + x)⊥z2. Moreover, we have
µ(z2, z) > 1/2 and µ(z, y) > 1/2, implying µ(z2, y) > 1/2. By Theorem 2.8,
we have µ(z+ x, y) = µ((z1 + x)∨ z2, y) > 1/2, or equivalently, µ(z, y− x) >
1/2 for all z ∈ Dy. Thus, y−x ∈ U(x). On the other hand, x is a nonnegative
element; hence µ(y − x, y) > 1/2, i.e., y ∈ U(y − x). This contradicts the
fact that y = supDy. By way of contraposition, we conclude that X must
be fuzzy Archimedean.

Definition 5.3. Let X be a fuzzy Riesz space.

(i) X is said to be fuzzy Dedekind complete or fuzzy order complete if every
nonempty subset of X that is bounded above has a supremum. In this
case, we also say X is a fuzzy Dedekind complete Riesz space.

(ii) X is said to be fuzzy Dedekind σ-complete if every nonempty countable
subset ofX that is bounded above or bounded below has a supremum or
infimum, respectively. In this case, we also say X is a fuzzy σ-Dedekind
complete Riesz space.

Lemma 5.9. If X is a fuzzy Dedekind complete Riesz space, then X is fuzzy
Archimedean.

Proof. Let x ∈ X+. In view of Theorem 2.11, we need to show that the se-
quence {nx}n∈N is not bounded above. To proceed by way of contraposition,
we assume that there exists some y ∈ X such that µ(nx, y) > 1/2 for all n ∈
N . Since X is fuzzy Dedekind complete, x0 = sup{nx}n∈N exists; similarly,
2x0 = sup{2nx} exists. Since µ(nx, 2nx) > 1/2 and µ(2nx, (2n+ 1)x) > 1/2
for all n ∈ N , we see that sup{nx}n∈N = sup{2nx}n∈N . Thus, we have
x0 = 2x0, implying x0 = 0. This further implies that x = 0, contradict-
ing the fact that x is an arbitrary element in X+. Thus, the theorem is
established.

Theorem 5.10. Let X be a fuzzy Riesz space.

(i) X is fuzzy Dedekind complete if and only if every nonempty subset of
X+ that is directed to the right and bounded above has a supremum.

(ii) X is fuzzy Dedekind σ-complete if and only if every increasing sequence
in X+ that is bounded above has a supremum.

Proof. (i) Suppose X is a fuzzy Dedekind complete, then the stated prop-
erty obviously holds. Conversely, assume that the stated property
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holds. Let D be a nonempty subset of X such that U(D) 6= φ. We will
show that supD exists in X. To this end, take x ∈ D and put

E = {x ∨ y | y ∈ D}.

Then E is clearly directed to the right and U(D) = D(E) 6= φ. Thus,
it suffices to show that supE exists. Define

F = {z − x | z ∈ E}.

Then F is still directed to the right and U(F ) 6= φ. Also, it is clear
that F ⊂ X+. By the hypothesis, supF exists, implying that supE =
supF + x exists. Thus, X is fuzzy Dedekind complete.

(ii) Similar to the proof of (i).

Example 5.3 shows that the sum of two fuzzy bands of a fuzzy Riesz space
need not be a fuzzy band. However, the next theorem shows that the sum
of two fuzzy bands of a fuzzy Dedekind complete Riesz space is a fuzzy band.

Lemma 5.11. Let B1 and B2 be two disjoint fuzzy bands in a fuzzy Dedekind
complete Riesz space X. Then B1 ⊕B2 is a fuzzy band of X.

Proof. Let D be a nonempty subset of (B1 ⊕ B2)
+ such that D is directed

to the right and x0 = supD exists. In view of Theorem 5.10, it suffices to
show that x0 ∈ B1 ⊕ B2. To this end, take x ∈ D. By Theorem 4.4, x can
be uniquely written as x = yx + zx, where yx ∈ B1 and zx ∈ B2. Notice
that if x1, x2, x3 ∈ D such that µ(x1, x3) > 1/2 and µ(x2, x3) > 1/2, then
µ(yx1 ∨yx2 , yx3) > 1/2 and µ(zx1 ∨zx2 , zx3) > 1/2. Therefore, µ(yx, x0) > 1/2
and µ(zx, x0) > 1/2 for all x ∈ D. Since X is fuzzy Dedekind complete,
there exist w1, w2 ∈ X such that w1 = sup{yx}x∈D and w2 = sup{zx}x∈D. As
{yx}x∈D ⊂ B1 and {zx}x∈D ⊂ B2, we have w1 ∈ B1 and w2 ∈ B2. It follows
that

x0 = sup{yx + zx}x∈D = sup{yx}x∈D + sup{zx}x∈D = w1 + w2 ∈ B1 ⊕B2.

This proves that B1 ⊕B2 is a fuzzy band in X.

Theorem 5.12. Let B be a fuzzy band of a fuzzy Riesz space X. If X is
fuzzy Dedekind complete, then X = B ⊕Bd.

Proof. By Lemma 5.11, B ⊕ Bd is a fuzzy band of X. Let x ∈ (B ⊕ Bd)d,
then x ∈ B ∩ Bd = {0}. Therefore, (B ⊕ Bd)d = {0}. It follows that
B ⊕Bd = (B ⊕Bd)dd = X.
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6 Fuzzy band projections

Definition 6.1. A fuzzy band B of a fuzzy Riesz space X is called a fuzzy
projection band if X = B ⊕Bd.

Definition 6.2. Let X be a fuzzy Riesz space. An element x ∈ X is said to
be a fuzzy projection vector if the band generated by x is a fuzzy projection
band. X is said to have the fuzzy principal projection property if each element
in X is a fuzzy projection vector.

Let B is a fuzzy projection band on a fuzzy Riesz space X. Then each
x ∈ X has a unique decomposition x = x1 + x2, where x1 ∈ B and x2 ∈ Bd.
Therefore, the mapping PB : X → X defined by

PB(x) = x1 (6.1)

is a projection.

Definition 6.3. Let B be a fuzzy projection band of a fuzzy Riesz space X.
The projection PB defined by Equation (6.1) is called a fuzzy band projection
on X. In particular, if x is a projection vector of X, we will write Px for PBx .

Definition 6.4. Let X be a fuzzy Riesz space and x, y ∈ X such that
µ(x, y) > 1/2. Then the set {z ∈ X | µ(x, z) > 1/2 and µ(z, y) > 1/2} is
called a fuzzy order interval and is denoted by [x, y].

Theorem 6.1. Let B be a fuzzy ideal of a fuzzy Riesz space X. Then the
following statements are equivalent.

(i) B is a fuzzy projection band.

(ii) For each x ∈ X+, the supremum of the set Dx = {y ∈ B+ | µ(y, x) >
1/2} = B+ ∩ [0, x] exists in X and belongs to B.

(iii) There exists a fuzzy ideal I of X such that X = I ⊕B.

Proof. (i) =⇒ (ii) Let x ∈ X+. By the hypothesis, x can be uniquely
written as x = x1 + x2, where x1 ∈ B+ and x2 ∈ (Bd)+. Take any
element z ∈ Dx, i.e., z ∈ B+ such that µ(z, x) = µ(z, x1 + x2) > 1/2.
Then µ(z − x1, x2) > 1/2, implying µ((z − x1)+, x2) > 1/2. It follows
from the fuzzy solidness of Bd that (z−x1)+ ∈ Bd. Since (z−x1)+ ∈ B
and B∩Bd = {0}, we have (z−x1)+ = 0. Hence, µ(z, x1) > 1/2 for all
z ∈ Dx, that is, x1 ∈ U(Dx). As x1 ∈ Dx, we have supDx = x1 ∈ B.
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(ii) =⇒ (iii) Let x ∈ X+. By (ii), y = supDx exists and belongs to
B. Put z = x − y. Then µ(0, z) > 1/2. Take w ∈ B+. We have
z ∧ w ∈ B+; hence y + z ∧ w ∈ B. It follows from Theorem 2.5 that

y + z ∧ w = (y + z) ∧ (y ∧ w) = x ∧ (y ∧ w),

implying that µ(y + z ∧ w, x) > 1/2, which further implies µ(y + z ∧
w, y) > 1/2. On the other hand, we have µ(0, z ∧ w) > 1/2; hence
µ(y, y + z ∧ w) > 1/2. Therefore, the antisymmetry of µ implies y =
y+z∧w, i.e., z∧w = 0. It follows that z ∈ Bd. This proves X = B⊕Bd.
Finally, (iii) follows by taking A = Bd.

(iii) =⇒ (i) The conclusion follows readily from Theorem 5.6.

Let X and Y be two fuzzy Riesz spaces and µ and ν are the associated
fuzzy orders on X and Y , respectively. Suppose T denotes the collection of
all operators from X to Y , that is, T = {T | T : X → Y }. We may equip T
with a partial order � defined by S � T if and only if ν(S(x), T (x)) > 1/2
for all x ∈ X. Also, we may write T (x) as Tx when no confusion will arise.

Definition 6.5. Let X and Y be two fuzzy Riesz spaces and µ and ν be the
associated fuzzy orders on X and Y , respectively. An operator T : X → Y
is said to be fuzzy positive if µ(0, x) > 1/2 implies ν(0, T (x)) > 1/2.

Remark. Our definition is slightly more general than Definition 2.1 in [2].
Indeed, it is easy to see that if T is fuzzy positive in the sense of Definition
2.1 in [2], then it must be fuzzy positive in the sense of Definition 6.3. The
next example shows that the converse need not hold.

Example 6.1. Consider X = Y = R. Equip X with a membership function
µ : X ×X → [0, 1] defined by

µ(x, y) =


1, if x = y;
4/5, if x < y;
0, otherwise.

Equip Y with a membership function v : X ×X → [0, 1] defined by

ν(x, y) =


1, if x = y;
2/3, if x < y;
0, otherwise.



104 L.Hong An. U.V.T.

It is easy to see µ and ν are fuzzy orders on X and Y , respectively. Let
T : X → Y be the identity mapping, that is, T (x) = x for all x ∈ X.
Then T is evidently fuzzy positive in the sense of Definition 6.3. However,
µ(1, 2) = 4/5 and ν(T (1), T (2)) = ν(1, 2) = 2/3 6≥ µ(1, 2). Therefore, T is
not fuzzy positive in the sense of Definition 2.1 in [2].

Theorem 6.2. Let PB be a fuzzy band projection on a fuzzy Riesz space X.
Then the following two statements hold.

(i) PB is fuzzy positive.

(ii) PB(x) = sup{y ∈ B+ | µ(y, x) > 1/2} = sup(B ∩ [0, x]).

Proof. (i) Let B be the fuzzy projection band associated with PB. Then
B⊕Bd = X. If x ∈ X+, then the Riesz Decomposition Theorem implies
x = x1 + x2, where x1 ∈ B+ and x2 ∈ (Bd)+. Thus, µ(0, PB(x)) =
µ(0, x1) > 1/2, showing that PB is fuzzy positive.

(ii) By Theorem 6.1, z = sup{y ∈ B+ | µ(y, x) > 1/2} exists and belongs
to B. Let B be the fuzzy band associated with PB. Then each x ∈
X+ may be uniquely written as x = x1 + x2, where x1 ∈ B+ and
x2 ∈ (Bd)+. It is clear that µ(x1, z) > 1/2 and µ(z, x) > 1/2 which
implies µ(0, z − x1) > 1/2 and µ(z − x1, x− x1) = µ(z − x1, x2) > 1/2,
respectively. Thus, z − x1 ∈ Bd. On the other hand, z − x1 ∈ B.
Hence, z − x1 ∈ B ∩ Bd = {0}. It follows that z = x1, that is,
PB(x) = z = supDx, proving the theorem.

Next, we apply Theorem 6.1 and Theorem 6.2 to give a characterization
theorem of fuzzy projection vectors.

Theorem 6.3. An element x in a fuzzy Riesz space X is a fuzzy projection
vector if and only if the supremum of the set Ey = {y ∧n|x|}n∈N exists in X
for each positive element y ∈ X. In this case, we have

Px(y) = supEy = sup{y ∧ n|x|}n∈N , for all y ∈ X+.

Proof. Let x ∈ X and y ∈ X+. Then Ey ⊂ Bx ∩ [0, y], where Bx is the fuzzy
principal band generated by x. Thus, U(Bx ∩ [0, y]) ⊂ U(Ey). Conversely,
if z ∈ U(Ey), then µ(y ∧ n|x|, z) > 1/2 for all n ∈ N . Take any element
w ∈ Bx ∩ [0, y]. Then µ(w ∧ n|x|, y ∧ n|x|) > 1/2, implying µ(w ∧ n|x|, z) >
1/2. Since Corollary 5.4 shows that w ∧ n|x| ↑ w, we have µ(w, z) > 1/2,
that is, z ∈ U(Bx ∩ [0, y]), implying U(Ey) ⊂ U(Bx ∩ [0, y]). Therefore,
U(Ey) = U(Bx ∩ [0, y]). Now the theorem follows from Theorem 6.1 and
Theorem 6.2.
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Lemma 6.4. Let X and Y be two fuzzy Riesz spaces and µ and ν be the
associated fuzzy orders, respectively. If T : X → Y is a fuzzy positive operator
from X to Y , then

ν(|Tx|, T |x|) > 1/2 for all x ∈ X.

Proof. Let x ∈ X. Then µ(x, |x|) > 1/2 and µ(−x, |x|) > 1/2. Thus,
µ(0, |x| − x) > 1/2 and µ(0, |x| + x)1/2. Since T is fuzzy positive, we have
µ(0, T |x| − Tx) > 1/2 and µ(0, T |x|+ Tx)1/2. It follows that µ(Tx, T |x|) >
1/2 and µ(−Tx, T |x|) > 1/2, respectively. This shows that ν(|Tx|, T |x|) >
1/2.

Theorem 6.5. Let X be a fuzzy Riesz space, T : X → X be an operator on
X and I be the identity operator on X. Then the following statements are
equivalent.

(i) T is a fuzzy band projection.

(ii) T is a fuzzy positive projection satisfying T � I.

(iii) Tx⊥(I−T )y for all x, y ∈ X, that is, T and I−T have disjoint ranges.

Proof. (i) =⇒ (ii) This is trivial.

(ii) =⇒ (iii) Let x, y ∈ X+. It follows from µ(0, Tx∧ (I − T )y) > 1/2,
ν(Tx ∧ (I − T )y, (I − T )y) > 1/2 and the fuzzy positivity of T and
I − T that µ(0, T (Tx∧ (I − T )y)) > 1/2 and ν(T (Tx∧ (I − T )y), 0) =
ν(T (Tx∧ (I − T )y), T ((I − T )y)) > 1/2. Therefore, the antisymmetry
of ν implies T (Tx∧(I−T )y) = 0. Similarly, (I−T )(Tx∧(I−T )y) = 0.
Hence, Tx∧ (I−T )y = T (Tx∧ (I−T )y)+(I−T )(Tx∧ (I−T )y) = 0.
In view of Lemma 6.4, we conclude that Tx⊥(I − T )y for all x, y ∈ X.

(iii) =⇒ (i) Suppose B1 and B2 are the fuzzy ideals generated by the
ranges of T and I − T , respectively. Then B1⊥B2. For every x ∈ X,
we have x = Tx+ (I − T )x. Therefore, X = B1 ⊕ B2. It follows from
Theorem 5.6 that B1 and B2 are fuzzy projection bands on X. Thus,
we have

PB1(x)− T (x) = PB1(x)− PB1T (x) = PB1(I − T )(x) = 0,

showing that T = PB1 . Hence, T is a fuzzy band projection.

Corollary 6.6. If X is a fuzzy Dedekind σ-complete Riesz space, then X
has the fuzzy principal projection property.
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Theorem 6.7. If B1 and B2 are two fuzzy projection bands of a fuzzy Riesz
space X, then Bd

1 , B1 ∩ B2 and B1 + B2 are also fuzzy projection bands sat-
isfying the following identities.

(i) PBd
1

= I − PB1.

(ii) PB1∩B2 = PB1PB2 = PB2PB1.

(iii) PB1+B2 = PB1 + PB2 − PB1PB2 = PB1 + PB2 − PB1∩B2.

Proof. (i) Since B1 is a fuzzy projection band, we have X = B1 ⊕Bd
1 . By

Theorem 5.6, we know X = Bd
1 ⊕Bdd

1 , that is, Bd
1 is a fuzzy projection

band. It is obvious that PB1 + PBd
1

= I, that is, PBd
1

= I − PB1 .

(ii) Let x ∈ X+. Apply Theorem 6.2 to PB2 to obtain B1 ∩ [0, PB2(x)] =
B1 ∩B2 ∩ [0, x]. Then apply Theorem 6.2 to PB1 to get

PB1PB2x = sup(B1 ∩ [0, PB1(x)]) = sup(B1 ∩B2 ∩ [0, x]).

It follows from Theorem 6.1 that B1 ∩ B2 is a fuzzy projection band
and PB1∩B2 = PB1PB2 . By symmetry, we also have PB1∩B2 = PB2PB1 .

(iii) First, we assume that B1⊥B2. Let x ∈ X+ and take x1 + x2 ∈ (B1 +
B2)∩ [0, x]. Then x1 ∈ B1∩ [0, x], x2 ∈ B2∩ [0, x], x1+x2 ∈ (B1+B2)

+,
and µ(x1+x2, x) > 1/2. Thus, Theorem 6.2 implies µ(x1, PB1(x)) > 1/2
and µ(x2, PB2(x)) > 1/2, which further implies µ(x1 + x2, PB1(x) +
PB2(x)) > 1/2. Thus, PB1(x) + PB2(x) ∈ U((B1 + B2) ∩ [0, x]). As
PB1(x) + PB2(x) ∈ B1 +B2, we have

sup ((B1 +B2) ∩ [0, x]) = PB1x+ PB2x. (6.2)

By Theorem 6.1, we know that B1 + B2 is a fuzzy projection band.
Then it follows from Equation (6.2) and Theorem 6.2 that PB1+B2 =
PB1+PB2 . For the general case, we notice that B1+B2 = (B1∩Bd

2)⊕B2.
Thus, by (i), (ii) and the above special case, we have

PB1+B2 = P(B1∩Bd
2 )⊕B2

= PB1∩Bd
2

+ PB2

= PB1PBd
2

+ PB2

= PB1(I − PB2) + PB2

= PB1 +BB2 − PB1PB2 = PB1 +BB2 − PB1∩B2 .
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Corollary 6.8. If x and y are two fuzzy projection vectors in a fuzzy Riesz
space X, then Bd

x, Bx ∩ By and Bx + By are also fuzzy projection bands sat-
isfying the following identities.

(i) PBd
x

= I − Px.

(ii) Px∧y = PxPy = PyPx.

(iii) Px+y = Px + Py − PxPy = Px + Py − Px∧y.

Theorem 6.9. Let B1 and B2 be two fuzzy projection bands on a fuzzy Riesz
space X. Then the following statements are equivalent.

(i) B1 ⊂ B2.

(ii) PB1PB2 = PB2PB1 = PB1.

(iii) PB1 � PB2.

Proof. (i) =⇒ (ii) If B1 ⊂ B2, then Theorem 6.7 implies that

PB1PB2 = PB2PB1 = PB1∩B2 = PB1 .

(ii) =⇒ (iii) Suppose (ii) holds. Then for each positive element x ∈ X
Theorem 6.5 implies

PB1(x) = PB1PB2(x) ≤ IPB2(x) = PB2(x),

showing that PB1 � PB2 .

(iii) =⇒ (i) If (iii) holds, then for each positive element x ∈ B1 we
have

x = PB1(x) ≤ PB2(x) ∈ B2,

implying that B1 ⊂ B2.
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