DOLI: 10.2478/awutm-2014-0009 Analele Universitatii de Vest,
I 0E cRUYTER Timisoara

G Seria Matematica — Informatica
LIL 1, (2014), 141- 156

Experiments and Recommendations for
Partitioning Systems of Equations

Liviu Octavian Mafteiu-Scai

Abstract. Partitioning the systems of equations is a very impor-
tant process when solving it on a parallel computer. This paper
presents some criteria which leads to more efficient paralleliza-
tion, that must be taken into consideration. New criteria added to
preconditioning process by reducing average bandwidth are pro-
posed in this paper. These new criteria lead to a combination
between preconditioning and partitioning of systems equations, so
no need two distinct algorithms/processes. In our proposed meth-
ods - where the preconditioning is done by reducing the average
bandwidth- two directions were followed in terms of partitioning:
for a given preconditioned system determining the best partition-
ing (or one as close) and the second consist in achieving an ade-
quate preconditioning, depending on a given/desired partitioning.
A mixed method it is also proposed. Experimental results, con-
clusions and recommendations, obtained after parallel implemen-
tation of conjugate gradient on IBM BlueGene /P supercomputer-
based on a synchronous model of parallelization- are also presented
in this paper.

AMS Subject Classification (2000). 65F50, 65F10, 68T, 08,
68R10, 65F'15

Keywords. average bandwidth, system of equations, parallel,
preconditioning, partitioning, load-balancing, conjugate gradient,
recommendation system

142 L.O. Mafteiu-Scai An. U.V.T.

1 Introduction

A lot of engineering applications involves solving large sparse linear systems
of equations. Parallel computing has been imposed because in the current
real problems, the systems of equations have dimensions of millions equations
[5] which require the use of high performance computing (HPC) systems, fact
that enables to speedup the rate of performance.

Solving linear system of equation by direct methods is a good choice in the
case of small systems, but not for large systems due to their relatively high
memory and computational requirements. Iterative methods are good for
large systems of equations but on the other hand they are more dependent
on the properties of the systems. Furthermore, the iterative methods require
systems preconditioning if we want to obtain a good approximations of the
solution in a short time. The preconditioning consists in transforming the
associated system matrix into one that is more favorable to solving process.
We consider that a preconditioner is good if improves the convergence of the
iterative method, sufficiently to overcome the extra cost of applying it. The
importance of preconditioning becomes even more important in the case of
parallel solving and there are many studies that show this [3,4,33,37].

One of the very important elements in parallel computing is the ”load-
balancing”. This was first introduced by Shivaratry in paper [38], where
are proposed and compared some load-balancing strategies. Load-balancing
increase the performance of parallel computer applications by reduction the
processor idle time and interprocessor communication time. Therefore, the
ideal case is that in which all processors contain the same amount of com-
putational work, and does not exist data dependencies between processors.
Because the ideal cases are rare, the goal remains to minimize these two fac-
tors for a good load-balancing of processors.

From another point of view, because many problems are often expressed
as graphs, the load-balancing problem can be seen as a graph partition-
ing: vertices represent the data and edges represent relationships between
data/vertices. Thus, in the case of weighted graph, the main goals of parti-
tioning are to assign equal total vertex weight to partitions and to minimize
the weight of cut edges. There are many algorithms that fiind good parti-
tionings based on graph theory [10,19-21,34-36]. But the consideration in
which each vertex represent an equal amount of work is a limitation of graph
teory application in load-balancing [18]. Another limitation lies in the type
of equations systems that can be represented, ie only systems with square
and symmetric matrices [22]. To solve these shortcomings, hypergraphs are
used as models for partitioning in parallel computing [6,7,17,23].

Vol. LIT (2014) Experiments and Recommendations for Partitioning... 143

New methods of partitioning in parallel computing, inspired from artificial
intelligence began to be proposed lately, methods that in many cases outper-
forms the conventional heuristics methods : [11,12,25,27,40].

There are many software package used for partitioning and load-balancing in
parallel computing some of these being:

-JOSTLE: a library for multilevel graph partitioning and load balancing de-
veloped at the University of Greenwich, London, UK (http://staffweb.cms.gre.
ac.uk/ c.walshaw/jostle/), used for mesh-based parallel scientific computing
applications and load-balancing, on distributed memory parallel computers;
-PSPIKE (Parallel General Sparse Linear System Solver): a software package
solver for parallel solution of large sparse linear systems (http://www.pspike-
project.org/), that use matrix reordering and partitioning routines;
-METIS: a software for unstructured graph partitioning and sparse matrix
ordering system developed at University of Minnesota (http://www.cs.umn.
edu/karypis), that include some partitioning method like: spectral bisection,
multilevel spectral bisection, multilevel partitioning, geometric partitioning,
geometric partitioning-KL etc.

So, in parallel solving systems of equations the load-balancing of processors
is also a very important factor. This isn’t an easy problem, with two main
issues: how to partition the data between processors and how to parallelize
the iterations in case of iterative methods. There are three ways of matrices
partitioning: by rows, by columns or by blocks: the first two are suitable for
distributed memory architecture while the last is used in vector processors.
We consider that an important cause of bad load-balancing in parallel solv-
ing of system equations is the dynamism of the process over time, namely
in computational and communication costs, such as, for example the condi-
tion numbers of equations subsystems. Therefore, along the time, numerous
methods for dynamic load-balancing have been proposed [8,9,15,16,42], a
part of the benefits and limitations of dynamic partitioning across a wide
range of parallel system environments being described in the paper [39].
One of the most used iterative methods for solving systems of linear equa-
tions is the conjugate gradient (CG) that is very effective when the associated
matrix of system is symmetric and positive definite. The method was pro-
posed by M.R. Hestenes, and E. Stiefel in [6], being seen as a special case
of Gaussian elimination. The method involves small errors, exact solutions
are generally obtained after at most n steps, where n is the size of a well
conditioned system of equations. We have rapid convergence in case of well
conditioned systems, but can be arbitrary if the matrix is ill conditioned.
In Krylov type iterative methods, the convergence decreases or is lost after
parallelization of these methods -compared with serial variants of these-, the
least affected seem to be the CG, as was shown in [33].

144 L.O. Mafteiu-Scai An. U.V.T.

For conjugate gradient algorithm, the main effort consists in computing the
matrix-vector product and because it is directly proportional to the number
of nonzero values in the matrix, an implementation of a load balanced dis-
tribution corresponds to an uniform non-zero elements distribution between
processors. The parallelism in the conjugate gradient algorithm is derived
from parallel matrix-vector product and other inner products. The rest of
the operations involved are trivial in relation to them. The operations can
be performed in parallel as long as no dependency between them. For ex-
ample, the updating of the residual vector and the vector solution does not
depend on each other and can be performed at the same time. But these op-
erations can not be performed before performing the matrix-vector product.
And matrix-vector product in a new iteration can not be performed until
the residual vector is updated. So, there are two points on which processors
must synchronize before they can move on to the next iteration. It is very
important that the work be balanced between processors such synchroniza-
tion points so that the processors does not have any periods of inactivity
beetwen two moments (ideally) or these periods to be as smallest possible.
Thus, minimizing this waiting/idle time is an important goal in parallel solv-
ing systems of equations.

In conclusion, the problems to be solved in parallel solving systems of equa-
tions are related to finding an suitable division of the processes to be per-
formed, as well as finding the most appropriate mechanisms for synchroniza-
tion and communication between different processes. The system equations
partitioning can be done staticaly or dinamicaly: in first case the way to
partitioning is fixed and is independent of variable system status.

2 Theoretical considerations and experiments

Partitioning the systems of equations is a very important process when solv-
ing it on a parallel computer and more criteria must be taken into consid-
eration in this case. In our study, the main criterion considered was the
indicator average bandwidth. As shown in the papers 28,29, 31], the opti-
mization of this indicator leads to a more uniform distribution of non-zero
elements around and along the main diagonal of the associated matrix. This
distribution, somewhat similar to a band, ensures a better load balancing
and the use of a larger number of processors, which leads to more efficient
parallelization, as mentioned in [1,2].

As will be shown further, additional criteria added to the average bandwidth
optimization process lead to better results in terms of execution time, in case

Vol. LIT (2014) Experiments and Recommendations for Partitioning... 145

of iterative methods that are based on the Jacobian, like conjugate gradient.
We consider the case of parallel solving a system of equations using Kyrlov
type iterative methods (Newton, conjugate gradient or preconditioned con-
jugate gradient), a synchronous model of parallelization and a row-blocks
matrix partitioning with equals partitions. In such a case it is desirable that
inside of diagonal blocks Ji(z),i = 1,...,p (p is the number of partitions)
of the Jacobian J(z) to be as many nonzero values (nonzero coefficients of
equations system unknowns) for a greater efficiency of computing process (a
smaller number of communication processes). At the same time it is desirable
that blocks Ji(x) to contain close values of the number of nonzero, to have
a better balance of processors. In the ideal case -synchronous model, equal
row-blocks partitioning and iterative methods that using the Jacobian- all
nonzero elements should be distributed inside of diagonal submatrices with
size k situated along the main diagonal, where k = n/p, n being the size of
the system and p the number of partitions, like in Figure 1. It is obvious
that in such a situation when must be solved p independent subsystems of
equations, the efficiency parallelization process is high. How such an ideal
situation is difficult /impossible to obtain in practice, we consider that a rea-
sonable solution is to bring as many nonzero elements inside of diagonal
submatrices, that can lead to improved performance.

pl

p2

p3

pd

p5

ideal resonable

Figure 1: Ideal and reasonable nonzero elements distribution

2.1 A few factors that influence the efficiency of parallelization

In papers [28,29] was proposed a new indicator called average bandwidth
(mbw), used in preconditioning systems of linear equations. Its relevance in
parallel solving systems of linear equations was shown in paper [31]. It has
also been shown in [31] that in some cases such preconditioning by reducing
the average bandwidth leads to a drastic decrease of the efficiency of paral-
lel computing process in terms of convergence and global runtime. To note
that this unwanted effect was also observed in the case of preconditioning

146 L.O. Mafteiu-Scai An. U.V.T.

Iterations needed for convergence before mbw reduction after mbw reduction
Partitions (processors)

2 500 527

4 442 434

5 441 697

10 577 429

20 455 456

25 474 417

50 482 519

Table 1: Iterations needed for convergence

by bandwidth reducing. In the following example is shown such a case for
a 100x100 linear system of equations, symmetric matrix with 1182 nonzero
values, solved with parallel conjugate gradient method for an accuracy equal
with e-30 and more partitioning on IBM Blue Gene /P supercomputer. Ex-
perimental results obtained for different partitioning in terms of convergence
rate, before and after average bandwidth reduction can be seen in Figure 2
and Table 1. As can be seen in Table 1, the partitioning by 2, 5, 20 and 50
processors are not favorable. Experiments and further study have resulted

BEFORE mbw reduction AFTER mbw reduction
mbw=33.61 bw=99 mbw=9.97 Bu=60

Figure 2: Matrix configuration before and after average bandwidth reduction

in the identification of several factors that can led in some conditions to these
undesired effects. The main factors, experimental identified by us are:

a) distribution of non-zero elements along and around the main diagonal of
the associated matrix of the equations system;

b) diagonal-blocks configurations ie the ratio between the number of nonzero
elements inside and outside of Jacobian sub-matrix for each partition in part;
¢) condition numbers of diagonal-blocks submatrix;

d) number of partitions.

2.2 Proposed solutions for improving the partitioning

In the following will be considered a synchronous model of parallelization,
row-blocks matrix partitioning with equals partitions and Krylov type it-
erative methods that using the Jacobian, ie conjugate gradient. Below are

Vol. LIT (2014) Experiments and Recommendations for Partitioning... 147

decribed our proposals for a more efficient parallelization, in terms of the
factors mentioned before:

a) distribution of non-zero elements in associated matrix of system:

The non-zero elements distribution plays an important role in effi-
cient solving of equations systems in parallel. From our point of view
is of interest the distributions of nonzero elements along and around
the main diagonal of the associated matrix of the equations system:
- around the main diagonal: it is desirable that as many elements to
be as close to the main diagonal [1,2,37], which is in fact a smaller
value for average bandwidth [28,29]. This will ensure the efficiency
of the parallel computing mainly by the possibility of using a larger
number of processors.
- along the main diagonal: this should to be as uniform as to en-
sure a more load balanced of processors. These improvements can
be achieved by reducing the average bandwidth, using for example
algorithms described in [29]. Figure 3 shows an example of the aver-
age bandwidth reduction compared with bandwidth reduction [14],
using the same initial matrix.

CANG1 matrix, from set CANNES, from the Harwell.Boeing Collection (http>//math.nis

Original after bandwidth reduction
mbw=19.58 bwg=50 mbw=8.91 bw=30

a) P] E]

mbw=average bandwidth bw—bandwidth

Figure 3: The average bandwidth relevance

b) diagonal-blocks configurations:
In our approach were followed two directions:
- a good ratio of nonzero elements inside and outside of diagonal
blocks, for each partition in part ie. inside as much, outside as few,
for a smaller number of communication processes;
- diagonal blocks to contain close values of the number of nonzeros,
to have a better load balancing of processors.
As has been mentioned, the ideal solution lies in bringing all non-
zero values inside of diagonal blocks and a reasonable solution is to
bring as many non-zero values inside of diagonal blocks, as can be
seen in Figure 1.
Our solution in this respect consists in improving the average band-
width reduction algorithms by adding additional decision criteria for

148

L.O. Mafteiu-Scai An. U.V.T.

lines/columns interchange operations. Several criteria for determin-
ing the interchange opportunity of lines/columns in the precondition-
ing process by average bandwidth reduction in sparse matrices have
been described in the paper [30]. A new one, especially designed for
preconditioning by reducing average bandwidth, correlated with in-
creasing the number of non-zero elements inside the diagonal blocks,
in the case of systems parallel solving is further proposed. Figure 4
shows a small example for an easy understanding of our proposed ap-
proach. There is represented an associated matrix of a 12x12 system
of equations, where the matrix elements are identified by numbers
between 1 and 144. It is desired a preconditioning process by re-
ducing the average bandwidth so as to be maximized the number of
nonzero elements inside jacobians. In the Figure 4 is analyzed the
interchange opportunity of lines/columns (1,3). The matrix elements
whose position is affected by the interchange are colored. Different
colors were used for highlighted the new positions of each group in
part. As can be seen we have eight distinct groups and each group
can have null and nonzero elements, depending on the initial con-
figuration of the matrix. The four groups are with positive contri-
bution to the number of non-zero elements inside submatrix blocks
(C1,C2,C3,C4) and the other four (C5,C6,C7,C8) are with con-
tributions to the number of non-zero elements outside the submatrix
blocks. The first four represent optimization and the last four repre-
sent non-optimization.

The condition to improving the initial state is
Cl+C24+C3+4+C4>C5+C6+C7+C8 (1)

which means that the total nonzero values on the left side of inequal-
ity must be greater than the number of non-zero values on the right
side. In the case of symmetric matrices, equation (1) becomes:
Cl+C3>C5+C7(2)

Should be noted that the proposed method allows to determine how
will be affected the number of nonzero values from inside of diagonal
blocks by an interchange lines/columns (i, j), without to perform an
effective interchange, just using the relation (3):
C=C14+024C34+C4—-C5—-C6—-CT7—C8(3)

ie only a positive value of C' represent an interchange opportunity.
Note: method is simple and efficient because an interchange (i, j) af-
fects only partitions which includes lines i and j of a sparse matrix,
as can be seen in Figure 4.

In our experiments, in order to select the most favorable interchanges,
was used a greedy selection of lines, selection that depend on the num-

Vol. LIT (2014) Experiments and Recommendations for Partitioning... 149

1 2 40 5| 6] 7] 8 & 11 12| 1 2 4 s
P1 13[14 16§17 18] 15/ 20(21 23| 24 13 14 16{ 17]
25| 26| 27| 28§25) 30| 31| 32|33 34| 35| 36 [interchange(3,1 118 113] 14| 113
_ [39]38 40§41142] 43)44(45 47| 48] 37] 38 40f 41
49| 50| 51| 52|53| 54| 55/56]57|58| 55| 60 45| 50| 58(52| 53]
61| 62| 63| 64| 65| 66| 67| 6B6S| 70[71| 72| B1) 62| 70| B4) 65| 66| 67| B8] 62| 63| 71| 72
P2 73| 74| 75| 76| 77| 78| 75| 80) 81| 82| 83| 84] 73| 74| 82| 76| 77| 78| 75| 8O) 81| 75| 83| 84
85| 86| 87| 88]85(50| 91|52)93| 24 55/ 56| 85| 86| 54| 88) 89| 50[91| 52) 93{ 87| 55| 96
T g o 0af 105 [188] 107| 108] 57| 98|106| 100 101 | 102 103|104 105 107|108|
115|128 20| 25| 26| 34| 28(25| 30 31) 3233(27| 35| 36
P3 5122 [138] 131 132 121] 122|330 124{125] 125{ 127[128] 122 131]133]
135|137|138| 1329|1400 141 (383 143 144] 133| 134|183 135(137 138(132 140f 141 143|144
a) before interchange b) after interchange

enter into a diagonal block
C5 out from a diagonal block
Figure 4: Example for interchange opportunity in parallel case

bers of nonzero values inside and outside of partition for each line in
part.

¢) condition numbers of diagonal blocks:

It is well known that the condition number has a major influence in
terms of convergence speed, therefore the execution time, both in the
case of serial and parallel [33,37,41]. It is evident that in the case
of parallel solving, the diagonal submatrix condition numbers influ-
ence the local convergence for each subprocess in part and implicitly
the global convergence. We consider that this local influences are
responsible for the overall decrease convergence in some partition-
ing cases even if the system of equations was preconditioned, as was
highlighted in [31]. Such an unfavorable change of local condition
numbers after a preconditioning process is exemplified in Figure 5.
It was experimentally observed that the condition numbers of diago-

. €1 =6.10e+1 . €q=6.10e+1
Global: Ccpo=6.87e+1 Global: Co=6.87e+1
s Y
cq=2.94 €3 =1.0%9e+1
Cp=3.23 Cp=1.09e+1
N s
- ~
- £ - -
¢y =213 cq =7
Ce=2.13 Cp=7
N =

Figure 5: Preconditioning influence on the local condition numbers

nal blocks are influenced by the:

- preconditioning by average bandwidth reducing process (in some
cases the preconditioning process increases the condition numbers of
diagonal blocks involved in interchange, as seen in Figure 5);

150 L.O. Mafteiu-Scai An. U.V.T.

- spectrum of nonzero values in each diagonal blocks;

- number of partitions.

Our proposed solution consists in improving the average bandwidth
reduction algorithms by adding additional decision criteria for
lines/columns interchange operation, ie. the interchange will be made
only if the condition numbers of diagonal-blocks involved in inter-
change do not increase by more than an order of magnitude, because
it was experimentally observed that increasing less than an order of
magnitude does not significantly influence the convergence.

2.3 The proposed partitioning methods

In our approach, where the preconditioning is done by reducing the average
bandwidth, two directions were followed in terms of partitioning;:

- for a given preconditioned system of equations, the goal consist in deter-
mining the best partitioning or one as close/satisfactory;

- achieving an adequate preconditioning, depending on a given/desired par-
titioning.

Finaly, a mixed solution for partitioning in the case of conjugate gradient is
proposed.

2.3.1 Determining partitioning for a given preconditioned system

For a given preconditioned system of equations, it is aimed determining the
best partitioning or one as close/satisfactory. This goal can be achieved
using:
a) a formula:
Experimentally was observed that around 20 percent of cases after
preconditioning by reducing average bandwidth (mbw), -a better (5
percent) or a closer (15 percent)-, the number of partitions p is given
by the formula:
p=n/mbw (4)
where mbw is the average bandwidth and n is the size of equations
system.
Note: We consider that the small successful percentage is due to:
- the value with decimals obtained for p (p value must be integer);
- working with equal partitions;
- condition numbers of the diagonal blocks;
- the ratio nonzero/zero inside/outside of the diagonal blocks.
b) a technique from artificial intelligence:

Vol. LIT (2014) Experiments and Recommendations for Partitioning... 151

The prototype of a recommendation system for partitioning in parallel con-
jugate gradient, based on feature vectors dissimilarity using the indicator
Reference Distance Weighted [32] was tested and presented in Figure 6. A

classification solving
0K |:> Eecommendatinﬂ[? system eq.

module
oK

g A
machine | | |

learning (\rj ’\A,j ’\A’j ostprocessing
module

Figure 6: Recommendation system prototype

rrec:[:i‘;:lremng” [:/\ Etre])rm:essing] |:">

summary of the main processing is done next. Preprocessing represents the
feature extraction from the associated matrix, such as dimension, average
bandwidth, bandwidth, profile, patterns of nonzero etc. Classification is
the process by which the system of equations is included in one of the classes
existing in knowledge base of the recommendation system. Postprocessing
is called if the classification process has failed. Postprocessing represents the
process of "adjustment” of some features in order to approximate the prob-
lem to be solved by one of the existing classes in the knowledge base. Such
adjustable characteristics could be: bandwidth, average bandwidth, profile
etc. After this, the machine learning module is called, to extend an existing
class or create a new one. Finally, a recommendation for partitioning is
done and then the parallel solving module is called.

Experimentally was observed that around 5 percent, we can find a good par-
titioning using the proposed prototype. We consider that the small successful
percentage and the prohibitive runtime (even for small dimension of systems)
is due to: too small knowledge base, too few features used in the features
vectors, too little knownledge about the relevance of each feature in part,
the large number of parameters which must be calculated and the condition
numbers of the diagonal blocks which can not be known apriori.

2.3.2 Preconditioning according to a given partitioning

In this approach, for a given/desired partitioning it is aimed achieving the
best possible preconditioning.

Experimentally was observed that around 50 percent, we can find a good
pattern of matrix, based on average bandwidth reduction conducted by:

- row-blocks reconfiguration (to increase the number of nonzero inside and
decrease them outside)

- condition numbers of diagonal blocks involved in lines/columns interchange;

152 L.O. Mafteiu-Scai An. U.V.T.

About last criteria we have a dilemma: computing OR estimation the con-
dition numbers for the two blocks affected by interchange? It is well known
that computing the condition number its a hard problem from runtime point
of view. At the same time, there are many methods for estimating the con-
dition number, that determine in a reasonable time an approximate value of
the condition number [13,24,26,41]. But the approximative value obtained
by these methods (the accuracy is not as precise as the general direct com-
putation methods) it is not satisfactory in our case because for example, we
need to compare two exactly values of condition numbers for the same di-
agonal submatrix, if the preconditioning by reducing average bandwidth is
guided by decreasing the condition numbers.

2.3.3 A mixed solution for partitioning in the case of conjugate
gradient

Further is described a mixed solution obtained from the two previous models,
an approach that has the main steps:

Stepl : average bandwidth reduction without regard to partitioning;

Step2 : computing the number of processors using formula p = n/mbuw;
Step3d : improvement previous p partitioning through reconfiguration matrix
pattern ie. average bandwidth reduction guided by row-blocks reconfigura-
tion and reduction the condition numbers of these.

An example of running of such a model can be viewed in Figure 7. The
effectiveness of the proposed model is proved by decreasing the number of
iterations required for convergence. Also, is observed the relevance of the two
additional criteria added to preconditioning process by reducing the average
bandwidth: condition numbers and diagonal blocks patterns optimization.
So, in Figure 7 can be observed that in first stage, only average bandwidth
reduction (Step 1) conduct to a value of partitions number equal with 10.
After this, a new average bandwidth reduction conducted by row-blocks con-
figuration and condition numbers, lead to a new configuration of the matrix,
which provides a faster convergence in the case of 10 partitions, even if the
new value of average bandwidth (mbw) has increased. Can be also observed
the decrease of local condition numbers, which explains the increase of con-
vergence speed.

Vol. LIT (2014) Experiments and Recommendations for Partitioning... 153

Example:
100x100

1182 nonzero
uniform distrib.
PCG e-30

Initial Only mbw optimization mbw (diag.blocks + cond.numbers)
mbw=33.61 bw=99 mbw=9.97 bw=60 optimization for 10 partitions
p=100/9.97=10 mbw=13.19 bw=73

State

Nonzeroindiag. | 101714612108141012=108 | 7432 44304446 40344272 = 458 722872244032 40304448 =430
blocks(10 part.)
Cond. Numb.: Fail(singular matrix) C1=Co, =6.89e+4 C1=Cqo =3.12e+2
Example for p1

07000000 032151700120 012178121613 0120
000000014 3012610160020 140111270163 13
600000120 4130711171103 10 171014710306 16
000000150 16670410133 150 811140171131007
o

ococ000 0 7161710140136 13 4710113090120
00000000 1001121720155 16 160313690180 18
00000000 00103713150180 13160103018020
1815000 0 00 122315062180 18 035091202018

14001700 000 00100713150 180 101316700150180

Iterationsfor
convergence 487 434 409

Figure 7: An example running of mixed model

3 Conclusions and future work

Average bandwidth reducing is a good choice for preconditioning in parallel
solving of equations systems. In this work the average bandwidth reduc-
ing process additionally depending on the diagonal blocks configuration and
their condition numbers. Adding these new additional criteria leads to a sub-
stantial improvement of convergence. The major advantage of the proposed
methods is that combine partitioning with preconditioning, so no need for
two distinct algorithms.

The relation p = n/mbw determine with a good approximation the optimal
number of equal partitions and this value represent a good start for an effi-
cient preconditioning guided by diagonal blocks configuration.

One of the concerns in the future will be the performance improvement of
proposed recommendation system, in particular by: increase and diversify
the knowledge base, increasing the number of features to be analyzed, deter-
mining the weight/relevance of each feature in part in computing the degree
of dissimilarity and the selection a simple but efficient method for estimating
the condition number to increase the preconditioning efficiency.

Another concern for the future will be to work with unequal partitions re-
spectively overlapped partitions in the case of proposed approach.

References

[1] P. Arbenz W. Gander, A survey of direct parallel algorithms for banded linear
systems, Report Departement Informatik, ETH Zurich, (1994)

154

2]

L.O. Mafteiu-Scai An. U.V.T.

P. Arbenz M. Hegland A. Cleary J. Dongarra, Paralel numerical liniar al-
gebra, chapter: A comparison of paralel solvers for diagonally dominant and general
narrowbanded liniar systems”., Nova Science Publishers, Inc., Commack, NY, USA,
2001

O. Axelsson, A survey of preconditioned iterative methods for linear systems of
algebraic equations, BIT Numerical Mathematics, 25/1, (1985), 165-187

M. Benzi, Preconditioning Techniques for Large Linear Systems: A Survey, Journal
of Computational Physics, 182, (2002), 418-477

B. Carpentieri I.S. Duff L. Giraud G. Sylvand, Combining Fast Multipole
Techniques and an Approximate Inverse Preconditioner for Large Electromagnetism
Calculations, SIAM J. Sci. Comput., 27/3, (2005), 774-792

U.V. Catalyurek C. Aykanat, Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication, Parallel and Distributed Systems, IEEE
Transactions, 10/7, (1999)

U.V. Catalyurek C. Aykanat, A Hypergraph-Partitioning Approach for Coarse-
Grain Decomposition, Supercomputing, ACM/IEEE 2001 Conference, ISBN:1-58113-
293-X, IEEE, (2001)

U.V. Catalyurek E.G. Boman K.D. Devine D. Bozdag, Hypergraph-based
Dynamic Load Balancing for Adaptive Scientific Computations, Parallel MESH Dis-
tributed Processing Symposium, 2007. IPDPS 2007. IEEE International, ISBN:1-
4244-0910-1, (2007)

A. Cevahir A. Nukada S. Matsuoka, High performance conjugate gradient solver
on multi-GPU clusters using hypergraph partitioning, Computer Science - Research
and Development May 2010, Volume 25, Issue 1-2, pp 83-91, (2010)

C.K. Cheng Y.C.A. Wei, An improved two-way partitioning algorithm with stable
performance, IEEE Trans. Computer Aided Design, 10/12, (1991), 1502-1511

R. Cheng M. Gen, Parallel machine scheduling problems using memetic algorithms,
Computers et. Industrial Engineering, Elsevier, 33/3..4, (1998), 761-764

C. Chevalier F. Pellegrini, Improvement of the Efficiency of Genetic Algorithms
for Scalable Parallel Graph Partitioning in a Multi-level Framework, Euro-Par 2006
Parallel Processing, Lecture Notes in Computer Science,Springer, 4128, (2006), 243
252

A.K. Cline C.B. Moler G.W. Stewart J.H. Wilkinson, An Estimate for the
Condition Number of a Matrix, SIAM J. Numer. Anal., 16/2, (1979), 368375

E. Cuthill J. McKee, Reducing the bandwidth of sparse symmetric matrices, Proc.
of ACM, (1969), 157172

G. Cybenko, Dynamic load balancing for distributed memory multiprocessors, Jour-
nal Parallel Distrib. Comput, 7, (1989), 279-301

K.D. Devine et. all, New challenges in dynamic load balancing, Applied Numerical
Mathematics, 52/(2-3), (2005), 133152

K.D. Devine et. all, Parallel hypergraph partitioning for scientific computing, Par-
allel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International,
ISBN: 1-4244-0054-6, (2006)

Vol. LIT (2014) Experiments and Recommendations for Partitioning... 155

[18]

[26]

[27]

G. Garcia R. Yahyapour A.Tchernykh, Load Balancing for Parallel Compu-
tations with the Finite Element Method, Computacin y Sistemas, ISSN 1405-5546,
17/3, (2013), 299-316

B.A. Hendrickson, Fast spectral methods for ratio cut partitioning and clustering,
Proceedings of IEEE International Conference on Computer Aided Design, (1991),
10-13

M.T. Heath P. Raghavan, A Cartesian parallel nested dissection algorithm, STA M
J. Matriz Anal. Appl., 16/1, (1995), 235-253

B. Hendrickson R. Leland, A Multilevel Algorithm for Partitioning Graphs, Tech-
nical Report SAND93-1301, Sandia National Laboratories, (1993)

B.A. Hendrickson, Graph partitioning and parallel solvers: Has the emperor no
clothes?, Proceedings of the 5th Solving Irreqularly Structured Problems in Parallel,
(1998), 218225

G. Karypis R. Aggarwal V. Kumar S. Shashi, Multilevel hypergraph parti-
tioning: applications in VLSI domain, Very Large Scale Integration (VLSI) Systems,
IEEE Transactions, 7/1, (1999)

C.S. Kenney A. J. Laub M. S. Reese, Statistical Condition Estimation for Linear
Systems, STAM Journal on Scientific Computing, 19/2, (1998), 566-583

P. Korosec J. Silc B. Robic, Mesh-Partitioning with the Multiple Ant-Colony
Algorithm, Ant Colony Optimization and Swarm Intelligence, Lecture Notes in Com-
puter Science, ISBN:978-3-540-22672-7., 3172, (2004)

A.J. Laub J. Xiai, Statistical Condition Estimation for the Roots of Polynomials,
TSIAM Journal on Scientific Computing, Vol. 31, No. 1, pp. 624-643, (2008)

G. Laszewski, A Collection of Graph Partitioning Algorithms: Simulated Anneal-
ing, Simulated Tempering, Kernighan Lin, Two Optimal, Graph Reduction, Bisec-
tion, Northeast Parallel Architectures Center at Syracuse University. Technical Report

SCCS 477, (1993)

L.O. Mafteiu-Scai, Bandwidth reduction on sparse matrix, West University of
Timisoara Annals, XLVIII/3, (2010)

L.O. Mafteiu-Scai V. Negru D. Zaharie O. Aritoni, Average bandwidth re-
duction in sparse matrices using hybrid heuristics, Studia Universitatis Babes-Bolyai
University, Cluj Napoca, 3/2011, (2011)

L.O. Mafteiu-Scai, Interchange opportunity in average bandwidth reduction in
sparse matrix, West Univ. of Timisoara Annals, Timisoara, Romania, ISSN:1841-
3293, (2012)

L.O. Mafteiu-Scai, Average bandwidth relevance in parallel solving systems of lin-
ear equations, Int. J. Eng. Res. Appl., ISSN 2248-9622, 3/1, (2013), 1898-1907

L.O. Mafteiu-Scai, A new dissimilarity measure between feature-vectors, Int. J. of
Comp. Appl., ISSN: 0975 8887,ISBN: 973-93-80873-17-5, 64/17, (2013)

S. Maruster V. Negru L.O. Mafteiu-Scai, Experimental study on parallel meth-
ods for solving systems of equations, SYNACS Timisoara, 2012, IEEE Xplore CPS
ISBN: 978-1-4673-5026-6, DOI: 10.1109/SYNASC.2012.7, (Febr. 2013)

156 L.O. Mafteiu-Scai An. U.V.T.

[34] B. Nour-Omid A. Raefsky G. Lyzenga, Solving finite element equations on
concurrent computers, American Society of Mechanical Engineering, A. K. Noor,
Ed., (1986), 291-307

[35] A. Pothen H.D. Simon K.P. Liou, Partitioning sparse matrices with eigenvectors
of graphs, STAM J. Matriz Anal. Appl., 11/3, (1990), 430-452.

[36] P. Raghavan, Line and Plane Separators, Technical Report UIUCDCS-R-93-1794,
Department of Computer Science, University of Illinois, Urbana, IL 61801, Feb. 1993,
(1993)

[37) Y. Saad, Iterative methods for sparse liniar systems (2nd ed.), Chapter 6: Krylov
Subspace Methods, Part 1”., STAM, ISBN 978-0-89871-534-7, 2003

[38] N.G. Shivaratri P. Krueger M. Singhal, Load distributing for locally distributed
systems, Computer, 25/12, (1992), 33-44

[39] M.S. Squillante, On the benefits and limitations of dynamic partitioning in parallel
computer systems, Job Scheduling Strategies for Parallel Processing, Lecture Notes in
Computer Science, Springer, 949, (1995), 219-238

[40] E.G.Talbi P. Bessiere, A parallel genetic algorithm for the graph partitioning prob-
lem, Proceeding ICS ’91 Proceedings of the 5th international conference on Super-
computing, ACM New York, ISBN:0-89791-434-1, 25/12, (1991), 312-320

[41] S. Xu J. Zhang, A new data mining approach to predict matrix condition numbers,
Comunications in information and systems, 4/4, (2004), 325-340

[42] M.H. Willebeek-LeMair A.P. Reeves, Strategies for dynamic load balancing on
highly parallel computers, IEEE Transactions on Parallel and Distributed Systems,
4/9, (1993), 979-993

Liviu Octavian Mafteiu-Scai

Department of Computer Science
West University of Timisoara

V. Parvan nr. 4

Timisoara

Romania

E-mail: 1scai@info.uvt.ro

Received: 27.11.2013
Accepted: 1.06.2014

