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Numerical Solution of the Singular Integral

Equations of the First Kind on the Curve
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Abstract. In this work we present a numerical solution for sin-
gular integral equations of the first kind on the oriented smooth
contour with Cauchy type kernel. For this one we use an adapted
quadratic approximation constructed by the author for this goal,
based on the Simpson rule. Many examples are treated in order
to prove the efficiency of this approximation.
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1 Introduction

A singular integral equation of the first kind with Cauchy kernel has the form

Aϕ(t0) =
1

πi

∫
Γ

b0(t0)ϕ(t)

t− t0
dt+

1

πi

∫
Γ

k(t, t0)ϕ(t)dt = f(t0), (1)

where under Γ we designate an oriented smooth contour in the complex
plane of the variable t = x(s) + iy(s), t and t0 are complex points on Γ,
ϕ(t) is the unknown function and f(t), b0(t) and k(t, t0) are given functions
on Γ, where f(t) is called the right hand side of the equation (1). The first
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integral of the left hand side must be exist in the sense of the Cauchy prin-
cipal value for a given density ϕ(t), for this one, we will need more than
mere continuity. In other words, the density ϕ(t) has to satisfy the Hölder
condition H(µ)[2]. So we note that, singular integral equations of the first
kind with Cauchy kernel have an index zero. In particular, injective sin-
gular integral operators of the first kind are bijective and have a bounded
inverse.

2 The Quadrature

We denote by t the parametric complex function t(s) of the curve Γ defined
by

t(s) = x(s) + iy(s), a ≤ s ≤ b,

where x(s) and y(s) are continuous functions on the finite interval of def-
inition [a, b] and have continuous first derivatives x′(s) and y′(s) never si-
multaneously null. Let N be an arbitrary natural number, generally we
take it large enough and divide the interval [a, b] into N equal subintervals
I1, I2, ..., IN by the points

sσ = a+ σ
l

N
, l = b− a , σ = 0, 1, 2, ...., N.

Further, we fix a natural number M > 1, and divide each of segments
[sσ, sσ+1] by the equidistant points

sσk = sσ + k
h

2M
, h =

l

N
, k = 0, 1, ..., 2M.

In other words, we have for each subinterval [sσ, sσ+1] the following subdivi-
sion

sσ = sσ0 < sσ1 < ..... < sσ2M = sσ+1.

We introduce the notation

tσ = t(sσ), tσk = t(sσk); σ = 0, 1, 2, ..., N ; k = 0, 1, ...., 2M.

Assuming that, for the indices σ, ν = 0, 1, 2, ...., N − 1, the points t and t0

belong respectively to the arcs
_

tσtσ+1 and
_

tνtν+1 where
_

tαtα+1 designates the
smallest arc with ends tα and tα+1 [3],[5],[6] and [7].
Following [6], we define the approximation ψσν(ϕ; t, t0) for the density ϕ(t)
by the following expression
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ψσν(ϕ; t, t0) = ϕ(t0) + βσν(ϕ; t, t0)

= ϕ(t0) + U(ϕ; t, σ)− V (ϕ; t0, σ, ν) (1)

where the expression ψσν(ϕ; t0, t), designates the approximation of the func-
tion density ϕ(t) on the subinterval [tσ, tσ+1] of the curve Γ [6], destined for
the first integral of the left hand side of the equation (1).

Indeed, for tσk ≤ t ≤ tσ,k+2 we put

U(ϕ; t, σ) =
(t− tσ,k+1)(t− tσ,k+2)

(tσ,k+1 − tσk)(tσ,k+2 − tσk)
ϕ(tσk)

t− t0
tσk − t0

− (t− tσk)(t− tσ,k+2)

(tσ,k+1 − tσk)(tσ,k+2 − tσ,k+1)
ϕ(tσ,k+1)

t− t0
tσ,k+1 − t0

+
(t− tσk)(t− tσ,k+1)

(tσ,k+2 − tσk)(tσ,k+2 − tσ,k+1)
ϕ(tσ,k+2)

t− t0
tσ,k+2 − t0

,

and the function V (ϕ; t0, σ, ν) is given by

V (ϕ; t0, σ, ν) =
S2(ϕ; t0, ν)(t− t0)(t− tσ,k+1)(t− tσ,k+2)

(tσk − t0)(tσ,k+2 − tσk)(tσ,k+1 − tσk)

−
S2(ϕ; t0, ν)(t− t0)(t− tσk))(t− tσ,k+2)

(tσ,k+1 − t0)(tσ,k+2 − tσ,k+1)(tσ,k+1 − tσk)

+
S2(ϕ; t0, ν)(t− t0)(t− tσk))(t− tσ,k+1)

(tσ,k+2 − t0)(tσ,k+2 − tσ,k+1)(tσ,k+2 − tσk)
,

where the function S2(ϕ; t0, ν) represents the piecewise quadratic interpolat-
ing polynomial of the function density ϕ(t0) given by

S2(ϕ; t, ν) =
(t− tν,k+1)(t− tν,k+2)

(tν,k+1 − tνk)(tν,k+2 − tνk)
ϕ(tνk)

− (t− tνk)(t− tν,k+2)

(tν,k+1 − tνk)(tν,k+2 − tν,k+1)
ϕ(tν,k+1)

+
(t− tνk)(t− tν,k+1)

(tν,k+2 − tνk)(tν,k+2 − tν,k+1)
ϕ(tν,k+2).

For the second integral of the left hand side of the equation (1) we use the
quadratic spline interpolation of the kernel k(t0, t) and of the density ϕ(t).
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This regular part of the singular integral equation is obtained as

Kϕ(t0) =
1

πi

∫
Γ

k(t, t0)ϕ(t)dt

' 1

πi

∫
Γ

k̃(t, t0)ϕ̃(t)dt

=
1

πi

N−1∑
σ=0

M−1∑
k=0

∫ tσ,2k+2

tσ2k

(t− tσ,2k+1)(t− tσ,2k+2)

(tσ,2k+1 − tσ2k)(tσ,2k+2 − tσ2k)
k(tσ2k, t0)ϕ(tσ2k)

− (t− tσ2k)(t− tσ,2k+2)

(tσ,2k+1 − tσ2k)(tσ,2k+2 − tσ,2k+1)
k(tσ,2k+1, t0)ϕ(tσ,2k+1)dt

+
(t− tσ2k)(t− tσ,2k+1)

(tσ,2k+2 − tσ2k)(tσ,2k+2 − tσ,2k+1)
k(tσ,2k+2, t0)ϕ(tσ,2k+2)dt.

= K̃ϕ̃(t0).

However, using our approximation for the singular integral of the equation
(1) we obtain

b0(t0)Sϕ(t0) =
1

πi

∫
Γ

b0(t0)ϕ(t)

t− t0
dt

= b0(t0)ϕ(t0) +
b0(t0)

πi

∫
Γ

ϕ(t)− ϕ(t0)

t− t0
dt

' b0(t0)ϕ̃(t0) +
b0(t0)

πi

∫
Γ

βσν(ϕ; t, t0)

t− t0
dt

= b0(t0)ϕ̃(t0) + b0(t0)S̃1ϕ̃(t0)

= b0(t0)S̃ϕ̃(t0).

Hence, the approximation of the left side hand of the equation (1) noted
byAϕ(t0) is given by

Aϕ(t0) = b0Sϕ(t0) +Kϕ(t0)

= b0(t0)ϕ(t0) + b0(t0)S1ϕ(t0) +Kϕ(t0)

' b0(t0)ϕ̃(t0) + b0(t0)S̃1ϕ̃(t0) + K̃ϕ̃(t0)

= Ãϕ̃(t0)

where the function ϕ̃(t) denote the approximation solution of the equation

(1) obtained by the equality of the functions Ãϕ̃(t0) and f(t0) at the points
tσk, σ = 0, 1, .., N ; k = 0, 1, ..., 2M.
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3 Main Result

Theorem 1. The singular integral equation (1) has a unique solution ϕ(t)
and its approximate solution ϕ̃(t) converges to the solution ϕ(t) with the
following estimation

|ϕ(t)− ϕ̃(t)| ≤ C1 ln(2MN)

(2MN)µ
+

C2

(MN)2
, M,N > 1,

where the constant C1 and C2 depend only on the curve Γ and the Holder
constant µ of the function ϕ.

Proof
We can written the integral equation (1) as

Aϕ = (b0S +K)ϕ = f,

while as an approximating equation, we consider

Ãϕ̃ = (b0S̃ + K̃)ϕ̃ = f.

It follows from [6] that, for all ϕ(t) in H(µ) we have∣∣∣S1ϕ− S̃1ϕ̃
∣∣∣ ≤ C1 ln(2MN)

(2MN)µ
,

and also it is known that ∣∣∣Kϕ− K̃ϕ̃∣∣∣ ≤ C2

(MN)2
,

for all K compact operator and ϕ ∈ H(µ).
Therefore, it is easy to see that

|ϕ− ϕ̃| =

∣∣∣∣(S1ϕ− S̃1ϕ̃) +
1

b(t0)
(Kϕ− K̃ϕ̃)

∣∣∣∣
≤

∣∣∣S1ϕ− S̃1ϕ̃
∣∣∣+

1

|b(t0)|

∣∣∣Kϕ− K̃ϕ̃∣∣∣
|ϕ− ϕ̃| ≤ C1 ln(2MN)

(2MN)µ
+

C3

(MN)2
, M,N > 1.
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4 Numerical Experiments

In this section we describe some of the numerical experiments performed in
solving the singular integral equations (1). In all cases, the curve Γ designate
the unit circle and we chose the right hand side f(t) in such way that we
know the exact solution. This exact solution is used only to show that the
numerical solution obtained with our approximation is correct.
We apply the algorithms described in [3] and [6] to solve S.I.E. of the first
kind and we present results concerning the accuracy of the calculations; in
this numerical experiments it is easily to see that the matrix of the system
of algebraic equation given by our approximation is invertible, confirmed in
[3] and [7].
In each table, ϕ represents the exact solution given in the sense of the princi-
pal value of Cauchy and ϕ̃ corresponds to the approximate solution produced
by the approximation at points values interpolation [3] and [6].

Example 1. We start with the easiest type, without the regular part

(t0 + 2)

πi

∫
Γ

ϕ(t)

t− t0
dt = t30 + 2t20 − t0 − 2

where the function f(t0) is chosen so that the solution ϕ(t) is given by

ϕ(t) = t2 − 1

Table 1. The exact principal value of the singular integral, the approximate
calculation of the integral and the error for N=10 in Example 1.

Values of Exact solution Approximate Error
points ϕ solution ϕ̃
9.5106e-001+ -1.9098e-001+ -1.9098e-001+ 6.4796e-016
3.0902e-001i 5.8779e-001i 5.8779e-001i
5.8779e-001+ -1.3090e+000+ -1.3090e+000+ 1.2561e-015
8.0902e-001i 9.5106e-001i 9.5106e-001i
6.1232e-017+ -2.0000e+000+ -2.0000e+000 - 1.3618e-015
1.0000e+000i +1.2246e-016i -6.6613e-016i

-5.8779e-001+ -1.3090e+000 - -1.3090e+000 - 4.4409e-016
8.0902e-001i 9.5106e-001i 9.5106e-001i
-9.5106e-001+ -1.9098e -001 - -1.9098e-001- 6.9389e-016
3.0902e-001i 5.8779e-001i 5.8779e-001i

Example 2. Consider the singular integral equation, without the regular part
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t0
πi

∫
Γ

ϕ(t)

t− t0
dt =

t0
t0 + 3

where the function f(t0) is chosen so that the solution ϕ(t) is given by

ϕ(t) =
1

t+ 3

Table 2. The exact principal value of the singular integral, the approximate
calculation of the integral and the error for N=30 in Example 2.

Values of Exact solution Approximate Error
points ϕ solution ϕ̃

8.6603e-001+ 2.5441e-001 - 2.5440e-001 - 3.7716e-006
5.0000e-001i 3.2903e-002i 3.2903e-002i
4.0674e-001+ 2.7384e-001 - 2.7384e-001 - 5.2134e-006
9.1355e-001i 7.3434e-002i 7.3438e-002i

-2.0791e-001+ 3.1900e-001 - 3.1901e-001 - 9.8266e-006
9.7815e-001i 1.1176e-001i 1.1176e-001i
-7.4314e-001+ 4.0729e-001 - 4.0729e-001 - 2.3608e-005
6.6913e-001i 1.2076e-001i 1.2073e-001i
-9.9452e-000+ 4.9728e-001 - 4.9726e-001 - 4.7172e-005
1.0453e-001i 2.5919e-002i 2.5961e-002i

5 Conclusion

We have considered the numerical solution of singular integral equations and
have presented an efficient scheme to compute this singular integrals. The
essential idea is to find a combination of functions of approximation for the
function density where we can be used it to remove integrable singularities.
The regular part where it is the remaining integrands are well behaved and
pose no serious numerical problem. Typical examples taken from the litera-
ture with known closed form solutions, were used to illustrate the stability
and convergence of the approach. The stability of the numerical solution was
verified by comparing the analytical and numerical solutions which agree well.
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