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Abstract. In this paper, we introduce the concept of operator AG-
preinvex functions and prove some Hermite-Hadamard type inequalities
for these functions. As application, we obtain some unitarily invariant
norm inequalities for operators.

1 Introduction and preliminaries

The following Hermite-Hadamard inequality holds for any convex function f
defined on R

(b− a)f

(
a+ b

2

)
≤

∫b
a

f(x)dx ≤ (b− a)
f(a) + f(b)

2
, a, b ∈ R. (1)
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It was firstly discovered by Hermite in 1881 in the journal Mathesis (see [8]).
But this result was nowhere mentioned in the mathematical literature and was
not widely known as Hermite’s result [10].

Beckenbach, a leading expert on the history and the theory of convex func-
tions, wrote that this inequality was proven by Hadamard in 1893 [2]. In
1974, Mitrinovič found Hermites note in Mathesis [8]. Since (1) was known
as Hadamards inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality [10].

Definition 1 [13] A continuous function f : I ⊂ R → R+ is said to be an
AG-convex function (arithmetic-geometrically or log-convex function) on the
interval I if

f(λa+ (1− λ)b) ≤ f(a)λf(b)1−λ. (2)

for a, b ∈ I and λ ∈ [0, 1], i.e., log f is convex.

Theorem 1 [13] Let f be an AG-convex function defined on [a, b]. Then, we
have

f

(
a+ b

2

)
≤

√
f

(
3a+ b

4

)
f

(
a+ 3b

4

)
≤ exp

(
1

b− a

∫b
a

log(f(u))du

)
≤

√
f

(
a+ b

2

)
. 4
√
f(a). 4

√
f(b)

≤
√
f(a)f(b), (3)

where u = log t.

Let B(H) stands for the C∗-algebra of all bounded linear operators on a
complex Hilbert space H with inner product 〈·, ·〉. An operator A ∈ B(H) is
positive and write A ≥ 0 if 〈Ax, x〉 ≥ 0 for all x ∈ H. Let B(H)sa stand for the
set of all self-adjoint elements of B(H).

Let A be a self-adjoint operator in B(H). The Gelfand map establishes a
∗-isometrically isomorphism Φ between the set C(Sp(A)) of all continuous
functions defined on the spectrum of A, denoted by Sp(A), and the C∗-algebra
C∗(A) generated by A and the identity operator 1H on H as follows:

for any f, g ∈ C(Sp(A))) and any α,β ∈ C we have:

• Φ(αf+ βg) = αΦ(f) + βΦ(g);
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• Φ(fg) = Φ(f)Φ(g) and Φ(f̄) = Φ(f)∗;

• ‖Φ(f)‖ = ‖f‖ := supt∈Sp(A) |f(t)|;

• Φ(f0) = 1H and Φ(f1) = A, where f0(t) = 1 and f1(t) = t, for t ∈ Sp(A).

With this notation we define

f(A) = Φ(f) for all f ∈ C(Sp(A))

and we call it the continuous functional calculus for a self-adjoint operator A.
If A is a self-adjoint operator and f is a real valued continuous function on

Sp(A), then f(t) ≥ 0 for any t ∈ Sp(A) implies that f(A) ≥ 0, i.e. f(A) is a
positive operator on H. Moreover, if both f and g are real valued functions on
Sp(A) then the following important property holds:

f(t) ≥ g(t) for any t ∈ Sp(A) implies that f(A) ≥ g(A), (4)

in the operator order of B(H), see [14].

Definition 2 A real valued continuous function f on an interval I is said to
be operator convex function if

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B),

in the operator order, for all λ ∈ [0, 1] and self-adjoint operators A and B in
B(H) whose spectra are contained in I.

In [4] Dragomir investigated the operator version of the Hermite-Hadamard
inequality for operator convex functions. Let f : I→ R be an operator convex
function on the interval I then, for any self-adjoint operators A and B with
spectra in I, the following inequalities holds

f

(
A+ B

2

)
≤ 2

∫ 3
4

1
4

f(tA+ (1− t)B)dt

≤ 1

2

[
f

(
3A+ B

4

)
+ f

(
A+ 3B

4

)]
≤

∫ 1
0

f ((1− t)A+ tB)dt

≤ 1

2

[
f

(
A+ B

2

)
+
f(A) + f(B)

2

]
≤ f(A) + f(B)

2
,
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for the first inequality in above, see [12].
In [5], Ghazanfari et al. gave the concept of operator preinvex function and

obtained Hermite-Hadamard type inequality for operator preinvex function.

Definition 3 [5] Let X be a real vector space, a set S ⊆ X is said to be invex
with respect to the map η : S× S→ X, if for every x, y ∈ S and t ∈ [0, 1],

x+ tη(x, y) ∈ S.

It is obvious that every convex set is invex with respect to the map η(x, y) =
x− y, but there exist invex sets which are not convex (see [1]).

Let S ⊆ X be an invex set with respect to η. For every x, y ∈ S. the η-path
Pxv joining the points x and v := x+ η(y, x) is defined as follows

Pxv := {z : z = x+ tη(y, x), t ∈ [0, 1]}.

The mapping η is said to satisfy the condition (C) if for every x, y ∈ S and
t ∈ [0, 1],

η(y, y+ tη(y, x)) = −tη(x, y), η(x, y+ tη(x, y)) = (1− t)η(x, y).

Note that for every x, y ∈ S and every t1, t2 ∈ [0, 1], from conditions in (C),
we have

η(y+ t2η(x, y), y+ t1η(x, y)) = (t2 − t1)η(x, y), (5)

see [9] for details.

Definition 4 Let S ⊆ B(H)sa be an invex set with respect to η : S × S →
B(H)sa. Then, the continuous f : R → R is said to be operator preinvex with
respect to η on S, if for every A,B ∈ S and t ∈ [0, 1],

f(A+ tη(B,A)) ≤ (1− t)f(A) + tf(B), (6)

in the operator order in B(H).

Every operator convex function is operator preinvex with respect to the map
η(A,B) = A− B, but the converse does not hold (see [5]).

Theorem 2 [5] Let S ⊆ B(H)sa be an invex set with respect to η : S × S →
B(H)sa and η satisfies condition (C). If for every A,B ∈ S and V = A+η(B,A)
the function f : I ⊆ R → R is operator preinvex with respect to η on η-path
PAV with spectra of A and spectra of V in the interval I. Then we have the
inequality

f

(
A+ V

2

)
≤

∫ 1
0

f((A+ tη(B,A))dt ≤ f(A) + f(B))
2

.
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Throughout this paper, we introduce the concept of operator AG-preinvex
functions and obtain some Hermite-Hadamard type inequalities for these class
of functions. These results lead us to obtain some inequalities unitarily invari-
ant norm inequalities for operators.

2 Some inequalities for operator AG-preinvex func-
tions

In this section, we prove some Hermite-Hadamard type inequalities for oper-
ator AG-preinvex functions.

Definition 5 [13] A continuous function f : I ⊆ R → R+ is said to be operator
AG-convex (concave) if

f(λA+ (1− λ)B) ≤ (≥) f(A)λf(B)1−λ

for 0 ≤ λ ≤ 1 and self-adjoint operators A and B in B(H) whose spectra are
contained in I.

Example 1 [6, Corollary 7.6.8] Let A and B be to positive definite n × n
complex matrices. For 0 < α < 1, we have

|αA+ (1− α)B| ≥ |A|α|B|1−α (7)

where | · | denotes determinant of a matrix.

Let f be an operator AG-convex function, for commutative positive operators
A,B ∈ B(H) whose spectra are contained in I, then we have

f

(
A+ B

2

)
≤

∫ 1
0

√
f(αA+ (1− α)B)f((1− α)A+ αB)dα

≤
√
f(A)f(B), (8)

(see [13] for more inequalities).

Definition 6 Let S ⊆ B(H)sa be an invex set with respect to η : S × S →
B(H)sa. A continuous function f : I ⊆ R → R+ is called operator AG-preinvex
with respect to η on S if

f(A+ tη(B,A)) ≤ f(A)1−tf(B)t

for t ∈ [0, 1] such that spectra of A and B are contained in I.
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Remark 1 Let f be an operator AG-preinvex function, in a commutative case,
we then get

f(A+ tη(B,A)) ≤ f(A)1−tf(B)t

≤ (1− t)f(A) + tf(B)

≤ max{f(A), f(B)}

It means that f is operator quasi preinvex i.e., f(A+tη(B,A)) ≤ max{f(A), f(B)}.

We need the following lemma for giving Hermite-Hadamard type inequalities
for operator preinvex function.

Lemma 1 Let S ⊆ B(H)sa be an invex set with respect to η : S× S→ B(H)sa
and f : I ⊆ R → R+ be a continuous function on the interval I. Suppose that
η satisfies condition (C). Then for every A,B ∈ S and V = A + η(B,A) and
for some fixed s ∈ (0, 1] the function f is operator AG-preinvex with respect to
η on η-path PAV with spectra of A and V in the interval I if and only if the
function ϕA,B defined by

ϕA,B(t) = f(A+ tη(B,A)) (9)

is a log-convex function on [0, 1].

Proof. Let ϕ be a log-convex function on [0, 1], we should prove that f is
operator AG-preinvex with respect to η.
For every C1 := A + t1η(B,A) ∈ PAV , C2 := A + t2η(B,A) ∈ PAV , fixed
λ ∈ [0, 1], by (9) we have

f(C1 + λη(C2, C1)) = f(A+ t1η(B,A) + λη(A+ t2η(B,A), A+ t1η(B,A)))

= f(A+ t1η(B,A) + λ(t2 − t1)η(B,A))

= f(A+ (t1 + λt2 − λt1)η(B,A))

= f(A+ ((1− λ)t1 + λt2)η(B,A))

= ϕ((1− λ)t1 + λt2)

≤ ϕ(t1)
1−λϕ(t2)

λ

= (f(A+ t1η(B,A)))
1−λ (f(A+ t2η(B,A)))

λ .
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Conversely, let f be operator AG-preinvex, then, by (6)

ϕ((1− λ)t1 + λt2) = f(A+ ((1− λ)t1 + λt2)η(B,A))

= f(A+ t1η(B,A) + λ(t2 − t1)η(B,A))

= f(A+ t1η(B,A) + λη(A+ t2η(B,A), A+ t1η(B,A)))

≤ f(A+ t1η(B,A))
1−λf(A+ t2η(B,A))

λ

= ϕ(t1)
1−λϕ(t2)

λ.

�

Theorem 3 Let S ⊆ B(H)sa be an invex set with respect to η : S×S→ B(H)sa
and f : I ⊆ R → R+ be a continuous function on the interval I. Suppose that
η satisfies condition (C). Then for the operator AG-preinvex function f with
respect to η on η-path PAV such that spectra of A and V are in I, we have

f

(
A+ V

2

)
≤

√
f

(
3A+ V

4

)
f

(
A+ 3V

4

)
≤ exp

(∫ 1
0

log(f(A+ tη(B,A)))dt

)
≤

√
f

(
A+ V

2

)
4
√
f(A) 4

√
f(V)

≤
√
f(A)f(V)

≤ f(A) + f(V)

2

where A,B ∈ S and V = A+ η(B,A) and for some fixed s ∈ (0, 1]

Proof. Since f is an operator AG-preinvex function, so by Lemma 1 we have
ϕ(t) = f(A+ tη(B,A)) is log-convex on [0, 1].

On the other hand, in [11] we obtained the following inequalities for log-
convex function ϕ on [0, 1]:

ϕ

(
1

2

)
≤

√
ϕ

(
1

4

)
ϕ

(
3

4

)
≤ exp

(∫ 1
0

log(ϕ(u))du

)
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≤

√
ϕ

(
1

2

)
. 4
√
ϕ(0). 4

√
ϕ(1)

≤
√
ϕ(0)ϕ(1). (10)

By knowing that

ϕ(0) = f(A)

ϕ

(
1

4

)
= f

(
A+

1

4
η(B,A)

)
= f

(
3A+ V

4

)
ϕ

(
1

2

)
= f

(
A+

1

2
η(B,A)

)
= f

(
A+ V

2

)
ϕ(1) = f(V),

we obtain

f

(
A+ V

2

)
≤

√
f

(
3A+ V

4

)
f

(
A+ 3V

4

)
≤ exp

(∫ 1
0

log(f(A+ tη(B,A)))dt

)
≤

√
f

(
A+ V

2

)
4
√
f(A) 4

√
f(V)

≤
√
f(A)f(V).

�

3 Some unitarily invariant norm inequalities for op-
erator AG-preinvex functions

In this section we prove some unitarily invariant norm inequalities for opera-
tors.

We consider the wide class of unitarily invariant norms ||| · |||. Each of these
norms is defined on an ideal in B(H) and it will be implicitly understood
that when we talk of |||T |||, then the operator T belongs to the norm ideal
associated with ||| · |||. Each unitarily invariant norm ||| · ||| is characterized
by the invariance property |||UTV ||| = |||T ||| for all operators T in the norm
ideal associated with ||| · ||| and for all unitary operators U and V in B(H).
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For 1 ≤ p < ∞, the Schatten p-norm of a compact operator A is defined
by ‖A‖p = (Tr |A|p)1/p, where Tr is the usual trace functional. Note that for
compact operator A we have, ‖A‖ = s1(A), and if A is a Hilbert-Schmidt
operator, then ‖A‖2 = (

∑∞
j=1 s

2
j (A))

1/2. These norms are special examples of
the more general class of the Schatten p-norms which are unitarily invariant
[3].

Remark 2 The author of [7] proved that if A,B, X ∈ B(H) such that A,B are
positive operators, then for 0 ≤ ν ≤ 1 we have

|||AνXB1−ν||| ≤ |||AX|||ν|||XB|||1−ν. (11)

Let X = I in above inequality, we then get

|||AνB1−ν||| ≤ |||A|||ν|||B|||1−ν. (12)

Lemma 2 Let f be an operator AG-preinvex function and η satisfies the con-
dition (C). Then the function ϕA,B : [0, 1] → R defined as follows

ϕ(t) = |||f(A+ tη(B,A))|||

is log-convex.

Proof. Let t1, t2 ∈ [0, 1], we have

ϕ((1− λ)t1 + λt2) = |||f(A+ ((1− λ)t1 + λt2)η(B,A))|||

= |||f (A+ t1η(B,A) + λ(t2 − t1)η(B,A)) |||

= |||f (A+ t1η(B,A) + λη(A+ t2η(B,A), A+ t1η(B,A))) |||

≤ |||f(A+ t1η(B,A))
1−λf(A+ t2η(B,A))

λ|||

≤ |||f(A+ t1η(B,A))|||
1−λ|||f(A+ t2η(B,A))|||

λ by (12)

= ϕ(t1)
1−λϕ(t2)

λ.

�

Theorem 4 Let S ⊆ B(H)sa be an invex set with respect to η : S×S→ B(H)sa
and f : I ⊆ R → R+ be a continuous function on the interval I. Suppose that
η satisfies condition (C). Then for the operator AG-preinvex function f with
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respect to η on η-path PAV such that spectra of A and V are in I, we have

∣∣∣∣∣∣∣∣∣∣∣∣f(A+ V

2

)∣∣∣∣∣∣∣∣∣∣∣∣ ≤
√∣∣∣∣∣∣∣∣∣∣∣∣f(3A+ V

4

)∣∣∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣∣∣f(A+ 3V

4

)∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

(∫ 1
0

log(|||f(A+ tη(B,A))|||)dt

)
≤

√∣∣∣∣∣∣∣∣∣∣∣∣f(A+ V

2

)∣∣∣∣∣∣∣∣∣∣∣∣ 4
√

|||f(A)||| 4
√
|||f(V)|||

≤
√
|||f(A)||| |||f(V)|||

≤ |||f(A)|||+ |||f(V)|||

2
.

where A,B ∈ S and V = A+ η(B,A) and for some fixed s ∈ (0, 1]

Proof. Since f is an operator AG-preinvex function, so by Lemma 2 we have
ϕ(t) = |||f(A+ tη(B,A))||| is log-convex on [0, 1].

On the other hand, in [11] we obtained the following inequalities for log-
convex function ϕ on [0, 1] :

ϕ

(
1

2

)
≤

√
ϕ

(
1

4

)
ϕ

(
3

4

)
≤ exp

(∫ 1
0

log(ϕ(u))du

)
≤

√
ϕ

(
1

2

)
. 4
√
ϕ(0). 4

√
ϕ(1)

≤
√
ϕ(0)ϕ(1). (13)

By knowing that

ϕ(0) = |||f(A)|||

ϕ

(
1

4

)
=

∣∣∣∣∣∣∣∣∣∣∣∣f(A+
1

4
η(B,A)

)∣∣∣∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣∣∣∣f(3A+ V

4

)∣∣∣∣∣∣∣∣∣∣∣∣
ϕ

(
1

2

)
=

∣∣∣∣∣∣∣∣∣∣∣∣f(A+
1

2
η(B,A)

)∣∣∣∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣∣∣∣f(A+ V

2

)∣∣∣∣∣∣∣∣∣∣∣∣
ϕ(1) = |||f(V)|||,
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we obtain∣∣∣∣∣∣∣∣∣∣∣∣f(A+ V

2

)∣∣∣∣∣∣∣∣∣∣∣∣ ≤
√∣∣∣∣∣∣∣∣∣∣∣∣f(3A+ V

4

)∣∣∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣∣∣f(A+ 3V

4

)∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

(∫ 1
0

log(|||f(A+ tη(B,A))|||)dt

)
≤

√∣∣∣∣∣∣∣∣∣∣∣∣f(A+ V

2

)∣∣∣∣∣∣∣∣∣∣∣∣ 4
√

|||f(A)||| 4
√
|||f(V)|||

≤
√
|||f(A)||| |||f(V)|||.

�

Let η(B,A) = B − A in the above theorem, then we obtain the following
inequalities:∣∣∣∣∣∣∣∣∣∣∣∣f(A+ B

2

)∣∣∣∣∣∣∣∣∣∣∣∣ ≤
√∣∣∣∣∣∣∣∣∣∣∣∣f(3A+ B

4

)∣∣∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣∣∣f(A+ 3B

4

)∣∣∣∣∣∣∣∣∣∣∣∣
≤ exp

(∫ 1
0

log(|||f((1− t)A+ tB)|||dt

)
≤

√∣∣∣∣∣∣∣∣∣∣∣∣f(A+ B

2

)∣∣∣∣∣∣∣∣∣∣∣∣ 4
√

|||f(A)||| 4
√

|||f(B)|||

≤
√
|||f(A)||| |||f(B)|||

≤ |||f(A)|||+ |||f(B)|||

2
. (14)
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