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Abstract. In this note we point out interesting connections among Lah
numbers, Laguerre polynomials of order negative one, and exponential
polynomials. We also discuss several different expressions for the nth
derivative of exp(1/x). A new representation of this derivative is given in
terms of exponential polynomials.

1 Introduction

The Lah numbers L(n, k) (named after Ivo Lah, a Slovenian mathematician)
can be defined by the formula

L(n, k) =
n!

k!

(
n− 1
k− 1

)
, 1 ≤ k ≤ n, L(0, 0) = 1, (1)

or, by the generating function

1

k!

(
t

1− t

)k
=

∞∑
n=k

L(n, k)
tn

n!
.
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The Lah numbers convert the falling factorial to the rising factorial and vise-
versa

x(x+ 1) . . . (x+ n− 1) =

n∑
k=1

L(n, k) x(x− 1) . . . (x− k+ 1),

x(x− 1) . . . (x− n+ 1) =

n∑
k=1

(−1)n−kL(n, k) x(x+ 1) . . . (x+ k− 1)

(these are the fundamental identities obtained by Ivo Lah).
The Lah numbers have many other interesting applications in analysis and

combinatorics (see [1, 2, 9, 12, 16]). They have appeared recently in several
papers concerning the consecutive derivatives of the function exp ( 1/x). In [10]
five proofs were given of the following formula:

Dne 1/x = (−1)ne1/xx−n
n∑
k=1

L(n, k) x−k. (2)

where D = d
dx and n ≥ 1. This formula was obtained also by Feng Qi (see [13]

and the remarks in Section 5 there). The formula is a nice application of Lah
numbers to a problem in analysis.

At the same time, entry 1.1.3.2 on p. 4 in Brychkov’s handbook [6] says that

dn

dxn
[xλe−a/x] = (−1)nn!e−a/xxλ−n L

(−λ−1)
n (a/x)

where L
(α)
n (x) are the generalized (or associated) Laguerre polynomials of order

α (see [14], [16]). The same formula appears as entry 18.5.6. on page 446 in
the handbook [15]. With λ = 0 and a = −1 this becomes

Dne 1/x = (−1)nn!e1/xx−n L
(−1)
n (−1/x). (3)

As a matter of fact, the derivatives Dne 1/x have been evaluated long time
ago. For example, the nth derivative can be found in the nice little book of
Schwatt [18], first published in 1924. The formula on top of page 22 in [18]
reads

Dne cx
p

= n!e cx
p

x−n
n∑
k=1

(−1)k

k!
ckxpk

k∑
j=1

(−1)j
(
k

j

)(
pj

n

)
(4)
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where c, p are arbitrary parameters. The same formula appears also on page
27. With c = 1 and p = −1 this becomes

Dne 1/x = (−1)nn!e 1/xx−n
n∑
k=1

(−1)k

k!
x−k


k∑
j=1

(−1)j
(
k

j

)(
n+ j− 1

n

) (5)

since

(
−j
n

)
= (−1)n

(
n+ j− 1

n

)
.

In the next three sections we discuss the relations among the three formulas
for Dne 1/x, namely, equations (2), (3), and (5). This will reveal interest-
ing connections of Lah numbers to Laguerre polynomials and also to Stirling
numbers. In Section 4 we present a new formula for Dne cx

p
in terms of the

exponential polynomials ϕn(x) considered in [4] and [5].

2 Laguerre polynomials

The generalized Laguerre polynomials can be defined by the generating func-
tion

1

(1− t)α+1
e

−xt
1− t =

∞∑
n=0

L
(α)
n (x) tn, |t| < 1,

or by the Rodriguez formula

L
(α)
n (x) =

exx−α

n!
Dn(e−xxn+α) =

x−α

n!
(D− 1)nxn+α, n = 0, 1, . . .

(see [14]). When α = 0 these are the usual Laguerre polynomials L
(0)
n (x) =

Ln(x). Usually, in the theory of L
(α)
n (x) the restriction Re α > −1 is imposed.

In fact, the case α = −1 is very interesting and most of the theory holds true

for α = −1 . We shall focus here on the polynomials L
(−1)
n (x) defined by

L
(−1)
n (x) =

xex

n!
Dn(e−xxn−1) =

x

n!
(D− 1)nxn−1, n = 0, 1, . . .

or, by the generating function, |t| < 1

e
−xt
1− t =

∞∑
n=0

L
(−1)
n (x) tn. (6)
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We have

L
(−1)
0 (x) = 1,

L
(−1)
1 (x) = −x,

L
(−1)
2 (x) =

x2

2
− x,

L
(−1)
3 (x) =

−x3

6
+ x2 − x,

etc. The coefficients of these polynomials are very close to the Lah number
and we can see the exact connection when we compare (2) to (3). However,
we shall give an independent proof of this connection in order to justify the
value α = −1 in (3).

Proposition 1 For any n ≥ 0,

L
(−1)
n (x) =

1

n!

n∑
k=0

L(n, k) (−x)k. (7)

This reveals the connection between the Lah numbers and the Laguerre poly-

nomials L
(−1)
n (x)and it becomes clear now that formulas (2) and (3) are the

same. We also notice that (2) is true also for n = 0 with the summation
starting from k = 0, that is,

Dne 1/x = (−1)ne1/xx−n
n∑
k=0

L(n, k) x−k.

Proof. From the Rodriguez formula for L
(α)
n (x) one derives easily the repre-

sentation

L
(α)
n (x) = Γ(n+ α+ 1)

n∑
k=0

(−x)k

Γ(k+ α+ 1)k!(n− k)!

where we cannot set α = −1 directly. However, when n = 0 this becomes

L
(α)
0 (x) =

Γ(α+ 1)

Γ(α+ 1)
= 1

and any restriction on α can be dropped. For n ≥ 1 we separate the first term
with k = 0 and write

L
(α)
n (x) =

Γ(n+ α+ 1)

Γ(α+ 1)
+ Γ(n+ α+ 1)

n∑
k=1

(−x)k

Γ(k+ α+ 1)k! (n− k)!
.
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Setting α→ −1 we find for n ≥ 1

L
(−1)
n (x) = Γ(n)

n∑
k=1

(−x)k

Γ(k)k! (n− k)!
,

since

lim
α→ −1

1

Γ(α+ 1)
= 0.

This representation can be written in the form

L
(−1)
n (x) =

n∑
k=1

(
n− 1
k− 1

)
(−x)k

k!
(8)

which is (7). The proof is completed. �

The representation (7) also shows an important difference between L
(−1)
n (x)

and L
(α)
n (x) for n ≥ 1 . While

L
(α)
n (0) =

Γ(n+ α+ 1)

Γ(α+ 1)

is different from zero when α 6= −1, we have L
(−1)
n (0) = 0. At the same time,

many properties of L
(α)
n (x) are shared also by L

(−1)
n (x). For example, we have

the orthogonally relation ([14, p. 84], [17, p. 204–205])∫∞
0

xαe−xL
(α)
n (x)L

(α)
m (x)dx =

Γ(n+ α+ 1)

n!
δn,m

for all n,m ≥ 0 and α > −1. Analyzing the proof of this equation in [17] we
conclude that it extends to α = −1 when n,m ≥ 1,∫∞

0

x−1e−xL
(−1)
n (x)L

(−1)
m (x)dx =

δn,m

n
. (9)

This and other properties of L
(−1)
n (x) can be used to derive properties for the

Lah numbers. Here we have the following:

Proposition 2 For any integers n,m ≥ 1, n 6= m
n∑
k=1

(−1)kL(n, k)

m∑
j=1

(−1)jL(m, j)(k+ j− 1)! = 0 (10)
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and when m = n

n∑
k=1

n∑
j=1

(−1)k+jL(n, k)L(n, j) (k+ j− 1)! =
(n!)2

n
. (11)

Proof. Substituting (7) in (9) we arrive at (10) and (11) after simple compu-
tation. �

3 The Todorov - Charalambides identity

Here we shall discuss equation (4). Let s(n, k) and S(n, k) be the Stirling
numbers of the first kind and the second kind correspondingly (see [9]). It is
known that these numbers satisfy the orthogonality relation

n∑
k=0

s(n, k)S(k,m) = δmn =

{
0 m 6= n
1 m = n

while the alternating sums are related to the Lah numbers (see [9, p. 156]):

L(n,m) = (−1)n
n∑
k=0

s(n, k)S(k,m) (−1)k. (12)

The following identity extends this representation.

Proposition 3 For any two nonnegative integers n,m, and every complex
number z we have

m!

n!

n∑
k=0

s(n, k) S(k,m) zk = (−1)m
m∑
j=0

(
m

j

)
(−1)j

(
zj

n

)
(13)

This identity was obtained by Todorov [19], who showed that both sides equal
Taylor’s coefficients of the function f(t) = ((1+ t)z − 1)m. It was also found
independently by Charalambides in his study of the generalized factorial co-
efficients (see [7] and [8]). A short proof of (13) is given in the recent paper
[3].

Now we show that equation (12) follows from (13). Setting z = −1 in (13)
we find

m!

n!

n∑
k=0

s(n, k) S(k,m) (−1)k = (−1)m
m∑
j=0

(
m

j

)
(−1)j

(
−j
n

)
. (14)
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The RHS becomes

(−1)m+n
m∑
j=0

(
m

j

)
(−1)j

(
n+ j− 1

n

)
since (

−j
n

)
= (−1)n

(
n+ j− 1

n

)
.

Next we use a well-known identity from [11]

m∑
j=0

(
m

j

)
(−1)j

(
y+ j
n

)
= (−1)m

(
y

n−m

)
(15)

and choosing y = n− 1 we find

(−1)m+n
m∑
j=0

(
m

j

)
(−1)j

(
n+ j− 1

n

)
= (−1)n

(
n− 1
n−m

)

= (−1)n
(
n− 1
m− 1

)
.

(16)

Now from (14)

m!

n!

n∑
k=0

s(n, k) S(k,m) (−1)k = (−1)n
(
n− 1
m− 1

)
,

or
n∑
k=0

s(n, k) S(k,m) (−1)k = (−1)nL(n,m)

which proves (12).
At the same time we can apply (16) to equation (5). This gives

Dne 1/x = (−1)nn!e 1/xx−n
n∑
k=1

(−1)k

k!
x−k


k∑
j=1

(−1)j
(
k

j

)(
n+ j− 1

n

)
= (−1)nn!e 1/xx−n

n∑
k=1

(−1)k

k!
x−k
{
(−1)k

k!

n!
L(n, k)

}

= (−1)ne 1/xx−n
n∑
k=1

L(n, k)x−k

which is exactly (2). We see that the formula for the derivatives Dne 1/x was
practically found by Schwatt.
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4 Schwatt’s formula in terms of exponential poly-
nomials

With the help of the Todorov - Charalambides identity, Schwatt’s formula (4)
can be written in terma of Stirling numbers and exponential polynomials.

The polynomials ϕn(x) , n = 0, 1, . . . , defined by

ϕm(x) =

m∑
k=0

S(m,k) xk

are known as the exponential polynomials (or single-variable Bell polynomials)
– see [4] and [5]. They have the generating function

e x(e
t−1) =

∞∑
n=0

ϕn(x)
tn

n!
,

and can be defined also by the important property (xD)nex = ϕn(x) e
x, n =

0, 1, . . .

Proposition 4 For any n ≥ 0 and any two numbers c, p we have

Dne cx
p

= e cx
p

x−n
n∑
j=0

s (n, j)pjϕj(c x
p) (17)

and in particular, when c = 1 and p = −1 ,

Dne 1/x = e 1/xx−n
n∑
j=0

s (n, j) (−1)jϕj(1/x). (18)

Proof. Substituting (13) in (4) we obtain

Dne cx
p

= n!e cx
p

x−n
n∑
k=1

(−1)k

k!
ckxpk

(−1)k
k!

n!

k∑
j=0

s(n, j) S(j, k)pj


= e cx

p

x−n
n∑
k=1

ckxpk


k∑
j=0

s(n, j) S(j, k)pj


= e cx

p

x−n
n∑
j=0

s(n, j) pj

{
j∑
k=1

ckxpkS(j, k)

}

= e cx
p

x−n
n∑
j=0

s (n, j)pjϕj(c x
p).
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Comparing this to (2) we arrive at the identity

n∑
k=1

L(n, k) xk = (−1)n
n∑
j=0

s (n, j) (−1)jϕj(x). (19)

Also, from (8),

L
(−1)
n (x) =

(−1)n

n!

n∑
j=0

s (n, j) (−1)jϕj(−x). (20)

With p = 1/2 in (17) we have

Dne c
√
x = e c

√
xx−n

n∑
j=0

1

2j
s (n, j)ϕj(c

√
x). (21)

�
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