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Abstract. In this paper with the notion of weighted sharing of values
we study the uniqueness of nonlinear differential polynomials of mero-
morphic functions sharing a nonzero polynomial and obtain two results
which improves and generalizes the results due to L. Liu [Uniqueness of
meromorphic functions and differential polynomials, Comput.
Math. Appl., 56 (2008), 3236-3245.] and P. Sahoo [Uniqueness
and weighted value sharing of meromorphic functions, Applied.
Math. E-Notes., 11 (2011), 23-32.].

1 Introduction, definitions and results

In this paper by meromorphic functions we shall always mean meromorphic
functions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a
finite complex number. We say that f and g share a CM, provided that f− a
and g − a have same zeros with same multiplicities. Similarly, we say that f
and g share a IM, provided that f − a and g − a have same zeros ignoring
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multiplicities. In addition we say that f and g share ∞ CM, if 1/f and 1/g
share 0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

We adopt the standard notations of value distribution theory (see [6]). We
denote by T(r) the maximum of T(r, f) and T(r, g). The notation S(r) denotes
any quantity satisfying S(r) = o(T(r)) as r −→ ∞, outside of a possible
exceptional set of finite linear measure.

A meromorphic function a(z) is called a small function with respect to f,
provided that T(r, a) = S(r, f).

Let f(z) and g(z) be two non-constant meromorphic functions. Let a(z) be
a small function with respect to f(z) and g(z). We say that f(z) and g(z) share
a(z) CM (counting multiplicities) if f(z)−a(z) and g(z)−a(z) have same zeros
with same multiplicities and we say that f(z), g(z) share a(z) IM (ignoring
multiplicities) if we do not consider the multiplicities.

Throughout this paper, we need the following definition.

Θ(a; f) = 1− lim sup
r−→∞

N(r, a; f)

T(r, f)
,

where a is a value in the extended complex plane.
In 1959, W. K. Hayman (see [6], Corollary of Theorem 9) proved the fol-

lowing theorem.

Theorem A Let f be a transcendental meromorphic function and n (≥ 3) is
an integer. Then fnf ′ = 1 has infinitely many solutions.

Fang and Hua [3], Yang and Hua [16] got a unicity theorem respectively
corresponding Theorem A.

Theorem B Let f and g be two non-constant entire (meromorphic) functions,
n ≥ 6 (≥ 11) be a positive integer. If fnf ′ and gng ′ share 1 CM, then either
f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(c1c2)
n+1c2 = −1 or f ≡ tg for a constant t such that tn+1 = 1.

Noting that fn(z)f
′
(z) = 1

n+1(f
n+1(z))

′
, Fang [4] considered the case of k-th

derivative and proved the following results.

Theorem C Let f and g be two non-constant entire functions, and let n, k
be two positive integers with n > 2k + 4. If (fn)(k) and (gn)(k) share 1 CM,
then either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants

satisfying (−1)k(c1c2)
n(nc)2k = 1 or f ≡ tg for a constant t such that tn = 1.
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Theorem D Let f and g be two non-constant entire functions, and let n, k be
two positive integers with n > 2k+ 8. If (fn(z)(f(z) − 1))(k) and (gn(z)(g(z) −
1))(k) share 1 CM, then f(z) ≡ g(z).

In 2008, X. Y. Zhang and W. C. Lin [21] proved the following result.

Theorem E Let f and g be two non-constant entire functions, and let n, m
and k be three positive integers with n > 2k +m + 4. If [fn(f − 1)m](k) and
[gn(g− 1)m](k) share 1 CM, then either f ≡ g or f and g satisfy the algebraic
equation R(f, g) = 0, where R(ω1,ω2) = ω

n
1 (ω1 − 1)

m −ωn2 (ω− 1)m.

In 2001 an idea of gradation of sharing of values was introduced in ([7], [8])
which measures how close a shared value is to being share CM or to being
shared IM. This notion is known as weighted sharing and is defined as follows.

Definition 1 [7, 8] Let k be a nonnegative integer or infinity. For a ∈ C ∪
{∞} we denote by Ek(a; f) the set of all a-points of f, where an a-point of
multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a;g), we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z0 is
an a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g
with multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k)
if and only if it is an a-point of g with multiplicity n (> k), where m is not
necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k), then f, g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0)
or (a,∞) respectively.

If a(z) is a small function with respect to f(z) and g(z), we define that f(z)
and g(z) share a(z) IM or a(z) CM or with weight l according as f(z) − a(z)
and g(z) − a(z) share (0, 0) or (0,∞) or (0, l) respectively.

In 2008, L. Liu [12] proved the following.

Theorem F Let f and g be two non-constant entire functions, and let n, m
and k be three positive integers such that n > 5k + 4m + 9. If E0(1, [f

n(f −
1)m](k)) = E0(1, [g

n(g − 1)m](k)) then either f ≡ g or f and g satisfy the
algebraic equation R(f, g) = 0, where R(ω1,ω2) = ω

n
1 (ω1−1)

m−ωn2 (ω2−1)
m.

Recently P. Sahoo [14] proved the following result.

Theorem G Let f and g be two transcendental meromorphic functions and
n (≥ 1), k (≥ 1), m (≥ 0) and l(≥ 0) be four integers. Let [fn(f− 1)m](k)

and [gn(g− 1)m](k) share (b, l) for a nonzero constant b. Then
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(1) when m = 0, if f(z) 6= ∞, g(z) 6= ∞ and l ≥ 2, n > 3k + 8 or l = 1,
n > 5k + 10 or l = 0, n > 9k + 14, then either f ≡ tg, where t is a
constant satisfying tn = 1, or f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2

and c are three constants satisfying (−1)k(c1c2)
n(nc)2k = b2,

(2) when m = 1 and Θ(∞; f) > 2
n then either [fn(f−1)](k)[gn(g−1)](k) ≡ b2,

except for k = 1 or f ≡ g, provided one of l ≥ 2, n > 3k + 11 or l = 1,
n > 5k+ 14 orl = 0, n > 9k+ 20 holds; and

(3) when m ≥ 2, and l ≥ 2, n > 3k+m+ 10 or l = 1, n > 5k+ 2m+ 12 or
l = 0, n > 9k+ 4m+ 16, then either [fn(f− 1)m](k)[gn(g− 1)m](k) ≡ b2
except for k = 1 or f ≡ g or f and g satisfying the algebraic equation
R(f, g) = 0, where

R(ω1,ω2) = ω
n
1 (ω1 − 1)

m −ωn2 (ω2 − 1)
m.

It is quite natural to ask the following questions.
Question 1: Can lower bound of n be further reduced in Theorems F, G?
Question 2: Can one remove the condition f 6= ∞, g 6= ∞ when m = 0 in
Theorem G?

In this paper, taking the possible answer of the above questions into back-
ground we obtain the following results which improve and generalize Theorems
F, G.

Theorem 1 Let f and g be two transcendental meromorphic functions and
let p(z) be a nonzero polynomial with deg(p) = l. Suppose [fn(f− 1)m](k) − p

and [gn(g− 1)m](k) − p share (0, k1), where n(≥ 1), k(≥ 1), m(≥ 0) are three
integers. Now when one of the following conditions holds:

(i) k1 ≥ 2 and n > 3k+m+ 8(= s2);

(ii) k1 = 1 and n > 4k+ 3m
2 + 9(= s1);

(iii) k1 = 0 and n > 9k+ 4m+ 14(= s0);

then the following conclusions occur

(1) when m = 0, then either f ≡ tg, where t is a constant satisfying tn = 1,
or if p(z) is not a constant and n > max{si, 2k+ 2l− 1}, i = 0, 1, 2, then
f(z) = c1e

cQ(z), g(z) = c2e
−cQ(z), where Q(z) =

∫z
0 p(z)dz, c1, c2 and c

are constants such that (nc)2(c1c2)
n = −1, if p(z) is a nonzero constant

b, then f(z) = c3e
dz, g(z) = c4e

−dz, where c3, c4 and d are constants
such that (−1)k(c3c4)

n(nd)2k = b2;
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(2) when m = 1 and Θ(∞; f)+Θ(∞;g) > 4
n , then either [fn(f−1)](k)[gn(g−

1)](k) ≡ p2, except for k = 1 or f ≡ g;

(3) when m ≥ 2, then either [fn(f − 1)m](k)[gn(g − 1)m](k) ≡ p2 except for
k = 1 or f ≡ g or f and g satisfying the algebraic equation R(f, g) = 0,
where

R(ω1,ω2) = ω
n
1 (ω1 − 1)

m −ωn2 (ω2 − 1)
m.

In addition, when f and g share (∞, 0), then the possibility [fn(f−1)m](k)[gn

(g− 1)m](k) ≡ p2 does not occur for m ≥ 1.

Remark 1 When f and g share ∞ IM then the conditions (i), (ii) and (iii)
of Theorem 1 will be replaced by respectively l ≥ 2 and n > 3k+m+ 7, l = 1
and n > 4k+ 3m

2 + 8 and l = 0 and n > 9k+ 4m+ 13.

Theorem 2 Let f and g be two transcendental entire functions and let p(z)

be a nonzero polynomial with deg(p) = l. Suppose [fn(f− 1)m](k) − p and

[gn(g− 1)m](k) − p share (0, k1), where n (≥ 1), k (≥ 1), m (≥ 0) are three
integers. Now when one of the following conditions holds:

(i) k1 ≥ 2 and n > 2k+m+ 4(= s2);

(ii) k1 = 1 and n > 5k+3m+9
2 (= s1);

(iii) k1 = 0 and n > 5k+ 4m+ 7(= s0);

then the following conclusions occur

(1) when m = 0, then either f ≡ tg, where t is a constant satisfying tn = 1,
or if p(z) is not a constant and n > max{si, k + 2l}, i = 0, 1, 2, then
f(z) = c1e

cQ(z), g(z) = c2e
−cQ(z), where Q(z) =

∫z
0 p(z)dz, c1, c2 and c

are constants such that (nc)2(c1c2)
n = −1,

if p(z) is a nonzero constant b, then f(z) = c3e
dz, g(z) = c4e

−dz, where
c3, c4 and d are constants such that (−1)k(c3c4)

n(nd)2k = b2;

(2) when m = 1 then f ≡ g;

(3) when m ≥ 2, then either f ≡ g or f and g satisfying the algebraic
equation R(f, g) = 0, where

R(ω1,ω2) = ω
n
1 (ω1 − 1)

m −ωn2 (ω2 − 1)
m.

We now explain some definitions and notations which are used in the paper.
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Definition 2 [10] Let p be a positive integer and a ∈ C ∪ {∞}.

(i) N(r, a; f |≥ p) (N(r, a; f |≥ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not less
than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not
greater than p.

Definition 3 {11, cf.[18]} For a ∈ C∪ {∞} and a positive integer p we denote
by Np(r, a; f) the sum N(r, a; f) + N(r, a; f |≥ 2) + . . . N(r, a; f |≥ p). Clearly
N1(r, a; f) = N(r, a; f).

Definition 4 Let a, b ∈ C ∪ {∞}. Let p be a positive integer. We denote by
N(r, a; f | ≥ p | g = b) (N(r, a; f | ≥ p | g 6= b)) the reduced counting function
of those a-points of f with multiplicities ≥ p, which are the b-points (not the
b-points) of g.

Definition 5 {cf.[1], 2} Let f and g be two non-constant meromorphic func-
tions such that f and g share the value 1 IM. Let z0 be a 1-point of f with
multiplicity p, a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the

counting function of those 1-points of f and g where p > q, by N
1)
E (r, 1; f)

the counting function of those 1-points of f and g where p = q = 1 and by

N
(2
E (r, 1; f) the counting function of those 1-points of f and g where p = q ≥ 2,

each point in these counting functions is counted only once. In the same way

we can define NL(r, 1;g), N
1)
E (r, 1;g), N

(2
E (r, 1;g).

Definition 6 {cf.[1], 2} Let k be a positive integer. Let f and g be two non-
constant meromorphic functions such that f and g share the value 1 IM. Let
z0 be a 1-point of f with multiplicity p, a 1-point of g with multiplicity q. We
denote by Nf>k (r, 1;g) the reduced counting function of those 1-points of f
and g such that p > q = k. Ng>k (r, 1; f) is defined analogously.

Definition 7 [7, 8] Let f, g share a value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a;g, f) and N∗(r, a; f, g) = NL(r, a; f)+NL(r, a;g).
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2 Lemmas

Let F and G be two non-constant meromorphic functions defined in C. We
denote by H the function as follows:

H =

(
F ′′

F ′
−

2F ′

F− 1

)
−

(
G ′′

G ′
−

2G ′

G− 1

)
. (1)

Lemma 1 [15] Let f be a non-constant meromorphic function and let an(z)( 6≡
0), an−1(z), ... , a0(z) be meromorphic functions such that T(r, ai(z)) = S(r, f)
for i = 0, 1, 2, ..., n. Then

T(r, anf
n + an−1f

n−1 + ...+ a1f+ a0) = nT(r, f) + S(r, f).

Lemma 2 [20] Let f be a non-constant meromorphic function, and p, k be
positive integers. Then

Np

(
r, 0; f(k)

)
≤ T

(
r, f(k)

)
− T(r, f) +Np+k(r, 0; f) + S(r, f), (2)

Np

(
r, 0; f(k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f). (3)

Lemma 3 [9] If N(r, 0; f(k) | f 6= 0) denotes the counting function of those zeros
of f(k) which are not the zeros of f, where a zero of f(k) is counted according
to its multiplicity, then

N(r, 0; f(k) | f 6= 0) ≤ kN(r,∞; f) +N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f).

Lemma 4 [11] Let f1 and f2 be two non-constant meromorphic functions sat-
isfying N(r, 0; fi) + N(r,∞; fi) = S(r; f1, f2) for i = 1, 2. If fs1f

t
2 − 1 is not

identically zero for arbitrary integers s and t(|s| + |t| > 0), then for any posi-
tive ε, we have

N0(r, 1; f1, f2) ≤ εT(r) + S(r; f1, f2),

where N0(r, 1; f1, f2) denotes the deduced counting function related to the com-
mon 1-points of f1 and f2 and T(r) = T(r, f1) + T(r, f2), S(r; f1, f2) = o(T(r))
as r −→ ∞ possibly outside a set of finite linear measure.

Lemma 5 [6] Suppose that f is a non-constant meromorphic function, k ≥ 2
is an integer. If

N(r,∞, f) +N(r, 0; f) +N(r, 0; f(k)) = S(r,
f
′

f
),

then f(z) = eaz+b, where a 6= 0, b are constants.
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Lemma 6 [5] Let f(z) be a non-constant entire function and let k ≥ 2 be
a positive integer. If f(z)f(k)(z) 6= 0, then f(z) = eaz+b, where a 6= 0, b are
constant.

Lemma 7 [19] Let f be a non-constant meromorphic function, and let k be a
positive integer. Suppose that f(k) 6≡ 0, then

N(r, 0; f(k)) ≤ N(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 8 Let f and g be two non-constant meromorphic functions. Let n (≥
1), k (≥ 1) and m (≥ 0) be three integers such that n > 3k + m + 1. If
[fn(f− 1)m](k) ≡ [gn(g− 1)m](k), then fn(f− 1)m ≡ gn(g− 1)m.

Proof. We have [fn(f− 1)m](k) ≡ [gn(g− 1)m](k). Integrating we get

[fn(f− 1)m](k−1) ≡ [gn(g− 1)m](k−1) + ck−1.

If possible suppose ck−1 6= 0. Now in view of Lemma 2 for p = 1 and using
second fundamental theorem we get

(n+m)T(r, f)

≤ T(r, [fn(f− 1)m](k−1)) −N(r, 0; [fn(f− 1)m](k−1)) +Nk(r, 0; f
n(f− 1)m)

+ S(r, f)

≤ N(r, 0; [fn(f− 1)m](k−1)) +N(r,∞; f) +N(r, ck−1; [f
n(f− 1)m](k−1))

−N(r, 0; [fn(f− 1)m](k−1)) +Nk(r, 0; f
n(f− 1)m) + S(r, f)

≤ N(r,∞; f) +N(r, 0; [gn(g− 1)m](k−1)) + kN(r, 0; f) +N(r, 0; (f− 1)m)

+ S(r, f)

≤ (k+ 1+m) T(r, f) + (k− 1)N(r,∞;g) +Nk(r, 0;g
n(g− 1)m) + S(r, f)

≤ (k+ 1+m) T(r, f) + k N(r,∞;g) + k N(r, 0;g) +N(r, 0; (g− 1)m)

+S (r, f)

≤ (k+ 1+m) T(r, f) + (2k+m) T(r, g) + S(r, f) + S(r, g)

≤ (3k+ 2m+ 1) T(r) + S(r).

Similarly we get

(n+m) T(r, g) ≤ (3k+ 2m+ 1) T(r) + S(r).

Combining these we get

(n−m− 3k− 1) T(r) ≤ S(r),
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which is a contradiction since n > 3k+m+ 1. Therefore ck−1 = 0 and so

[fn(f− 1)m](k−1) ≡ [gn(g− 1)m](k−1).

Proceeding in this way we obtain

[fn(f− 1)m]
′ ≡ [gn(g− 1)m]

′
.

Integrating we get

fn(f− 1)m ≡ gn(g− 1)m + c0.

If possible suppose c0 6= 0. Now using second fundamental theorem we get

(n+m)T(r, f)

≤ N(r, 0; fn(f− 1)m) +N(r,∞; fn(f− 1)m) +N(r, c0; f
n(f− 1)m) + S(r, f)

≤ N(r, 0; f) +mT(r, f) +N(r,∞; f) +N(r, 0;gn(g− 1)m) + S(r, f)

≤ (m+ 1) T(r, f) +N(r,∞; f) +N(r, 0;g) +m T(r, g) + S(r, f)

≤ (3+ 2m) T(r) + S(r).

Similarly we get

(n+m) T(r, g) ≤ (3+ 2m) T(r) + S(r).

Combining these we get

(n− 3−m) T(r) ≤ S(r),

which is a contradiction since n > 4+m. Therefore c0 = 0 and so

fn(f− 1)m ≡ gn(g− 1)m.

This proves the Lemma.

Lemma 9 Let f, g be two transcendental meromorphic functions, let n(≥ 1),
m(≥ 0) and k(≥ 1) be three integers with n > k + 2. If [fn(f − 1)m](k) − p
and [gn(g− 1)m](k)−p share (0, 0), where p(z) is a non zero polynomial, then
T(r, f) = O(T(r, g)) and T(r, g) = O(T(r, f)).
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Proof. In view of Lemmas 1, 2 for p = 1 and using second fundamental theo-
rem for small function (see [17]) we get

(n+m)T(r, f) = T(r, fn(f− 1)m) +O(1)

≤ T(r, [fn(f− 1)m](k)) −N(r, 0; [fn(f− 1)m](k)) +Nk+1(r, 0; f
n(f− 1)m)

+ S(r, f)

≤ N(r, 0; [fn(f− 1)m](k)) +N(r,∞; f) +N(r, p; [fn(f− 1)m](k))

−N(r, 0; [fn(f− 1)m](k)) +Nk+1(r, 0; f
n(f− 1)m) + (ε+ o(1))T(r, f)

≤ N(r,∞; f) +N(r, p; [fn(f− 1)m](k)) + (k+ 1)N(r, 0; f) +N(r, 0; (f− 1)m)

+(ε+ o(1))T(r, f)

≤ (k+ 2+m) T(r, f) +N(r, p; [gn(g− 1)m](k)) + (ε+ o(1))T(r, f)

≤ (k+ 2+m) T(r, f) + (k+ 1)(n+m) T(r, g) + (ε+ o(1))T(r, f),

i.e.,

(n− k− 2) T(r, f) ≤ (k+ 1)(n+m) T(r, g) + (ε+ o(1))T(r, f),

for all ε > 0. Take ε < 1. Since n > k + 2, we have T(r, f) = O(T(r, g)).
Similarly we have T(r, g) = O(T(r, f)). This completes the proof.

Lemma 10 Let f, g be two transcendental meromorphic functions and let

F = [fn(f−1)m](k)

p , G = [gn(g−1)m](k)

p , where p(z) is a non zero polynomial and
n(≥ 1), k(≥ 1) and m(≥ 0) are three integers such that n > 3k +m + 3. If
H ≡ 0, then [fn(f− 1)m](k) − p and [gn(g− 1)m](k) − p share (0,∞) as well as
one of the following conclusions occur

(i) [fn(f− 1)m](k)[gn(g− 1)m](k) ≡ p2;
(ii) fn(f− 1)m ≡ gn(g− 1)m.

Proof. Let P(w) = (w− 1)m. Then F = [fnP(f)](k)

p and G = [gnP(g)](k)

p .
Since H ≡ 0, by integration we get

1

F− 1
≡ BG+A− B

G− 1
, (4)

where A,B are constants and A 6= 0. From (4) it is clear that F and G share
(1,∞). We now consider following cases.
Case 1. Let B 6= 0 and A 6= B.
If B = −1, then from (4) we have

F ≡ −A

G−A− 1
.
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Therefore

N(r,A+ 1;G) = N(r,∞; F) = N(r,∞; f) +N(r, 0;p).

So in view of Lemmas 1, 2 and the second fundamental theorem we get

(n+m) T(r, g)

≤ T(r,G) +Nk+1(r, 0;g
nP(g)) −N(r, 0;G) + S(r, g)

≤ N(r,∞;G) +N(r, 0;G) +N(r,A+ 1;G) +Nk+1(r, 0;g
nP(g))

− N(r, 0;G) + S(r, g)

≤ N(r,∞;g) +Nk+1(r, 0;g
nP(g)) +N(r,∞; f) + S(r, g)

≤ N(r,∞; f) +N(r,∞;g) +Nk+1(r, 0;g
n) +Nk+1(r, 0;P(g)) + S(r, g)

≤ N(r,∞; f) +N(r,∞;g) + (k+ 1)N(r, 0;g) + T(r, P(g)) + S(r, g)

≤ T(r, f) + (k+ 2+m) T(r, g) + S(r, f) + S(r, g).

Without loss of generality, we suppose that there exists a set I with infinite
measure such that T(r, f) ≤ T(r, g) for r ∈ I.
So for r ∈ I we have

(n− k− 3) T(r, g) ≤ S(r, g),

which is a contradiction since n > k+ 3.
If B 6= −1, from (4) we obtain that

F− (1+
1

B
) ≡ −A

B2[G+ A−B
B ]

.

So

N(r,
(B−A)

B
;G) = N(r,∞; F) = N(r,∞; f) +N(r, 0;p).

Using Lemmas 1, 2 and the same argument as used in the case when B = −1
we can get a contradiction.
Case 2. Let B 6= 0 and A = B.
If B = −1, then from (4) we have

FG ≡ 1,

i.e.,

[fnP(f)](k)[gnP(g)](k) ≡ p2,
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i.e.,

[fn(f− 1)m][gn(g− 1)m] ≡ p2.

If B 6= −1, from (4) we have

1

F
≡ BG

(1+ B)G− 1
.

Therefore

N(r,
1

1+ B
;G) = N(r, 0; F).

So in view of Lemmas 1, 2 and the second fundamental theorem we get

(n+m) T(r, g)

≤ T(r,G) +Nk+1(r, 0;g
nP(g)) −N(r, 0;G) + S(r, g)

≤ N(r,∞;G) +N(r, 0;G) +N(r,
1

1+ B
;G) +Nk+1(r.0;g

nP(g))

− N(r, 0;G) + S(r, g)

≤ N(r,∞;g) + (k+ 1)N(r, 0;g) + T(r, P(g)) +N(r, 0; F) + S(r, g)

≤ N(r,∞;g) + (k+ 1)N(r, 0;g) + T(r, P(g)) + (k+ 1)N(r, 0; f) + T(r, P(f))

+kN(r,∞; f) + S(r, f) + S(r, g)

≤ (k+ 2+m) T(r, g) + (2k+ 1+m) T(r, f) + S(r, f) + S(r, g).

So for r ∈ I we have

(n− 3k− 3−m) T(r, g) ≤ S(r, g),

which is a contradiction since n > 3k+ 3+m.
Case 3. Let B = 0. From (4) we obtain

F ≡ G+A− 1

A
. (5)

If A 6= 1, then from (5) we obtain

N(r, 1−A;G) = N(r, 0; F).

We can similarly deduce a contradiction as in Case 2. Therefore A = 1 and
from (5) we obtain

F ≡ G,
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i.e.,

[fnP(f)](k) ≡ [gnP(g)](k).

Then by Lemma 8 we have

fnP(f) ≡ gnP(g), (6)

i.e.,

fn(f− 1)m ≡ gn(g− 1)m.

Lemma 11 Let f, g be two transcendental meromorphic functions, p(z) be
a non-zero polynomial with deg(p(z)) = l, n, k be two positive integers. Let
[fn](k) − p and [gn](k) − p share (0,∞). Suppose [fn](k)[gn](k) ≡ p2,

(i) if p(z) is not a constant and n > 2k + 2l − 1, then f(z) = c1e
cQ(z),

g(z) = c2e
−cQ(z), where Q(z) =

∫z
0 p(z)dz, c1, c2 and c are constants

such that (nc)2(c1c2)
n = −1,

(ii) if p(z) is a nonzero constant b and n > 2k, then f(z) = c3e
cz, g(z) =

c4e
−cz, where c3, c4 and c are constants such that (−1)k(c3c4)

n(nc)2k =
b2.

Proof. Suppose

[fn](k)[gn](k) ≡ p2. (7)

We consider the following cases.
Case 1: Let deg(p(z)) = l(≥ 1).
Let z0 be a zero of f with multiplicity q. Then z0 be a zero of [fn](k) with
multiplicity nq− k. Now one of the following possibilities holds.
(i) z0 will be neither a zero of [gn](k) nor a pole of g; (ii) z0 will be a zero of
g; (iii) z0 will be a zero of [gn](k) but not a zero of g and (iv) z0 will be a pole
of g.
We now explain only the above two possibilities (i) and (iv) because other two
possibilities follow from these.
For the possibility (i): Note that since n ≥ 2k+ 2l, we must have

nq− k ≥ n− k ≥ k+ 2l. (8)
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Thus z0 must be a zero of [fn](k) with multiplicity at least k+ 2l. But we see
from (7) that z0 must be a zero of p2(z) with multiplicity atmost 2l. Hence
we arrive at a contradiction and so f has no zero in this case.
For the possibility (iv): Let z0 be a pole of g with multiplicity q1. Clearly z0
will be pole of [gn](k) with multiplicity nq1 + k. Obviously q > q1, or else z0
is a pole of p(z), which is a contradiction since p(z) is a polynomial. Clearly
nq− k ≥ nq1 + k. Now

nq− k = nq1 + k

implies that
n(q− q1) = 2k. (9)

Since n ≥ 2k+ 2l, we get a contradiction from (9). Hence we must have

nq− k > nq1 + k.

This shows that z0 is a zero of p(z) and we have N(r, 0; f) = O(log r). Similarly
we can prove thatN(r, 0;g) = O(log r). Thus in general we can takeN(r, 0; f)+
N(r, 0;g) = O(log r).
We know that

N(r,∞; [fn](k)) = n N(r,∞; f) + k N(r,∞; f).

Also by Lemma 7 we have

N(r, 0; [gn](k)) ≤ n N(r, 0;g) + k N(r,∞;g) + S(r, g)

≤ k N(r,∞;g) + O(log r) + S(r, g).

From (7) we get

N(r,∞; [fn](k)) = N(r, 0; [gn](k)),

i.e.,

n N(r,∞; f) + k N(r,∞; f) ≤ k N(r,∞;g) +O(log r) + S(r, g). (10)

Similarly we get

n N(r,∞;g) + k N(r,∞;g) ≤ k N(r,∞; f) +O(log r) + S(r, f). (11)

Since f and g are transcendental, it follows that

S(r, f) +O(log r) = S(r, f), S(r, g) +O(log r) = S(r, g).
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Combining (10) and (11) we get

N(r,∞; f) +N(r,∞;g) = S(r, f) + S(r, g).

By Lemma 9 we have S(r, f) = S(r, g) and so we obtain

N(r,∞; f) = S(r, f), N(r,∞;g) = S(r, g). (12)

Let

F1 =
[fn](k)

p
, G1 =

[gn](k)

p
. (13)

Note that T(r, F1) ≤ n(k+ 1)T(r, f) + S(r, f) and so T(r, F1) = O(T(r, f)). Also
by Lemma 2 one can obtain T(r, f) = O(T(r, F1)). Hence S(r, F1) = S(r, f).
Similarly we get S(r,G1) = S(r, g). Also

F1G1 ≡ 1. (14)

If F1 ≡ cG1, where c is a nonzero constant, then F1 is a constant and so f is
a polynomial, which contradicts our assumption. Hence F1 6≡ cG1 and so in
view of (14) we see that F1 and G1 share (−1, 0).
Now by Lemma 7 we have

N(r, 0; F1) ≤ n N(r, 0; f) + k N(r,∞; f) + S(r, f) ≤ S(r, F1).

Similarly we have

N(r, 0;G1) ≤ n N(r, 0;g) + k N(r,∞;g) + S(r, g) ≤ S(r,G1).

Also we see that

N(r,∞; F1) = S(r, F1), N(r,∞;G1) = S(r,G1).

Here it is clear that T(r, F1) = T(r,G1) +O(1). Let

f1 =
F1
G1
.

and

f2 =
F1 − 1

G1 − 1
.
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Clearly f1 is non-constant. If f2 is a nonzero constant then F1 and G1 share
(∞,∞) and so from (14) we conclude that F1 and G1 have no poles. Next we
suppose that f2 is non-constant. Also we see that

F1 =
f1(1− f2)

f1 − f2
, G1 =

1− f2
f1 − f2

.

Clearly

T(r, F1) ≤ 2[T(r, f1) + T(r, f2)] +O(1)

and

T(r, f1) + T(r, f2) ≤ 4T(r, F1) +O(1).

These give S(r, F1) = S(r; f1, f2). Also we see that

N(r, 0; fi) +N(r,∞; fi) = S(r; f1, f2)

for i = 1, 2.
Next we suppose N(r,−1; F1) 6= S(r, F1), otherwise F1 will be a constant. Also
we see that

N(r,−1; F1) ≤ N0(r, 1; f1, f2).

Thus we have

T(r, f1) + T(r, f2) ≤ 4 N0(r, 1; f1, f2) + S(r, F1).

Then by Lemma 4 there exist two integers s and t(|s|+ |t| > 0) such that

fs1f
t
2 ≡ 1,

i.e., [ F1
G1

]s[ F1 − 1
G1 − 1

]t
≡ 1. (15)

We now consider following cases.
Case (i) Let s = 0 and t 6= 0. Then from (15) we get

(F1 − 1)
t ≡ (G1 − 1)

t.

This shows that F1 and G1 share (∞,∞) and so from (14) we conclude that
F1 and G1 have no poles.
Case (ii) Suppose s 6= 0 and t = 0. Then from (15) we get

Fs1 ≡ Gs1
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and so we arrive at a contradiction from (14).
Case (iii): Suppose s > 0 and t = −t1, where t1 > 0. Then we have[ F1

G1

]s
≡
[ F1 − 1
G1 − 1

]t1
. (16)

If possible suppose F1 has a pole. Let zp1 be a pole of F1 of multiplicity p1.
Then from (14) we see that zp1 must be a zero of G1 of multiplicity p1. Now
from (16) we get 2s = t1 and so[ F1

G1

]s
≡
[ F1 − 1
G1 − 1

]2s
.

This implies that

Fs−11 + Fs−21 G1 + F
s−3
1 G21 + . . .+ F1G

s−2
1 +Gs−11 ≡ Gs1

(F1 − 1)
2s − (G1 − 1)

2s

(G1 − 1)2s(F1 −G1)
.(17)

If zp is a zero of F1− 1 with multiplicity p then the Taylor expansion of F1− 1
about zp is

F1 − 1 = ap(z− zp)
p + ap+1(z− zp)

p+1 + . . . . . . , ap 6= 0.

Since F1 − 1 and G1 − 1 share (0,∞),

G1 − 1 = bp(z− zp)
p + bp+1(z− zp)

p+1 + . . . . . . , bp 6= 0.

Let

Φ1 =
F

′
1

F1
−
G

′
1

G1
and Φ2 =

(F ′
1

F1

)2s
−
(G ′

1

G1

)2s
. (18)

Since F1 6≡ cG1, where c is a nonzero constant, it follows that Φ1 6≡ 0 and
Φ2 6≡ 0. Also

T(r,Φ1) = S(r, F1) and T(r,Φ2) = S(r, F1).

From (18) we find

N(2(r, 1; F1) = N(2(r, 1;G1) ≤ N(r, 0;Φ1) = S(r, F1).

Let p = 1. If a1 = b1, then by an elementary calculation gives that Φ1(z) =
O((z− z1)

k), where k is a positive integer. This proves that z1 is a zero of Φ1.
Next we suppose a1 6= b1, but a2s1 = b2s1 . Then by an elementary calculation
we get Φ2(z) = O((z− z1)

q) where q is a positive integer. This proves that z1
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is a zero of Φ2.
Finally we suppose a1 6= b1 and a2s1 6= b2s1 . Therefore from (17) we arrive at a
contradiction. Hence

N1)(r, 1; F1) = N1)(r, 1;G1) = S(r, F1).

But this is impossible as N(r, 1; F1) ∼ T(r, F1) and N(r, 1;G1) ∼ T(r,G1).
Hence F1 has no pole. Similarly we can prove that G1 also has no poles.
Case (iv): Suppose either s > 0 and t > 0 or s < 0 and t < 0. Then from
(15) one can easily prove that F1 and G1 have no poles. Consequently from
(14) we see that F1 and G1 have no zeros. We deduce from (13) that both f
and g have no pole.
Since F1 and G1 have no zeros and poles, we have

F1 ≡ eγ1G1,

i.e.,

[fn](k) ≡ eγ1 [gn](k),

where γ1 is a non-constant entire function. Then from (7) we get

[fn](k) ≡ ce
1
2
γ1p, [gn](k) ≡ ce−

1
2
γ1p, (19)

where c = ±1. Since N(r, 0; f) = O(log r) and N(r, 0;g) = O(log r), so we can
take

f(z) = P1(z)e
α1(z), g(z) = Q1(z)e

β1(z), (20)

P1, Q1 are nonzero polynomials, α1, β1 are two non-constant entire functions.
If possible suppose that P1(z) is not a constant. Let z1 be a zero of f with
multiplicity t. Then z1 must be a zero of [fn](k) with multiplicity nt− k. Note
that nt − k ≥ n − k ≥ k + 2l, as n ≥ 2k + 2l. Clearly z1 must be a zero of
p2(z) with multiplicity at least k + 2l, which is impossible since z1 can be a
zero of p2(z) with multiplicity at most 2l. Hence P1(z) is a constant. Similarly
we can prove that Q1(z) is a constant. So we can rewrite f and g as follows

f = eα, g = eβ. (21)

We deduce from (7) and (21) that either both α and β are transcendental
entire functions or both α and β are polynomials. We now consider following
cases.
Subcase 1.1: Let k ≥ 2.
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First we suppose both α and β are transcendental entire functions.
Note that

S(r, nα) = S(r,
[fn]

′

fn
), S(r, nβ) = S(r,

[gn]
′

gn
).

Moreover we see that

N(r, 0; [fn](k)) ≤ N(r, 0;p2) = O(log r).

N(r, 0; [gn](k)) ≤ N(r, 0;p2) = O(log r).

From these and using (21) we have

N(r,∞; fn) +N(r, 0; fn) +N(r, 0; [fn](k)) = S(r, nα) = S(r,
[fn]

′

fn
) (22)

and

N(r,∞;gn) +N(r, 0;gn) +N(r, 0; [gn](k)) = S(r, nβ) = S(r,
[gn]

′

gn
). (23)

Then from (22), (23) and Lemma 5 we must have

f(z) = eaz+b, g(z) = ecz+d, (24)

where a 6= 0, b, c 6= 0 and d are constants. But these types of f and g do not
agree with the relation (7).
Next we suppose α and β are both polynomials.
Clearly α+β ≡ C and deg(α) = deg(β). Also α

′ ≡ β ′
. If deg(α) = deg(β) =

1, then we again get a contradiction from (7).
Next we suppose deg(α) = deg(β) ≥ 2.
We deduce from (21) that

(fn)
′
= nα

′
enα

(fn)
′′
= [n2(α

′
)2 + nα

′′
]enα

(fn)
′′′
= [n3(α

′
)3 + 3n2α

′
α

′′
+ nα

′′′
]enα

(fn)(iv) = [n4(α
′
)4 + 6n3(α

′
)2α

′′
+ 3n2(α

′′
)2 + 4n2α

′
α

′′′
+ nα(iv)]enα

(fn)(v) = [n5(α
′
)5 + 10n4(α

′
)3α

′′
+ 15n3α

′
(α

′′
)2 + 10n3(α

′
)2

α
′′′
+ 10n2α

′′
α

′′′
+ 5n2α

′
α(iv) + nα(v)]enα

. . . . . . . . . . . . . . . . . . . . .

[fn](k) = [nk(α
′
)k + K(α

′
)k−2α

′′
+ Pk−2(α

′
)]enα,
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where K is a suitably positive integer and Pk−2(α
′
) is a differential polynomial

in α
′
.

Similarly we get

[gn](k) = [nk(β
′
)k + K(β

′
)k−2β

′′
+ Pk−2(β

′
)]enβ

= [(−1)knk(α
′
)k − K(−1)k−2(α

′
)k−2α

′′
+ Pk−2(−α

′
)]enβ.

Since deg(α) ≥ 2, we observe that deg((α
′
)k) ≥ k deg(α ′

) and so (α
′
)k−2α

′′

is either a nonzero constant or deg((α
′
)k−2α

′′
) ≥ (k− 1) deg(α

′
)− 1. Also we

see that

deg
(
(α

′
)k
)
> deg

(
(α

′
)k−2α

′′
)
> deg

(
Pk−2(α

′
)
)
(or deg

(
Pk−2(−α

′
)
)
).

From (19), it is clear that the polynomials

nk(α
′
)k + K(α

′
)k−2α

′′
+ Pk−2(α

′
)

and

(−1)knk(α
′
)k − K(−1)k−2(α

′
)k−2α

′′
+ Pk−2(−α

′
)

must be identical but this is impossible for k ≥ 2. Actually the terms nk(α
′
)k+

K(α
′
)k−2α

′′
and (−1)knk(α

′
)k − K(−1)k−2(α

′
)k−2α

′′
can not be identical for

k ≥ 2.
Subcase 2: Let k = 1. Then from (7) we get

ABα
′
β

′
en(α+β) ≡ p2, (25)

where AB = n2. Let α+β = γ. Suppose that α and β are both transcendental
entire functions. From (25) we know that γ is not a constant since in that case
we get a contradiction. Then from (25) we get

ABα
′
(γ

′
− α

′
)enγ ≡ p2. (26)

We have T(r, γ
′
) = m(r, γ

′
) ≤ m(r, (e

nγ)
′

enγ )+O(1) = S(r, enγ). Thus from (26)
we get

T(r, enγ) ≤ T(r,
p2

α
′(γ ′ − α ′)

) +O(1)

≤ T(r, α
′
) + T(r, γ

′
− α

′
) +O(log r) +O(1)

≤ 2 T(r, α
′
) + S(r, α

′
) + S(r, enγ),
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which implies that T(r, enγ) = O(T(r, α
′
)) and so S(r, enγ) can be replaced

by S(r, α
′
). Thus we get T(r, γ

′
) = S(r, α

′
) and so γ

′
is a small function with

respect to α
′
. In view of (26) and by the second fundamental theorem for small

functions we get

T(r, α
′
) ≤ N(r,∞;α

′
) +N(r, 0;α

′
) +N(r, 0;α

′
− γ

′
) + S(r, α

′
)

≤ O(log r) + S(r, α
′
),

which shows that α
′

is a polynomial and so α is a polynomial, which contra-
dicts that α is a transcendental entire function. Next suppose without loss of
generality that α is a polynomial and β is a transcendental entire function.
Thus γ is transcendental. So in view of (26) we can obtain

nT(r, eγ) ≤ T(r,
p2

α
′(γ ′ − α ′)

) +O(1)

≤ T(r, α
′
) + T(r, γ

′
− α

′
) + S(r, eγ)

≤ T(r, γ
′
) + S(r, eγ) = S(r, eγ),

which leads a contradiction. Thus α and β are both polynomials. Also from
(25) we can conclude that α + β ≡ C for a constant C and so α

′
+ β

′ ≡ 0.
Again from (25) we get n2enCα

′
β

′ ≡ p2. By computation we get

α
′
= cp, β

′
= −cp. (27)

Hence
α = cQ+ b1, β = −cQ+ b2, (28)

where Q(z) =
∫z
0 p(z)dz and b1, b2 are constants. Finally f and g take the

form

f(z) = c1e
cQ(z), g(z) = c2e

−cQ(z),

where c1, c2 and c are constants such that (nc)2(c1c2)
n = −1.

Case 2: Let p(z) be a nonzero constant b. Since n > 2k, one can easily prove
that f and g have no zeros. Now proceeding in the same way as done in proof
of Case 1 we get f = eα and g = eβ, where α and β are two non-constant
entire functions.
We now consider following two subcases:
Subcase 2.1: Let k ≥ 2.
We see that fn(z)[fn(z)](k) 6= 0 and gn(z)[gn(z)](k) 6= 0. Then by Lemma 6 we
must have

f(z) = eaz+b, g(z) = ecz+d, (29)
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where a 6= 0, b, c 6= 0 and d are constants. But from (7) we see that a+c = 0.
Subcase 2.1: Let k = 1.
Considering Subcase 1.2 one can easily get

f(z) = eaz+b, g(z) = ecz+d, (30)

where a 6= 0, b, c 6= 0 and d are constants. Finally f and g take the form

f(z) = c3e
dz, g(z) = c4e

−dz,

where c3, c4 and d are nonzero constants such that (−1)k(c3c4)
n(nd)2k = b2.

This completes the proof.

Lemma 12 Let f, g be two transcendental meromorphic functions, let n, m
and k be three positive integers such that n > k. If f and g share (∞, 0) then
[fn(f− 1)m](k)[gn(g− 1)m](k) 6≡ p2, where p(z) is a non zero polynomial.

Proof. Suppose

[fn(f− 1)m](k)[gn(g− 1)m](k) ≡ p2. (31)

Since f and g share (∞, 0) we have from (31) that f and g are transcendental
entire functions. So we can take

f(z) = h(z)eα(z), (32)

where h is a nonzero polynomial and α is a non-constant entire function.
We know that (w − 1)m = amw

m + am−1w
m−1 + . . . + a0, where ai =

(−1)m−i mCm−i, i = 0, 1, 2, . . . ,m. Since f = heα, then by induction we get

(aif
n+i)(k) = ti(α

′
, α

′′
, . . . , α(k), h, h

′
, . . . , h(k))e(n+i)α, (33)

where ti(α
′
, α

′′
, . . . , α(k), h, h

′
, . . . , h(k)) (i = 0, 1, 2, . . . ,m) are differential

polynomials in
α

′
, α

′′
, . . . , α(k), h, h

′
, . . . , h(k). Obviously

ti(α
′
, α

′′
, . . . , α(k), h, h

′
, . . . , h(k)) 6≡ 0,

for i = 0, 1, 2, . . . ,m and [fn(f−1)m](k) 6≡ 0. Now from (31) and (33) we obtain

N(r, 0; tme
mα(z) + . . .+ t0) ≤ N(r, 0;p2) = S(r, f). (34)
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Since α is an entire function, we obtain T(r, α(j)) = S(r, f) for j = 1, 2, . . . , k.
Hence T(r, ti) = S(r, f) for i = 0, 1, 2, . . . ,m. So from (34) and using second
fundamental theorem for small functions (see [17]), we obtain

mT(r, f) = T(r, tme
mα + . . .+ t1e

α) + S(r, f)

≤ N(r, 0; tme
mα + . . .+ t1e

α) +N(r, 0; tme
mα + . . .+ t1e

α + t0)

+ S(r, f)

≤ N(r, 0; tme
(m−1)α + . . .+ t1) + S(r, f)

≤ (m− 1)T(r, f) + S(r, f),

which is a contradiction. This completes the Lemma.

Lemma 13 Let f and g be two non-constant meromorphic functions and α( 6≡
0,∞) be small function of f and g. Let n, m and k be three positive integers
such that n ≥ m+ 3. Then

[fn(f− 1)m](k)[gn(g− 1)m](k) 6≡ α2, for k = 1.

Proof. We omit the proof since it can be proved in the line of the proof of
Lemma 3 [14].

Lemma 14 [1] If f, g be two non-constant meromorphic functions such that
they share (1, 1). Then

2NL(r, 1; f) + 2NL(r, 1;g) +N
(2
E (r, 1; f) −Nf>2(r, 1;g) ≤ N(r, 1;g) −N(r, 1;g).

Lemma 15 [2] Let f, g share (1, 1). Then

Nf>2(r, 1;g) ≤
1

2
N(r, 0; f) +

1

2
N(r,∞; f) −

1

2
N0(r, 0; f

′
) + S(r, f),

where N0(r, 0; f
′
) is the counting function of those zeros of f

′
which are not

the zeros of f(f− 1).

Lemma 16 [2] Let f and g be two non-constant meromorphic functions shar-
ing (1, 0). Then

NL(r, 1; f) + 2NL(r, 1;g) +N
(2
E (r, 1; f) −Nf>1(r, 1;g) −Ng>1(r, 1; f)

≤ N(r, 1;g) −N(r, 1;g).

Lemma 17 [2] Let f, g share (1, 0). Then

NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r, f)
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Lemma 18 [2] Let f, g share (1, 0). Then

(i) Nf>1(r, 1;g) ≤ N(r, 0; f) +N(r,∞; f) −N0(r, 0; f
′
) + S(r, f)

(ii) Ng>1(r, 1; f) ≤ N(r, 0;g) +N(r,∞;g) −N0(r, 0;g
′
) + S(r, g).

3 Proof of the Theorem

Proof of Theorem 1. Let F = [fnP(f)](k)

p and G = [gnP(g)](k)

p , where P(w) =
(w− 1)m. It follows that F and G share (1, k1) except for the zeros of p(z).
Case 1 Let H 6≡ 0.
Subcase 1.1 k1 ≥ 1.
From (1) it can be easily calculated that the possible poles of H occur at (i)
multiple zeros of F and G, (ii) those 1 points of F and G whose multiplicities
are different, (iii) poles of F and G, (iv) zeros of F

′
(G

′
) which are not the zeros

of F(F− 1)(G(G− 1)).
Since H has only simple poles we get

N(r,∞;H) ≤ N(r,∞; f) +N(r,∞;g) +N∗(r, 1; F,G) +N(r, 0; F| ≥ 2)

+N(r, 0;G| ≥ 2) +N0(r, 0; F
′
) +N0(r, 0;G

′
),

(35)

where N0(r, 0; F
′
) is the reduced counting function of those zeros of F

′
which

are not the zeros of F(F− 1) and N0(r, 0;G
′
) is similarly defined.

Let z0 be a simple zero of F − 1 but p(z0) 6= 0 . Then z0 is a simple zero of
G− 1 and a zero of H. So

N(r, 1; F| = 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, f) + S(r, g). (36)

While k1 ≥ 2, using (35) and (36) we get

N(r, 1; F)

≤ N(r, 1; F| = 1) +N(r, 1; F| ≥ 2) ≤ N(r,∞; f)

+ N(r,∞;g) +N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1; F,G)

+ N(r, 1; F| ≥ 2) +N0(r, 0; F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g).

(37)
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Now in view of Lemma 3 we get

N0(r, 0;G
′
) +N(r, 1; F |≥ 2) +N∗(r, 1; F,G)

≤ N0(r, 0;G
′
) +N(r, 1; F| ≥ 2) +N(r, 1; F| ≥ 3)

= N0(r, 0;G
′
) +N(r, 1;G| ≥ 2) +N(r, 1;G| ≥ 3)

≤ N0(r, 0;G
′
) +N(r, 1;G) −N(r, 1;G)

≤ N(r, 0;G
′
| G 6= 0) ≤ N(r, 0;G) +N(r,∞;g) + S(r, g),

(38)

Hence using (37), (38), Lemmas 1 and 2 we get from second fundamental
theorem that

(n+m)T(r, f)

≤ T(r, F) +Nk+2(r, 0; fnP(f)) −N2(r, 0; F) + S(r, f)
≤ N(r, 0; F) +N(r,∞; F) +N(r, 1; F) +Nk+2(r, 0; f

nP(f)) −N2(r, 0; F)

−N0(r, 0; F
′
)

≤ 2 N(r,∞, f) +N(r,∞;g) +N(r, 0; F) +Nk+2(r, 0; f
nP(f))

+N(r, 0; F| ≥ 2) + N(r, 0;G| ≥ 2) +N(r, 1; F| ≥ 2) +N∗(r, 1; F,G)

+N0(r, 0;G
′
) −N2(r, 0; F) + S(r, f) + S(r, g)

≤ 2 {N(r,∞; f) +N(r,∞;g)}+Nk+2(r, 0; f
nP(f)) +N2(r, 0;G)

+ S(r, f) + S(r, g)

≤ 2 {N(r,∞; f) +N(r,∞;g)}+Nk+2(r, 0; f
nP(f)) + k N(r,∞;g)

+ Nk+2(r, 0;g
nP(g)) + S(r, f) + S(r, g)

≤ 2 {N(r,∞; f) +N(r,∞;g)}+ (k+ 2) N(r, 0; f) + T(r, P(f))

+ (k+ 2) N(r, 0;g) + T(r, P(g)) + k N(r,∞;g) + S(r, f) + S(r, g)

≤ (k+ 4+m) T(r, f) + (2k+ 4+m) T(r, g) + S(r, f) + S(r, g)

≤ (3k+ 8+ 2m) T(r) + S(r).

(39)

In a similar way we can obtain

(n+m) T(r, g) ≤ (3k+ 8+ 2m) T(r) + S(r). (40)

Combining (39) and (40) we see that

(n+m) T(r) ≤ (3k+ 8+ 2m) T(r) + S(r),

i.e.,

(n− 3k− 8−m) T(r) ≤ S(r). (41)
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Since n > 3k+ 8+m, (41) leads to a contradiction.
While k1 = 1, using Lemmas 3, 14, 15, (35) and (36) we get

N(r, 1; F)

≤ N(r, 1; F| = 1) +NL(r, 1; F) +NL(r, 1;G) +N
(2
E (r, 1; F)

≤ N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2)

+N∗(r, 1; F,G) +NL(r, 1; F) +NL(r, 1;G) +N
(2
E (r, 1; F) +N0(r, 0; F

′
)

+N0(r, 0;G
′
) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2)

+ 2NL(r, 1; F) + 2NL(r, 1;G) +N
(2
E (r, 1; F) +N0(r, 0; F

′
)

+N0(r, 0;G
′
) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2)

+NF>2(r, 1;G) +N(r, 1;G) −N(r, 1;G) +N0(r, 0; F
′
) +N0(r, 0;G

′
)

+ S(r, f) + S(r, g)

≤ 3
2
N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) + 1

2
N(r, 0; F)

+N(r, 0;G| ≥ 2) +N(r, 1;G) −N(r, 1;G) +N0(r, 0;G
′
)

+N0(r, 0; F
′
) + S(r, f) + S(r, g)

≤ 3
2
N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) + 1

2
N(r, 0; F)

+N(r, 0;G| ≥ 2) +N(r, 0;G
′
|G 6= 0) +N0(r, 0; F

′
) + S(r, f) + S(r, g)

≤ 3
2
N(r,∞; f) + 2N(r,∞;g) +N(r, 0; F| ≥ 2) + 1

2
N(r, 0; F)

+N2(r, 0;G) +N0(r, 0; F
′
) + S(r, f) + S(r, g).

(42)

Hence using (42), Lemmas 1 and 2 we get from second fundamental theorem
that

(n+m)T(r, f)

≤ T(r, F) +Nk+2(r, 0; fnP(f)) −N2(r, 0; F) + S(r, f)
≤ N(r, 0; F) +N(r,∞; F) +N(r, 1; F) +Nk+2(r, 0; f

nP(f)) −N2(r, 0; F)

−N0(r, 0; F
′
)

≤ 5
2
N(r,∞, f) + 2N(r,∞;g) +N2(r, 0; F) +

1

2
N(r, 0; F)

(43)
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+Nk+2(r, 0; f
nP(f)) +N2(r, 0;G) −N2(r, 0; F) + S(r, f) + S(r, g)

≤ 5
2
N(r,∞; f) + 2N(r,∞;g) +Nk+2(r, 0; f

nP(f)) +
1

2
N(r, 0; F)

+N2(r, 0;G) + S(r, f) + S(r, g)

≤ 5
2
N(r,∞; f) + 2N(r,∞;g) +Nk+2(r, 0; f

nP(f)) + k N(r,∞;g)

+Nk+2(r, 0;g
nP(g)) +

1

2
{kN(r,∞; f)

+Nk+1(r, 0; f
nP(f))}+ S(r, f) + S(r, g)

≤ 5+ k
2

N(r,∞; f) + (k+ 2)N(r,∞;g) +
3k+ 5

2
N(r, 0; f)

+
3

2
T(r, P(f)) + (k+ 2) N(r, 0;g) + T(r, P(g)) + S(r, f) + S(r, g)

≤
(
2k+ 5+

3m

2

)
T(r, f) + (2k+ 4+m) T(r, g) + S(r, f) + S(r, g)

≤
(
4k+ 9+

5m

2

)
T(r) + S(r).

In a similar way we can obtain

(n+m) T(r, g) ≤
(
4k+ 9+

5m

2

)
T(r) + S(r). (44)

Combining (43) and (44) we see that(
n− 4k− 9−

3m

2

)
T(r) ≤ S(r). (45)

Since n > 4k+ 9+ 3m
2 , (45) leads to a contradiction.

Subcase 1.2 k1 = 0. Here (36) changes to

N
1)
E (r, 1; F |= 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F) + S(r,G). (46)

Using Lemmas 3, 16, 17, 18, (35) and (46) we get

N(r, 1; F)

≤ N1)E (r, 1; F) +NL(r, 1; F) +NL(r, 1;G) +N
(2
E (r, 1; F)

≤ N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2)

+N∗(r, 1; F,G) +NL(r, 1; F) +NL(r, 1;G) +N
(2
E (r, 1; F) +N0(r, 0; F

′
)

(47)
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+N0(r, 0;G
′
) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2)

+ 2NL(r, 1; F) + 2NL(r, 1;G) +N
(2
E (r, 1; F)

+N0(r, 0; F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞;g) +N(r, 0; F| ≥ 2) +N(r, 0;G| ≥ 2)
+NF>1(r, 1;G) +NG>1(r, 1; F) +NL(r, 1; F) +N(r, 1;G) −N(r, 1;G)

+N0(r, 0; F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ 3 N(r,∞; f) + 2N(r,∞;g) +N2(r, 0; F) +N(r, 0; F) +N2(r, 0;G)

+N(r, 1;G) −N(r, 1;G) +N0(r, 0;G
′
) +N0(r, 0; F

′
)

+ S(r, f) + S(r, g)

≤ 3 N(r,∞; f) + 2N(r,∞;g) +N2(r, 0; F) +N(r, 0; F) +N2(r, 0;G)

+N(r, 0;G
′
|G 6= 0) +N0(r, 0; F

′
) + S(r, f) + S(r, g)

≤ 3N(r,∞; f) + 3N(r,∞;g) +N2(r, 0; F) +N(r, 0; F) +N2(r, 0;G)

+N(r, 0;G) +N0(r, 0; F
′
) + S(r, f) + S(r, g).

Hence using (47), Lemmas 1 and 2 we get from second fundamental theorem
that

(n+m)T(r, f)

≤ T(r, F) +Nk+2(r, 0; fnP(f)) −N2(r, 0; F) + S(r, f)
≤ N(r, 0; F) +N(r,∞; F) +N(r, 1; F) +Nk+2(r, 0; f

nP(f)) −N2(r, 0; F)

−N0(r, 0; F
′
)

≤ 4N(r,∞, f) + 3N(r,∞;g) +N2(r, 0; F) + 2 N(r, 0; F)

+Nk+2(r, 0; f
nP(f)) +N2(r, 0;G) +N(r, 0;G) −N2(r, 0; F)

+ S(r, f) + S(r, g)

≤ 4N(r,∞; f) + 3N(r,∞;g) +Nk+2(r, 0; f
nP(f)) + 2 N(r, 0; F)

+N2(r, 0;G) +N(r, 0;G) + S(r, f) + S(r, g)

≤ 4N(r,∞; f) + 3N(r,∞;g) +Nk+2(r, 0; f
nP(f)) + 2kN(r,∞; f)

+ 2 Nk+1(r, 0; f
nP(f)) + k N(r,∞;g) +Nk+2(r, 0;g

nP(g))

+ kN(r,∞;g) +Nk+1(r, 0;g
nP(g)) + S(r, f) + S(r, g)

(48)
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≤ (2k+ 4) N(r,∞; f) + (2k+ 3)N(r,∞;g) + (3k+ 4)N(r, 0; f)

+ 3T(r, P(f)) + (2k+ 3) N(r, 0;g) + 2T(r, P(g)) + S(r, f) + S(r, g)

≤ (5k+ 8+ 3m) T(r, f) + (4k+ 6+ 2m) T(r, g) + S(r, f) + S(r, g)

≤ (9k+ 14+ 5m) T(r) + S(r).

In a similar way we can obtain

(n+m) T(r, g) ≤ (9k+ 14+ 5m) T(r) + S(r). (49)

Combining (48) and (49) we see that

(n− 9k− 14− 4m) T(r) ≤ S(r). (50)

Since n > 9k+ 14+ 4m, (50) leads to a contradiction.
Case 2. Let H ≡ 0. Then by Lemma 10 we get either

fn(f− 1)m ≡ gn(g− 1)m (51)

or

[fn(f− 1)m](k)[gn(g− 1)m](k) ≡ p2. (52)

We now consider following two subcases.
Subcase 2.1: Let m = 0.
Now from (51) we get fn ≡ gn and so f ≡ tg, where t is a constant satisfying
tn = 1.
Also from (52) we get

[fn](k)[gn](k) ≡ p2.

Then by Lemma 11 we get the conclusion (1).
Subcase 2.2: Let m ≥ 1.
Applying Lemma 13, from (52) we see that

[fn(f− 1)m](k)[gn(g− 1)m](k) 6≡ p2,

for k = 1.
In addition, when f and g share (∞, 0), then by Lemma 12 we must have

[fn(f− 1)m](k)[gn(g− 1)m](k) 6≡ p2.

Next we consider the relation (51) and let h = g
f .



64 S. Majumder

First we suppose that h is non-constant.
For m = 1: Then from (51) we get f ≡ 1−hn

1−hn+1
, i.e.,

f ≡
( hn

1+ h+ h2 + . . .+ hn
− 1
)
.

Hence by Lemma 1 we get

T(r, f) = T(r,

n∑
j=0

1

hj
) +O(1) = n T(r,

1

h
) + S(r, h) = n T(r, h) + S(r, h).

Similarly we have T(r, g) = nT(r, h) + S(r, h). Therefore S(r, f) = S(r, g) =
S(r, h).
Also it is clear that

n∑
j=1

N(r, uj;h) ≤ N(r,∞; f),

where uj = exp(
2jπi
n+1) and j = 1, 2, . . . , n.

Then by the second fundamental theorem we get

(n− 2) T(r, h) ≤
n∑
j=1

N(r, uj;h) + S(r, f) ≤ N(r,∞; f) + S(r, f).

Similarly we have

(n− 2) T(r, h) ≤ N(r,∞;g) + S(r, g).

Adding and simplifying these we get

2(n− 2)T(r, h) ≤ n(2−Θ(∞; f) −Θ(∞;g) + ε)T(r, h) + S(r, h),

where 0 < ε < Θ(∞; f) + Θ(∞;g). This leads to a contradiction as Θ(∞; f) +
Θ(∞;g) > 4

n .
For m ≥ 2: Then from (51) we can say that f and g satisfying the algebraic

equation R(f, g) = 0, where

R(ω1,ω2) = ω
n
1 (ω1 − 1)

m −ωn2 (ω2 − 1)
m.

Next we suppose that h is a constant.
Then from (51) we get

fn
m∑
i=0

(−1)i mCm−i f
m−i ≡ gn

m∑
i=0

(−1)i mCm−ig
m−i. (53)
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Now substituting g = fh in (53) we get

m∑
i=0

(−1)i mCm−i f
n+m−i(hn+m−i − 1) ≡ 0,

which implies that h = 1. Hence f ≡ g. This completes the proof.
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