Initial coefficient bounds for certain class of meromorphic bi-univalent functions

Ahmad Zireh

Faculty of Mathematical Sciences, Shahrood University of Technology, Iran email: azireh@gmail.com

Safa Salehian
Faculty of Mathematical Sciences, Shahrood University of Technology, Iran email: gilan86@yahoo.com

Abstract

In this paper, we introduce and investigate an interesting subclass of meromorphic bi-univalent functions defined on $\Delta=\{z \in \mathbb{C}$: $1<|z|<\infty\}$. For functions belonging to this class, estimates on the initial coefficients are obtained. The results presented in this paper generalize and improve some recent works.

1 Introduction

Let Σ be the family of meromorphic functions f of the form

$$
\begin{equation*}
f(z)=z+b_{0}+\sum_{n=1}^{\infty} b_{n} \frac{1}{z^{n}} \tag{1}
\end{equation*}
$$

that are univalent in $\Delta=\{z \in \mathbb{C}: 1<|z|<\infty\}$. Since $f \in \Sigma$ is univalent, it has an inverse f^{-1} that satisfy

$$
\mathrm{f}^{-1}(\mathrm{f}(z))=z \quad(z \in \Delta)
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad(M<|w|<\infty, M>0)
$$

2010 Mathematics Subject Classification: 30C45, 30C50
Key words and phrases: meromorphic functions, meromorphic bi-univalent functions, coefficient estimates

Furthermore, the inverse function f^{-1} has a series expansion of the form

$$
\begin{equation*}
\mathrm{f}^{-1}(w)=w+\sum_{n=0}^{\infty} \mathrm{B}_{\mathrm{n}} \frac{1}{w^{n}} \tag{2}
\end{equation*}
$$

where $M<|w|<\infty$. A simple calculation shows that the function f^{-1}, is given by

$$
\begin{equation*}
\mathrm{f}^{-1}(w)=w-\mathrm{b}_{0}-\frac{\mathrm{b}_{1}}{w}-\frac{\mathrm{b}_{2}+\mathrm{b}_{0} \mathrm{~b}_{1}}{w^{2}}-\frac{\mathrm{b}_{3}+2 \mathrm{~b}_{0} \mathrm{~b}_{1}+\mathrm{b}_{0}^{2} \mathrm{~b}_{1}+\mathrm{b}_{1}^{2}}{w^{3}}+\ldots . \tag{3}
\end{equation*}
$$

A function $f \in \Sigma$ is said to be meromorphic bi-univalent if $f^{-1} \in \Sigma$. The family of all meromorphic bi-univalent functions is denoted by $\Sigma_{\mathfrak{B}}$.

Estimates on the coefficient of meromorphic univalent functions were widely investigated in the literature; for example, Schiffer [8] obtained the estimate $\left|b_{2}\right| \leq 2 / 3$ for meromorphic univalent functions $f \in \Sigma$ with $b_{0}=0$ and Duren [2] proved that $\left|b_{n}\right| \leq 2 /(n+1)$ for $f \in \Sigma$ with $b_{k}=0,1 \leq k \leq n / 2$.

For the coefficients of inverses of meromorphic univalent functions, Springer [10] proved that

$$
\left|B_{3}\right| \leq 1 \quad \text { and } \quad\left|B_{3}+\frac{1}{2} B_{1}^{2}\right| \leq \frac{1}{2}
$$

and conjectured that

$$
\left|B_{2 n-1}\right| \leq \frac{(2 n-2)!}{n!(n-1)!} \quad(n=1,2, \cdots)
$$

In 1977, Kubota [6] proved that the Springer conjecture is true for $n=3,4,5$ and subsequently Schober [9] obtained a sharp bounds for the coefficients $B_{2 n-1}, 1 \leq n \leq 7$.

A function f in the class $\Sigma_{\mathfrak{B}}$ is said to be memorphic bi-univalent starlike of order β where $0 \leq \beta<1$, if it satisfies the flowing inequalities

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta \text { and } \operatorname{Re}\left(\frac{w g^{\prime}(w)}{g(w)}\right)>\beta \quad(z, w \in \Delta)
$$

where g is the inverse of f given by (3). We denote by $\Sigma_{\mathfrak{B}}^{*}(\beta)$ the class of all meromorphic bi-univalent starlike functions of order β. Similarly, a function f in the class $\Sigma_{\mathfrak{B}}$ is said to be meromorphic bi-univalent strongly starlike of order α where $0<\alpha \leq 1$, if it satisfies the following conditions

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \text { and }\left|\arg \left(\frac{w g^{\prime}(w)}{g(w)}\right) \arg \right|<\frac{\alpha \pi}{2} \quad(z, w \in \Delta),
$$

where g is the inverse of f given by (3). We denote by $\widetilde{\Sigma}_{\mathfrak{B}}^{*}(\alpha)$ the class of all meromorphic bi-univalent strongly starlike functions of order α. The classes $\Sigma_{\mathfrak{B}}^{*}(\beta)$ and $\widetilde{\Sigma}_{\mathfrak{B}}^{*}(\alpha)$ were introduced and studied by Halim et al. [3].

Several researchers introduced and investigated some subclasses of meromorphically bi-univalent functions. (see, for detailes [3], [4], [5], [6], [9] and [13]).

Recently, Srivastava at al. [11] introduced the following subclasses of the meromorphic bi-univalent function and obtained non sharp estimates on the initial coefficients $\left|\mathrm{b}_{0}\right|$ and $\left|\mathrm{b}_{1}\right|$ as follow.

Definition 1 [11, Definition 2] A function $f(z) \in \Sigma_{\mathfrak{B}}$ given by (1) is said to be in the class $\Sigma_{\mathrm{B}, \lambda^{*}}(\alpha)$, if the following conditions are satisfied:

$$
\left|\arg \left(\frac{z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, \lambda \geq 1, z \in \Delta)
$$

and

$$
\left|\arg \left(\frac{w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, \lambda \geq 1, w \in \Delta)
$$

where the function g is the inverse of f given by (3).

Theorem 1 [11, Theorem 2.1] Let $f(z) \in \Sigma_{\mathfrak{B}}$ given by (1) be in the class $\Sigma_{B, \lambda^{*}}(\alpha)$. Then

$$
\left|b_{0}\right| \leq 2 \alpha, \quad\left|b_{1}\right| \leq \frac{2 \sqrt{5} \alpha^{2}}{1+\lambda}
$$

Definition 2 [11, Definition 3] A function $f(z) \in \Sigma_{\mathfrak{B}}$ given by (1) is said to be in the class $\Sigma_{\mathrm{B}^{*}}(\lambda, \beta)$, if the following conditions are satisfied:

$$
\operatorname{Re}\left(\frac{z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)}\right)>\beta \quad(0 \leq \beta<1, \lambda \geq 1, z \in \Delta)
$$

and

$$
\operatorname{Re}\left(\frac{w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)}\right)>\beta \quad(0 \leq \beta<1, \lambda \geq 1, w \in \Delta)
$$

where the function g is the inverse of f given by (3).

Theorem 2 [11, Theorem 3.1] Let $f(z)$ given by (1) be in the class $\Sigma_{B^{*}}(\lambda, \beta)$. Then

$$
\left|b_{0}\right| \leq 2(1-\beta), \quad\left|b_{1}\right| \leq \frac{2(1-\beta) \sqrt{4 \beta^{2}-8 \beta+5}}{1+\lambda}
$$

The following subclass of the meromorphic bi-univalent functions was investigated by Hai-Gen Xiao and Qing-Hua Xu [12].

Definition 3 [12, Definition 3] A function $f(z) \in \Sigma_{\mathfrak{B}}$ given by (1) is said to be in the class $\Sigma_{\vartheta}^{*}(\mu, \alpha)$, if the following conditions are satisfied:
$\left|\arg \left\{(1-\mu) \frac{z f^{\prime}(z)}{f(z)}+\mu\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, \mu \in \mathbb{R}, z \in \Delta)$
and
$\left|\arg \left\{(1-\mu) \frac{w g^{\prime}(w)}{g(w)}+\mu\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right\}\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, \mu \in \mathbb{R}, w \in \Delta)$,
where the function g is the inverse of f given by (3).

Theorem 3 [12, Theorem 1] Let $f(z)$ given by (1) be in the class $\Sigma_{\vartheta}^{*}(\mu, \alpha)$, $\mu \in \mathbb{R}-\left\{\frac{1}{2}, 1\right\}$. Then

$$
\left|b_{0}\right| \leq \frac{2 \alpha}{|1-\mu|}, \quad\left|b_{1}\right| \leq \frac{\sqrt{\mu^{2}-2 \mu+5}}{|1-\mu||2 \mu-1|} \alpha^{2}
$$

The object of the present paper is to introduce a new subclass of the function class $\Sigma_{\mathfrak{B}}$ and obtain estimates on the initial coefficients for functions in this new subclass which improve Theorem 1, Theorem 2 and Theorem 3. Our results generalize and improve those in related works of several earlier authors.

2 Coefficient bounds for the function class $M_{\Sigma_{\mathfrak{B}}}^{h, p}(\lambda, \mu)$

In this section, we introduce and investigate the general subclass $M_{\Sigma_{\mathfrak{B}}}^{\mathfrak{h}, \mathfrak{p}}(\lambda, \mu)$.
Definition 4 Let the functions $\mathrm{h}, \mathrm{p}: \Delta \rightarrow \mathbb{C}$ be analytic functions and

$$
h(z)=1+\frac{h_{1}}{z}+\frac{h_{2}}{z^{2}}+\frac{h_{3}}{z^{3}}+\cdots, \quad p(z)=1+\frac{p_{1}}{z}+\frac{p_{2}}{z^{2}}+\frac{p_{3}}{z^{3}}+\cdots
$$

such that

$$
\min \{\operatorname{Re}(h(z)), \operatorname{Re}(p(z))\}>0, \quad z \in \Delta
$$

A function $\mathrm{f} \in \Sigma_{\mathfrak{B}}$ given by (1) is said to be in the class $M_{\Sigma_{\mathfrak{B}}}^{\mathrm{h}, \mathfrak{p}}(\lambda, \mu)(\lambda \geq 1$, $\mu \in \mathbb{R}$), if the following conditions are satisfied:

$$
\begin{equation*}
(1-\mu) \frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}+\mu\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\lambda} \in h(\Delta) \quad(\lambda \geq 1, \mu \in \mathbb{R}, z \in \Delta) \tag{4}
\end{equation*}
$$

and
$(1-\mu) \frac{w\left(g^{\prime}(w)\right)^{\lambda}}{g(w)}+\mu\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)^{\lambda} \in p(\Delta) \quad(\lambda \geq 1, \mu \in \mathbb{R}, w \in \Delta)$,
where the function g is the inverse of f given by (3).
Remark 1 There are many selections of the functions $\mathrm{h}(z)$ and $\mathfrak{p}(z)$ which would provide interesting subclasses of the meromorphic function class Σ. For example, if we let

$$
h(z)=p(z)=\left(\frac{1+\frac{1}{z}}{1-\frac{1}{z}}\right)^{\alpha}=1+\frac{2 \alpha}{z}+\frac{2 \alpha^{2}}{z^{2}}+\cdots \quad(0<\alpha \leq 1, z \in \Delta)
$$

it is easy to verify that the functions $\mathfrak{h}(z)$ and $\mathfrak{p}(z)$ satisfy the hypotheses of Definition 4.

If $\mathrm{f} \in M_{\Sigma_{\mathfrak{B}}}^{\mathrm{h}, \mathfrak{p}}(\lambda, \mu)$, then

$$
\begin{aligned}
&\left|\arg \left\{(1-\mu) \frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}+\mu\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\lambda}\right\}\right|<\frac{\alpha \pi}{2} \\
&(0<\alpha \leq 1, \lambda \geq 1, \mu \in \mathbb{R}, \quad z \in \Delta)
\end{aligned}
$$

and

$$
\begin{aligned}
&\left|\arg \left\{(1-\mu) \frac{w\left(g^{\prime}(w)\right)^{\lambda}}{g(w)}+\mu\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)^{\lambda}\right\}\right|<\frac{\alpha \pi}{2} \\
&(0<\alpha \leq 1, \lambda \geq 1, \mu \in \mathbb{R}, w \in \Delta)
\end{aligned}
$$

In this case, the function f is said to be in the class $M_{\Sigma_{\mathfrak{B}}}(\lambda, \mu, \alpha)$ and in special case $\lambda=1$, it reduces to Definition 3. We note that, by putting $\mu=0$,
the class $M_{\Sigma_{\mathfrak{B}}}(\lambda, \mu, \alpha)$ reduces to Definition 1 , the class $\Sigma_{B, \lambda^{*}}(\alpha)$ introduced and studied by Srivastava et al. [11].

If we let

$$
\begin{aligned}
h(z) & =p(z)=\frac{1+\frac{1-2 \beta}{z}}{1-\frac{1}{z}} \\
& =1+\frac{2(1-\beta)}{z}+\frac{2(1-\beta)}{z^{2}}+\frac{2(1-\beta)}{z^{3}}+\ldots \quad(0 \leq \beta<1, z \in \Delta)
\end{aligned}
$$

it is easy to verify that the functions $\mathrm{h}(\boldsymbol{z})$ and $\mathrm{p}(z)$ satisfy the hypotheses of Definition 4.

If $\mathrm{f} \in \mathrm{M}_{\Sigma_{\mathfrak{B}}}^{\mathrm{h}, \mathfrak{p}}(\lambda, \mu)$, then

$$
\begin{aligned}
\operatorname{Re}\left\{(1-\mu) \frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}+\mu\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\lambda}\right\} & >\beta \\
& (0 \leq \beta<1, \lambda \geq 1, \mu \in \mathbb{R}, z \in \Delta)
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Re}\left\{(1-\mu) \frac{w\left(g^{\prime}(w)\right)^{\lambda}}{g(w)}+\mu\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)^{\lambda}\right\}>\beta \\
&(0 \leq \beta<1, \lambda \geq 1, \mu \in \mathbb{R}, w \in \Delta)
\end{aligned}
$$

Therefore for $h(z)=p(z)=\frac{1+\frac{1-2 \beta}{z}}{1-\frac{1}{z}}$ and $\mu=0$, the class $M_{\Sigma_{\mathfrak{B}}}^{h, p}(\lambda, \mu)$ reduces to Definition 2.

Now, we derive the estimates of the coefficients $\left|b_{0}\right|$ and $\left|b_{1}\right|$ for $\operatorname{class} M_{\Sigma_{\mathfrak{B}}}^{\mathrm{h}, \mathfrak{p}}(\lambda, \mu)$.
Theorem 4 Let $f(z) \in \Sigma_{\mathfrak{B}}$ given by (1) be in the class $M_{\Sigma_{\mathfrak{B}}}^{\mathrm{h}, \mathfrak{p}}(\lambda, \mu)(\lambda \geq 1, \mu \in$ $\mathbb{R}-\{1\},(3 \lambda \mu+\mu-\lambda) \neq 1)$. Then

$$
\begin{equation*}
\left|b_{0}\right| \leq \min \left\{\sqrt{\frac{\left|\mathfrak{h}_{1}\right|^{2}+\left|p_{1}\right|^{2}}{2(1-\mu)^{2}}}, \sqrt{\frac{\left|h_{2}\right|+\left|p_{2}\right|}{2|1-\mu|}}\right\} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|b_{1}\right| \leq \min \left\{\frac{\left|h_{2}\right|+\left|p_{2}\right|}{2|3 \lambda \mu+\mu-\lambda-1|}, \frac{1}{|3 \lambda \mu+\mu-\lambda-1|} \sqrt{\frac{\left|h_{2}\right|^{2}+\left|p_{2}\right|^{2}}{2}+\frac{\left(\left|h_{1}\right|^{2}+\left|p_{1}\right|^{2}\right)^{2}}{4(1-\mu)^{2}}}\right\} . \tag{7}
\end{equation*}
$$

Proof. First of all, we write the argument inequalities in (4) and (5) in their equivalent forms as follows:

$$
\begin{equation*}
(1-\mu) \frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}+\mu\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\lambda}=h(z) \quad(z \in \Delta) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\mu) \frac{w\left(g^{\prime}(w)\right)^{\lambda}}{g(w)}+\mu\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)^{\lambda}=p(w) \quad(w \in \Delta) \tag{9}
\end{equation*}
$$

respectively, where functions $h(z)$ and $p(w)$ satisfy the conditions of Definition 4.
Furtheremore, the functions $h(z)$ and $p(w)$ have the forms:

$$
h(z)=1+\frac{h_{1}}{z}+\frac{h_{2}}{z^{2}}+\frac{h_{3}}{z^{3}}+\cdots
$$

and

$$
p(w)=1+\frac{p_{1}}{w}+\frac{p_{2}}{w^{2}}+\frac{p_{3}}{w^{2}}+\cdots
$$

respectively. Now, upon equating the coefficients of

$$
\begin{gather*}
(1-\mu) \frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}+\mu\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\lambda} \tag{10}\\
=1-\frac{(1-\mu) b_{0}}{z}+\frac{(1-\mu) b_{0}^{2}+(3 \lambda \mu+\mu-\lambda-1) b_{1}}{z^{2}}+\ldots
\end{gather*}
$$

with those of $h(z)$ and coefficients of

$$
\begin{gather*}
(1-\mu) \frac{w\left(g^{\prime}(w)\right)^{\lambda}}{g(w)}+\mu\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)^{\lambda} \tag{11}\\
=1+\frac{(1-\mu) b_{0}}{w}+\frac{(1-\mu) b_{0}^{2}-(3 \lambda \mu+\mu-\lambda-1) b_{1}}{w^{2}}+\ldots
\end{gather*}
$$

with those of $p(w)$, we get

$$
\begin{align*}
-(1-\mu) b_{0} & =h_{1} \tag{12}\\
(1-\mu) b_{0}^{2}+(3 \lambda \mu+\mu-\lambda-1) b_{1} & =h_{2} \tag{13}\\
(1-\mu) b_{0} & =p_{1} \tag{14}
\end{align*}
$$

and

$$
\begin{equation*}
(1-\mu) b_{0}^{2}-(3 \lambda \mu+\mu-\lambda-1) b_{1}=p_{2} \tag{15}
\end{equation*}
$$

From (12) and (14), we get

$$
h_{1}=-p_{1} \quad\left(b_{0}=-\frac{h_{1}}{1-\mu}\right)
$$

and

$$
\begin{equation*}
2(1-\mu)^{2} b_{0}^{2}=h_{1}^{2}+p_{1}^{2} \tag{16}
\end{equation*}
$$

Adding (13) and (15), we get

$$
\begin{equation*}
2(1-\mu) b_{0}^{2}=h_{2}+p_{2} \tag{17}
\end{equation*}
$$

Therefore, we find from the equations (16) and (17) that

$$
\left|b_{0}\right|^{2} \leq \frac{\left|h_{1}\right|^{2}+\left|p_{1}\right|^{2}}{2(1-\mu)^{2}}
$$

and

$$
\left|b_{0}\right|^{2} \leq \frac{\left|h_{2}\right|+\left|p_{2}\right|}{2|1-\mu|}
$$

respectively. So we get the desired estimate on the coefficient $\left|b_{0}\right|$ as asserted in (6).

Next, in order to find the bound on the coefficient $\left|\mathrm{b}_{1}\right|$, we subtract (15) from (13). We thus get

$$
\begin{equation*}
2(3 \lambda \mu+\mu-\lambda-1) b_{1}=h_{2}-p_{2} \tag{18}
\end{equation*}
$$

By squaring and adding (13) and (15), using (16) in the computation leads to

$$
\begin{equation*}
b_{1}^{2}=\frac{1}{2(3 \lambda \mu+\mu-\lambda-1)^{2}}\left(h_{2}^{2}+p_{2}^{2}-\frac{\left(h_{1}^{2}+p_{1}^{2}\right)^{2}}{2(1-\mu)^{2}}\right) \tag{19}
\end{equation*}
$$

Therefore, we find from the equations (18) and (19) that

$$
\left|\mathrm{b}_{1}\right| \leq \frac{\left|\mathrm{h}_{2}\right|+\left|\mathrm{p}_{2}\right|}{2|3 \lambda \mu+\mu-\lambda-1|}
$$

and

$$
\left|\mathrm{b}_{1}\right| \leq \frac{1}{|3 \lambda \mu+\mu-\lambda-1|} \sqrt{\frac{\left|h_{2}\right|^{2}+\left|\mathrm{p}_{2}\right|^{2}}{2}+\frac{\left(\left|h_{1}\right|^{2}+\left|\mathrm{p}_{1}\right|^{2}\right)^{2}}{4(1-\mu)^{2}}}
$$

This evidently completes the proof of Theorem 4.

3 Corollaries and consequences

By setting
$h(z)=p(z)=\frac{1+\frac{1-2 \beta}{z}}{1-\frac{1}{z}}=1+\frac{2(1-\beta)}{z}+\frac{2(1-\beta)}{z^{2}}+\ldots \quad(0 \leq \beta<1, z \in \Delta)$ and $\mu=0$ in Theorem 4, we conclude the following result.
Corollary 1 Let the function $f(z)$ given by (1) be in the class $\Sigma_{B^{*}}(\lambda, \beta),(0 \leq$ $\beta<1, \lambda \geq 1)$. Then

$$
\left|b_{0}\right| \leq \begin{cases}\sqrt{2(1-\beta)} ; & \beta \leq \frac{1}{2} \\ 2(1-\beta) ; & \beta>\frac{1}{2}\end{cases}
$$

and

$$
\left|\mathrm{b}_{1}\right| \leq \min \left\{\frac{2(1-\beta)}{1+\lambda}, \frac{2(1-\beta) \sqrt{4 \beta^{2}-8 \beta+5}}{1+\lambda}\right\}=\frac{2(1-\beta)}{1+\lambda}
$$

Remark 2 The bounds on $\left|\mathbf{b}_{0}\right|$ and $\left|\mathbf{b}_{1}\right|$ given in Corollary 1 are better than those given in Theorem 2.

By setting $\lambda=1$ in Corollary 1, we conclude the following result.
Corollary 2 Let the function $f(z)$ given by (1) be in the class $\Sigma_{\mathfrak{B}}^{*}(\beta)(0 \leq$ $\beta<1$). Then

$$
\left|b_{0}\right| \leq \begin{cases}\sqrt{2(1-\beta)} ; & \beta \leq \frac{1}{2} \\ 2(1-\beta) ; & \beta>\frac{1}{2}\end{cases}
$$

and

$$
\left|b_{1}\right| \leq \min \left\{1-\beta,(1-\beta) \sqrt{1+4(1-\beta)^{2}}\right\}=1-\beta
$$

Remark 3 The bounds on $\left|\mathrm{b}_{0}\right|$ and $\left|\mathrm{b}_{1}\right|$ given in Corollary 2 are better than those given by Halim et al. [3, Theorem 1].

By setting

$$
h(z)=p(z)=\left(\frac{1+\frac{1}{z}}{1-\frac{1}{z}}\right)^{\alpha} \quad(0<\alpha \leq 1, \quad z \in \Delta)
$$

in Theorem 4, we conclude the following result.

Corollary 3 Let the function $f(z)$ given by (1) be in the class $M_{\Sigma_{\mathfrak{B}}}(\lambda, \mu, \alpha)$ $(0<\alpha \leq 1, \lambda \geq 1, \mu \in \mathbb{R}-\{1\},(3 \lambda \mu+\mu-\lambda) \neq 1)$. Then

$$
\left|b_{0}\right| \leq \begin{cases}\alpha \sqrt{\frac{2}{11-\mu} ;} ; & |1-\mu| \leq 2 \\ \frac{2 \alpha}{1-\mu \mid} ; & |1-\mu|>2\end{cases}
$$

and

$$
\begin{aligned}
\left|\mathrm{b}_{1}\right| & \leq \min \left\{\frac{2 \alpha^{2}}{|3 \lambda \mu+\mu-\lambda-1|}, \frac{2 \alpha^{2}}{|3 \lambda \mu+\mu-\lambda-1|} \sqrt{1+\frac{4}{(1-\mu)^{2}}}\right\} \\
& =\frac{2 \alpha^{2}}{|3 \lambda \mu+\mu-\lambda-1|}
\end{aligned}
$$

By setting $\mu=0$ in Corollary 3, we conclude the following result.
Corollary 4 Let the function $f(z)$ given by (1) be in the class $\Sigma_{B, \lambda^{*}}(\alpha)(0<$ $\alpha \leq 1, \lambda \geq 1)$. Then

$$
\left|b_{0}\right| \leq \sqrt{2} \alpha
$$

and

$$
\left|\mathrm{b}_{1}\right| \leq \frac{2 \alpha^{2}}{\lambda+1}
$$

Remark 4 The bounds on $\left|\mathrm{b}_{0}\right|$ and $\left|\mathrm{b}_{1}\right|$ given in Corollary 4 are better than those given in Theorem 2.

By setting $\lambda=1$ in Corollary 3, we conclude the following result.
Corollary 5 Let the function $f(z)$ given by (1) be in the class $\sum_{\vartheta}^{*}(\mu, \alpha)(0<$ $\left.\alpha \leq 1, \mu \in \mathbb{R}-\left\{\frac{1}{2}, 1\right\}\right)$. Then

$$
\left|b_{0}\right| \leq \begin{cases}\alpha \sqrt{\frac{2}{11-\mu} ;} ; & |1-\mu| \leq 2 \\ \frac{2 \alpha}{1-\mu \mid} ; & |1-\mu|>2\end{cases}
$$

and

$$
\left|b_{1}\right| \leq \min \left\{\frac{\alpha^{2}}{|2 \mu-1|}, \frac{\sqrt{\mu^{2}-2 \mu+5}}{|1-\mu||2 \mu-1|} \alpha^{2}\right\}=\frac{\alpha^{2}}{|2 \mu-1|} .
$$

Remark 5 The bounds on $\left|\mathrm{b}_{0}\right|$ and $\left|\mathrm{b}_{1}\right|$ given in Corollary 5 are better than those given in Theorem 3.

By setting $\mu=0$ in Corollary 5, we conclude the following result.
Corollary 6 Let the function $f(z)$ given by (1) be in the class $\widetilde{\Sigma}_{\mathfrak{B}}^{*}(\alpha)(0<$ $\alpha \leq 1)$. Then

$$
\left|b_{0}\right| \leq \sqrt{2} \alpha \quad \text { and } \quad\left|b_{1}\right| \leq \min \left\{\alpha^{2}, \sqrt{5} \alpha^{2}\right\}=\alpha^{2}
$$

Remark 6 The bounds on $\left|\mathbf{b}_{0}\right|$ and $\left|\mathrm{b}_{1}\right|$ given in Corollary 6 are better than those given by Halim et al. [3, Theorem 2].

Acknowledgments

The authors wish to thank the referee, for the careful reading of the paper and for the helpful suggestions and comments.

References

[1] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2 (1) (2013), 49-60.
[2] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[3] S. A. Halim, S. G. Hamidi, V. Ravichandran, Coefficient estimates for meromorphic bi-univalent functions, arXiv:1108.4089v1 (2011), 1-9.
[4] S. G. Hamidi, S. A. Halim, J. M. Jahangiri, Coefficient estimates for a class of meromorphic biunivalent functions, C. R. Acad. Sci. Paris Sr., 351 (2013), 349-352.
[5] G. P. Kapoor, A. K. Mishra, Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl., 329 (2) (2007), 922-934.
[6] Y. Kubota, Coefficients of meromorphic univalent functions, Kodai Math. Sem. Rep., 28 (1976/77), 253-261.
[7] S. Salehian and A. Zireh, Coefficient estimates for certain subclass of meromorphic and bi-univalent functions, Commun. Korean Math. Soc., 32 (2) (2017), 389-397.
[8] M. Schiffer, Sur un problème d'extrémum de la représentation conforme, Bull. Soc. Math. France, 66 (1938), 48-55.
[9] G. Schober, Coefficients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc., 67 (1) (1977), 111-116.
[10] G. Springer, The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc., 70 (1951), 421-450.
[11] H. M. Srivastava, S. B. Joshi, S. S. Joshi, H. Pawar, Coefficient estimates for certain subclasses of memorphically bi-univalent function, Palest. J. Math, 5(1) (2016), 250-258.
[12] H.-G. Xiao, Q.-H. Xu, Coefficient estimates for three generalized classes of meromorphic and bi-univalent functions, Filomat, 29 (7) (2015), 16011612.
[13] Q.-H. Xu, C-B Lv, H.M. Srivastava, Coefficient estimates for the inverses of a certain general class of spirallike functions, Appl. Math. Comput., 219 (2013), 7000-7011.
[14] A. Zireh, E. Analouei Adegani, S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin., 23 (2016), 487-504.
[15] A. Zireh, E. Analouei Adegani, M. Bidkham, Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasisubordinate, Math. Slovaca, 68 (2018), 369-378.

