

DOI: 10.2478/ausm-2019-0017

I-Rad-⊕-supplemented modules

Burcu Nişancı Türkmen
Faculty of Art and Science,
Amasya University,
Ipekköy, Amasya, Turkey
email: burcunisancie@hotmail.com

Abstract. Let M be an R-module and I be an ideal of R. We say that M is I-Rad- \oplus -supplemented, provided for every submodule N of M, there exists a direct summand K of M such that M = N + K, $N \cap K \subseteq IK$ and $N \cap K \subseteq Rad(K)$. The aim of this paper is to show new properties of I-Rad- \oplus -supplemented modules. Especially, we show that any finite direct sum of I-Rad- \oplus -supplemented modules is I-Rad- \oplus -supplemented. We also prove that an R-module M is I-Rad- \oplus -supplemented if and only if K and $\frac{M}{K}$ are I-Rad- \oplus -supplemented for a fully invariant direct summand K of M. Finally, we determine the structure of I-Rad- \oplus -supplemented modules over a discrete valuation ring.

1 Introduction

Throughout the whole text, all rings are to be associative, unit and all modules are left unitary. Let R be such a ring and M be an R-module. The notation $K \subseteq M$ ($K \subset M$) means that K is a (proper) submodule of M. A module M is called *extending* if every submodule is essential in a direct summand of M [4]. Here a submodule $K \subseteq M$ is said to be *essential* in M, denoted as $K \subseteq M$, if $K \cap N \neq 0$ for every non-zero submodule $N \subseteq M$. Dually, a submodule S of M is called *small* (in M), denoted as $S \ll M$, if $M \neq S + L$ for every proper submodule L of M [17]. If all non-zero submodules of M are essential in M,

²⁰¹⁰ Mathematics Subject Classification: 16D10, 16D50, 16D25

Key words and phrases: supplement, $Rad(-\oplus -)$ supplemented module, I-Rad- \oplus -supplemented module

then M is called uniform [4, 1.5]. The Jacobson radical of M will be denoted by Rad(M). It is known that Rad(M) is the sum of all small submodules of M.

A non-zero module M is said to be *hollow* if every proper submodule of M is small in M, and it is said to be *local* if it is hollow and is finitely generated. A module M is local if and only if it is finitely generated and Rad(M) is the maximal submodule of M (see [4, 2.12 §2.15]). A ring R is said to be *local* if M is the maximal ideal of M, where M is the Jacobson radical of M.

An R-module M is called *supplemented* if every submodule of M has a supplement in M. Here a submodule $K \subseteq M$ is said to be a *supplement* of N in M if K is minimal with respect to N+K=M, or equivalently, if N+K=M and $N\cap K \ll K$ [17]. A supplement submodule X of M is then defined when X is a supplement of some submodule of M. Every direct summand of a module M is a supplement submodule of M, and supplemented modules are a generalization of semisimple modules. In addition, every factor module of a supplemented module is again supplemented.

A module M is called *lifting* (or D_1 -module) if, for every submodule N of M, there exists a direct summand K of M such that $K \leq N$ and $\frac{N}{K} \ll \frac{M}{K}$. Mohamed and Müller have generalized the concept of lifting modules to \oplus -supplemented modules. M is called \oplus -supplemented if every submodule N of M has a supplement that is a direct summand of M [12]. Clearly every \oplus -supplemented module is supplemented, but a supplemented module need not be \oplus -supplemented in general (see [12, Lemma A.4 (2)]). It is shown in [12, Proposition A.7 and Proposition A.8] that if R is a Dedekind domain, every supplemented R-module is \oplus -supplemented. Hollow modules are \oplus -supplemented.

Weakening the notion of "supplement", one calls a submodule K of M a Rad-supplement of N in M if M = N + K and $N \cap K \subseteq \text{Rad}(K)$ ([4, pp.100]).

Recall from [6] that a module M is called Rad- \oplus -supplemented (or generalized \oplus -supplemented in [5]) if for every $N \subseteq M$, there exists a direct summand K of M such that M = N + K and $N \cap K \subseteq Rad(K)$. In [15], various properties of Rad- \oplus -supplemented modules are given. In addition, a ring R is semiperfect if and only if every finitely generated free R-module is generalized \oplus -supplemented (see [5]).

In this paper, we define I-Rad-⊕-supplemented modules which is specialized of Rad-⊕-supplemented modules. We obtain various properties of this modules adapting by [14]. We show that every finite direct sum of I-Rad-⊕-supplemented modules is a I-Rad-⊕-supplemented module. We prove that the class of I-Rad-⊕-supplemented modules is closed under extension in some constriction. Finally, we characterize I-Rad-⊕-supplemented modules over a discrete valuation ring.

2 Some results of I-Rad- \oplus -supplemented modules

A module M is called semilocal if $\frac{M}{Rad(M)}$ is semisimple, and a ring R is called semilocal if $_RR$ (or R_R) is semilocal. Lomp proved in [11, Theorem 3.5] that a ring R is semilocal if and only if every left R-module is semilocal. Using this fact we obtain the following:

Lemma 1 Let M be a module over a semilocal ring R. Then M is Rad- \oplus -supplemented if and only if for every submodule $N \subseteq M$, there exists a direct summand K of M such that M = N + K, $N \cap K \subseteq JK$.

Proof. Clear by [1, Corollary 15.18].

By using the above lemma, we have a specialized notion which is strong of Rad- \oplus -supplemented modules. Now we define this notion.

Definition 1 Let M be an R-module and I be an ideal of R. We say that M is a I-Rad- \oplus -supplemented module, provided for every submodule N of M, there exists a direct summand K of M such that M = N + K, $N \cap K \subseteq IK$ and $N \cap K \subseteq Rad(K)$.

Lemma 2 Let M be an R-module and I be an ideal of R such that IM = 0. Then, M is I-Rad- \oplus -supplemented if and only if M is semisimple.

Proof. (\Rightarrow) Let N be a submodule of M. By the hypothesis, there exists a direct summand K of M such that M = N+K, $N \cap K \subseteq IK$ and $N \cap K \subseteq Rad(K)$. Since $IK \subseteq IM = 0$, we obtain that $M = N \oplus K$. Hence M is semisimple.

(\Leftarrow) Let N be a submodule of M. Then there exists a submodule N' of M such that M = N \oplus N'. So M = N + N', N \cap N' = 0 \subseteq IN' and N \cap N' = 0 \subseteq Rad(N'). Therefore M is a I-Rad- \oplus -supplemented module. \Box

Lemma 3 [14, Lemma 3.4] Let M be an R-module and I be an ideal of R. If K is a direct summand of M, then we have $IK = K \cap IM$.

Proposition 1 Let M be an arbitrary R-module and I be an ideal of R such that $Rad(M) \subseteq IM$. Then M is I-Rad- \oplus -supplemented if and only if M is $Rad-\oplus$ -supplemented.

Proof. (\Rightarrow) It is clear.

 (\Leftarrow) Suppose that M is I-Rad- \oplus -supplemented. Let N be a submodule of M. Then there exists a direct summand K of M such that M = N + K and

 $N \cap K \subseteq \operatorname{Rad}(K)$. Note that $IK = K \cap IM$ by Lemma 3. Since $\operatorname{Rad}(M) \subseteq IM$, we have $N \cap K \subseteq \operatorname{Rad}(K) \subseteq K \cap \operatorname{Rad}(M) \subseteq K \cap IM = IK$. Therefore M is I-Rad- \oplus -supplemented. This completes the proof.

Recall from [17] that a ring R is called a *left good ring* if Rad(M) = JM for every R-module M. A semilocal ring is an example of a *left good ring*.

Corollary 1 Let M be an R-module. Suppose further that either

- (1) R is a left good ring, or
- (2) M is a projective module.

If an ideal I of R contains the Jacobson radical J of R, then M is Rad- \oplus -supplemented if and only if M is I-Rad- \oplus -supplemented.

Proof. Note that Rad(M) = JM by [1, Proposition 17.10]. The result follows from Proposition 1.

It is clear that every I-Rad-⊕-supplemented module is Rad-⊕-supplemented module, but the following example shows that the converse is not be always true. Firstly, we need the following crucial proposition.

Proposition 2 Let M be an indecomposable R-module with $\operatorname{Rad}(M) \ll M$ and I be an ideal of R. Then the following statements are equivalent.

- (1) M is I-Rad-⊕-supplemented;
- (2) M is local with IM = M or IM = Rad(M).

Proof. (1) \Longrightarrow (2) Let N be a proper submodule of M. By hypothesis, there exists a direct summand K of M such that M = N + K, $N \cap K \subseteq IK$ and $N \cap K \subseteq Rad(K)$. Since M is indecomposable, we have K = M. Hence, $N \subseteq IM$ and $N \subseteq Rad(M)$. Since $Rad(M) \ll M$, we have $N \ll M$. Thus, M is a local module. Moreover, note that if $IM \neq M$, then IM contains all other proper submodules of M. Hence M is a local module and IM = Rad(M).

 $(2)\Longrightarrow(1)$ Let N be a proper submodule of M. Then M=N+M and $N\cap M=N\subseteq \operatorname{Rad}(M)\subseteq IM$. So M is I-Rad- \oplus -supplemented.

Example 1 (See [14, Example 3.8]) Let $\mathfrak p$ and $\mathfrak q$ be two different prime integers. Consider the local $\mathbb Z$ -module $M=\frac{\mathbb Z}{\mathbb Z \mathfrak p^3}$. We have $\mathrm{Rad}(M)=\frac{\mathbb Z \mathfrak p}{\mathbb Z \mathfrak p^3}\ll M$. Let $I_1=\mathbb Z \mathfrak p$, $I_2=\mathbb Z \mathfrak q$ and $I_3=\mathbb Z \mathfrak p^2$. Then $I_1M=\mathrm{Rad}(M)$, $I_2M=M$ and $I_3M=\frac{\mathbb Z \mathfrak p^2}{\mathbb Z \mathfrak p^3}$. By Proposition 2, M is $I_i\text{-Rad-}\oplus\text{-supplemented}$ for each i=1,2 but not $I_3\text{-Rad-}\oplus\text{-supplemented}$. On the other hand, it is clear that M is $\mathrm{Rad-}\oplus\text{-supplemented}$.

Proposition 3 Let I be an ideal of R and M be an R-module. If M is an I-Rad- \oplus -supplemented R-module, then $\frac{M}{IM}$ is semisimple.

Proof. Let N be a submodule of M such that $IM \subseteq N$. By assumption, there exists a direct summand K of M such that M = N + K, $N \cap K \subseteq IK$ and $N \cap K \subseteq Rad(K)$. Then $\frac{N}{IM} + \frac{K+IM}{IM} = \frac{M}{IM}$. Clearly, we have $N \cap (K+IM) = IM + N \cap K = IM$ and so $\frac{N}{IM} \cap \frac{K+IM}{IM} = \frac{IM}{IM}$. Therefore $\frac{M}{IM} = \frac{N}{IM} \oplus \frac{K+IM}{IM}$. It means that $\frac{M}{IM}$ is semisimple.

Corollary 2 Let M be a Rad- \oplus -supplemented R-module such that IM = M, where I is an ideal of R. Then M is I-Rad- \oplus -supplemented.

Corollary 3 Let m be a maximal ideal of a commutative ring R and M be an R-module. Assume that I is an ideal of R such that IM = mM. If M is a Rad- \oplus -supplemented R-module, then M is I-Rad- \oplus -supplemented.

Proof. Note that $Rad(M) \subseteq mM$ by [7, Lemma 3]. The result follows from Proposition 1.

Recall from [17] that an R-module M is called *divisible* in case rM = M for each non-zero element $r \in R$, where R is a commutative domain.

Proposition 4 Let M be a divisible module over a commutative domain R. If M is Rad-⊕-supplemented, then M is I-Rad-⊕-supplemented for every nonzero ideal I of R.

Proof. This follows from Corollary 2.

Corollary 4 Let R be a Dedekind domain and M be an injective R-module. Then, M is I-Rad-⊕-supplemented for every non-zero ideal I of R.

Proof. Since every injective module over a Dedekind domain is divisible, the proof follows from Proposition 4.

Theorem 1 Let I be an ideal of R. Then any finite direct sum of I-Rad- \oplus -supplemented R-modules is I-Rad- \oplus -supplemented.

Proof. Let n be any positive integer and M_i $(1 \le i \le n)$ be any finite collection of I-Rad- \oplus -supplemented R-modules. Let $M = M_1 \oplus M_2 \oplus \cdots \oplus M_n$. Suppose that n = 2, that is, $M = M_1 \oplus M_2$. Let K be any submodule of M. Then $M = M_1 + M_2 + K$ and so $M_1 + M_2 + K$ has a Rad-supplement 0 in M. Since M_1

is I-Rad- \oplus -supplemented, $M_1 \cap (M_2 + K)$ has a Rad-supplement X in M_1 such that X is a direct summand of M_1 and $X \cap (M_2 + K) = M_1 \cap (M_2 + K) \cap X \subseteq IX$. By [5, Lemma 3.2], X is a Rad-supplement of $M_2 + K$ in M. Since M_2 is I-Rad- \oplus -supplemented, $M_2 \cap (K + X)$ has a Rad-supplement Y in M_2 such that Y is a direct summand of M_2 and $Y \cap (K + X) = M_2 \cap (K + X) \cap Y \subseteq IY$. Again applying [5, Lemma 3.2], we obtain that X + Y is a Rad-supplement of K in M. Since X is a direct summand of M_1 and Y is a direct summand of M_2 , it follows that $X \oplus Y$ is a direct summand of M. Note that

$$\begin{array}{ccc} K\cap (X+Y) &\subseteq & X\cap (Y+K)+Y\cap (K+X)\\ &\subseteq & X\cap (M_2+K)+Y\cap (K+X)\\ &\subseteq & IX\oplus IY=I(X\oplus Y) \end{array}$$

So $M_1 \oplus M_2$ is I-Rad- \oplus -supplemented. The proof is completed by induction on $\mathfrak{n}.$

Recall from [17] that a submodule U of an R-module M is called *fully in-variant* if f(U) is contained in U for every R-endomorphism f of M. Let M be an R-module and τ be a preradical for the category of R-modules. Then $\tau(M)$ is fully invariant submodule of M. A module M is called *duo* if every submodule of M is fully invariant [13].

Proposition 5 Let I be an ideal of R and M = $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ be a duo module where M is a direct sum of submodules M_{λ} ($\lambda \in \Lambda$). Assume that M_{λ} is I-Rad- \oplus -supplemented for every $\lambda \in \Lambda$. Then M is I-Rad- \oplus -supplemented.

Proof. By hypothesis, for every $\lambda \in \Lambda$, there exists a direct summand K_{λ} of M_{λ} such that $M_{\lambda} = (N \cap M_{\lambda}) + K_{\lambda}$, $N \cap K_{\lambda} \subseteq IK_{\lambda}$ and $N \cap K_{\lambda} \subseteq Rad(K_{\lambda})$. Put $K = \bigoplus_{\lambda \in \Lambda} K_{\lambda}$. Clearly K is a direct summand of M and M = N + K. Also, we have $N \cap K = \bigoplus_{\lambda \in \Lambda} (N \cap K_{\lambda}) \subseteq IK$ and $N \cap K \subseteq Rad(K)$. This completes the proof.

Now, we give an example showing that the I-Rad-⊕-supplemented property doesn't always transfer from a module to each of its factor modules.

Example 2 (see [2, Example 4.1]) Let F be a field. Consider the local ring $R = \frac{F[\kappa^2,\kappa^3]}{(\kappa^4)}$ and let m be the maximal ideal of R. Let n be an integer with $n \geq 2$ and $M = R^{(n)}$. By Proposition 2 and Theorem 1, M is m-Rad- \oplus -supplemented. Note that R is an artinian local ring which is not a principal ideal ring. So, there exists a submodule K of M such that the factor module $\frac{M}{K}$ isn't Rad- \oplus -supplemented. Therefore $\frac{M}{K}$ isn't m-Rad- \oplus -supplemented.

Recall from [17, 6.4] that a module M is called *distributive* if $(A + B) \cap C = (A \cap C) + (B \cap C)$ for all submodules A, B, C of M (or equivalently, $(A \cap B) + C = (A + C) \cap (B + C)$ for all submodules A, B, C of M).

Now, we show that a factor module of an I-Rad-⊕-supplemented module is I-Rad-⊕-supplemented under some conditions.

Proposition 6 Let I be an ideal of R and M be an I-Rad- \oplus -supplemented module.

- (1) Let $X \subseteq M$ be a submodule such that for every direct summand K of M, $\frac{X+K}{X}$ is a direct summand of $\frac{M}{X}$. Then $\frac{M}{X}$ is I-Rad- \oplus -supplemented;
- (2) Let $X \subseteq M$ be a submodule such that for every decomposition $M = M_1 \oplus M_2$, we have $X = (X \cap M_1) \oplus (X \cap M_2)$. Then $\frac{M}{X}$ is I-Rad- \oplus -supplemented;
- $(3) \ \textit{If X is a fully invariant submodule of M, then } \frac{M}{X} \textit{ is I-Rad-} \oplus \textit{-supplemented};$
- (4) If M is a distributive module, then $\frac{M}{X}$ is I-Rad- \oplus -supplemented for every submodule X of M.

Proof. (1) Let N be a submodule of M such that $X \subseteq N$. Since M is I-Rad- \oplus -supplemented, there exists a direct summand K of M such that M = N + K, $N \cap K \subseteq IK$ and $N \cap K \subseteq Rad(K)$. Therefore $\frac{M}{X} = \frac{N}{X} + \frac{X+K}{X}$ and $\frac{N}{X} \cap \frac{K+X}{X} = \frac{X+(N\cap K)}{X} \subseteq \frac{X+IK}{X} \subseteq I(\frac{X+K}{X})$. Consider the natural epimorphism $\pi: K \longrightarrow \frac{X+K}{X}$. Since $N \cap K \subseteq Rad(K)$, we have $\pi(N \cap K) = \frac{X+(N\cap K)}{X} \subseteq Rad(\frac{X+K}{X})$. Note that by assumption, $\frac{X+K}{X}$ is a direct summand of $\frac{M}{X}$. It follows that $\frac{M}{X}$ is I-Rad- \oplus -supplemented.

(2), (3) and (4) are consequences of (1).
$$\Box$$

Proposition 7 Let M be an R-module, I be an ideal of R and K be a fully invariant direct summand of M. Then the following statements are equivalent:

- (1) M is I-Rad- \oplus -supplemented;
- (2) K and $\frac{M}{K}$ are I-Rad- \oplus -supplemented.

Proof. (1) \Rightarrow (2) Let L be a submodule of K. By hypothesis, there exist submodules A and B of M such that $M = A \oplus B$, M = A + L, $A \cap L \subseteq IA$ and $A \cap L \subseteq Rad(A)$. Clearly, we have $K = (A \cap K) + L$. Since K is fully invariant in M, we have $K = (A \cap K) \oplus (B \cap K)$. Hence $A \cap K$ is a direct

summand of K. By Lemma 3, $I(A \cap K) = (A \cap K) \cap IM$. It follows that $(A \cap K) \cap L = A \cap L \subseteq (A \cap K) \cap IM = I(A \cap K)$. Since $A \cap K$ is a direct summand of K and K is a direct summand of M, $A \cap K$ is a direct summand of M such that $A \cap L \subseteq A \cap K$. Since $A \cap L \subseteq Rad(M)$, we have $A \cap L \subseteq Rad(A \cap K)$. Therefore, K is I-Rad- \oplus -supplemented. Moreover, $\frac{M}{K}$ is I-Rad- \oplus -supplemented by Proposition 6 (3).

$$(2) \Rightarrow (1)$$
 It follows from Theorem 1.

Let I be an ideal of R. We call an R-module M is called *completely* I-Rad- \oplus -supplemented if every direct summand of M is I-Rad- \oplus -supplemented. Clearly, semisimple modules are completely I-Rad- \oplus -supplemented. Also, every I-Rad- \oplus -supplemented hollow module is completely I-Rad- \oplus -supplemented.

Proposition 8 Let $M = M_1 \oplus M_2$ be a direct sum of local submodules M_1 and M_2 . Then the following statements are equivalent:

- (1) M₁ and M₂ are I-Rad-⊕-supplemented modules;
- (2) M is a completely I-Rad- \oplus -supplemented module.

Proof. (1) \Rightarrow (2) Let L be a non-zero direct summand of M. If L = M, then L is I-Rad- \oplus -supplemented by Theorem 1. Assume that L \neq M. Let K be a submodule of M such that M = L \oplus K. Then L is a local module by [4, 5.4 (1)]. Let us prove that L is I-Rad- \oplus -supplemented. To see this, it suffices to show that IL = L or IL = Rad(L) by Proposition 2. Since M is I-Rad- \oplus -supplemented, $\frac{M}{IM} \cong \frac{L}{IL} \oplus \frac{K}{IK}$ is semisimple by Proposition 3. Then $\frac{L}{IL}$ is semisimple and so Rad(L) \subseteq IL. Since L is local, we get that L = IL or Rad(L) = IL.

$$(2) \Rightarrow (1)$$
 Obvious.

Now, we determine the structure of all I-Rad-⊕-supplemented modules over a discrete valuation ring.

Theorem 2 Assume that R is a discrete valuation ring with maximal ideal m. Let I be an ideal of R and M be an R-module.

- (1) If I = m or I = R, then the following statements are equivalent.
 - (i) M is I-Rad-⊕-supplemented;
 - (ii) M is Rad-⊕-supplemented;
 - (iii) $M \cong R^{\alpha} \oplus D \oplus B$, where $\alpha \in \mathbb{N}$, B is a bounded R-module and D is an injective R-module.

- (2) If $I \notin \{m, R\}$, then the following are equivalent:
 - (i) M is I-Rad-⊕-supplemented;
 - (ii) $M \cong D \oplus B$ for some injective R-module D and some semisimple R-module B.

Proof. It is well known that, for any module M over a discrete valuation ring, we have Rad(M) = JM = mM.

- (1) (i) \Leftrightarrow (ii) Since local rings are a good ring, by Corollary 1 and assumption, the proof follows.
 - (ii) \Leftrightarrow (iii) Clear by [15, Corollary 3.3].
- (2) (i) \Rightarrow (ii) Suppose that M is I-Rad- \oplus -supplemented. Applying [15, Corollary 3.3], $M \cong R^a \oplus D \oplus B$ for some bounded R-module B, some natural numbers $\mathfrak a$ and an injective R-module D. Since D is a fully invariant submodule of M, it follows from Proposition 7 that $N = R^a \oplus B$ is I-Rad- \oplus -supplemented. Using Lemma 3 and Proposition 3, we obtain that $\frac{N}{IN}$ is semisimple. Since $I \notin \{m, R\}$, we get that $\mathfrak a = 0$. Now we will prove that B is semisimple. Since $\frac{B}{IB}$ is semisimple and I < m, we can write Rad(B) = JB = IB. Note that B is bounded. Then, there exists an ideal H of R such that HB = 0. Therefore, Rad(B) = JB = HB = 0 and so B is semisimple by Lemma 2. This completes the proof.
- (ii) \Rightarrow (i) By Corollary 4, D is I-Rad- \oplus -supplemented. Since B is semisimple, B is I-Rad- \oplus -supplemented. Applying Theorem 1, we obtain that M is I-Rad- \oplus -supplemented.

References

- [1] F. W. Anderson, K. R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, 1992.
- [2] M. F. Atiyah, I. G. Macdonald, *Introduction to Commutative Algebra*, Addison-Wesley, London, 1969.
- [3] E. Büyükaşık, Yılmaz M. Demirci, Weakly Distributive Modules. Applications to Supplement Submodules, *Proc. Indian Acad. Sci. (Math. Sci.)*, **120 (5)**, (2010), 525–534.
- [4] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel, 2006.

- [5] H. Çalışıcı, E. Türkmen, Generalized ⊕-supplemented modules, *Algebra* and *Discrete Mathematics*, **10** (2) (2010), 10–18.
- [6] Ş, Ecevit, M. T. Koşan, R. Tribak, Rad-⊕-supplemented modules and cofinitely Rad-⊕-supplemented modules, Algebra Colloq., 19 (4) (2012), 637–648.
- [7] A. I. Generalow, w-cohigh purity in the category of modules, *Math.Notes*, **33** (1983), 402–408.
- [8] A. Harmanci, D. Keskin, P. F. Smith, On ⊕-supplemented modules, *Acta Math. Hungar*, **83** (1999), 161–169.
- [9] J. Hausen, Supplemented modules over Dedekind domains, Pacific J. Math., 100 (2) (1982), 387–402.
- [10] A. Idelhadj, R. Tribak, On some properties of ⊕-supplemented modules, Internat. J. Math. Sci., 69 (2003), 4373–4387.
- [11] C. Lomp, On semilocal modules and rings, Communications in Algebra, 27 (4) (1999), 1921–1935.
- [12] S. H. Mohamed, B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Ser.147, Cambridge University Press, Cambridge, 1990.
- [13] A. Ç. Özcan, A. Harmancı, P. F. Smith, Duo Modules, Glasgow Math. J., 48 (2006), 533–545.
- [14] R. Tribak, Y. Talebi, A. R. M. Hamzekolaee, S. Asgari, ⊕-supplemented modules relative to an ideal, *Hacettepe Journal of Mathematics and Statistics*, 45 (1) (2016), 107–120.
- [15] E. Türkmen, Rad-⊕-supplemented modules, An. Şt. Univ. Ovidius Constanta, 21 (1) (2013), 225–238.
- [16] Y. Wang, A generalization of supplemented modules, arXiv:1108.3381v1 [math.RA], 7 (3), (2014), 703–717.
- [17] R. Wisbauer, Foundations of Modules and Rings, Gordon and Breach, 1991.
- [18] H. Zöschinger, Komplementierte moduln über Dedekindringen, J. Algebra, 29 (1974), 42–56.