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Ipekköy, Amasya, Turkey

email: burcunisancie@hotmail.com

Abstract. Let M be an R-module and I be an ideal of R. We say that M
is I-Rad-⊕-supplemented, provided for every submodule N of M, there
exists a direct summand K of M such that M = N + K, N ∩ K ⊆ IK
and N ∩ K ⊆ Rad(K). The aim of this paper is to show new properties
of I-Rad-⊕-supplemented modules. Especially, we show that any finite
direct sum of I-Rad-⊕-supplemented modules is I-Rad-⊕-supplemented.
We also prove that an R-moduleM is I-Rad-⊕-supplemented if and only if
K and M

K
are I-Rad-⊕-supplemented for a fully invariant direct summand

K of M. Finally, we determine the structure of I-Rad-⊕-supplemented
modules over a discrete valuation ring.

1 Introduction

Throughout the whole text, all rings are to be associative, unit and all modules
are left unitary. Let R be such a ring and M be an R-module. The notation
K ⊆ M (K ⊂ M) means that K is a (proper) submodule of M. A module M
is called extending if every submodule is essential in a direct summand of M
[4]. Here a submodule K ≤M is said to be essential in M, denoted as KEM,
if K ∩N 6= 0 for every non-zero submodule N ≤M. Dually, a submodule S of
M is called small (in M), denoted as S � M, if M 6= S + L for every proper
submodule L of M [17]. If all non-zero submodules of M are essential in M,
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then M is called uniform [4, 1.5]. The Jacobson radical of M will be denoted
by Rad(M). It is known that Rad(M) is the sum of all small submodules of M.

A non-zero module M is said to be hollow if every proper submodule of M
is small in M, and it is said to be local if it is hollow and is finitely generated.
A module M is local if and only if it is finitely generated and Rad(M) is the
maximal submodule of M (see [4, 2.12 §2.15]). A ring R is said to be local if J
is the maximal ideal of R, where J is the Jacobson radical of R.

An R-module M is called supplemented if every submodule of M has a
supplement in M. Here a submodule K ⊆M is said to be a supplement of N in
M if K is minimal with respect toN+K =M, or equivalently, ifN+K =M and
N∩K� K [17]. A supplement submodule X of M is then defined when X is a
supplement of some submodule of M. Every direct summand of a module M is
a supplement submodule ofM, and supplemented modules are a generalization
of semisimple modules. In addition, every factor module of a supplemented
module is again supplemented.

A moduleM is called lifting (or D1-module) if, for every submodule N ofM,
there exists a direct summand K ofM such that K ≤ N and N

K �
M
K . Mohamed

and Müller have generalized the concept of lifting modules to ⊕-supplemented
modules.M is called ⊕-supplemented if every submodule N ofM has a supple-
ment that is a direct summand of M [12]. Clearly every ⊕-supplemented mod-
ule is supplemented, but a supplemented module need not be ⊕-supplemented
in general (see [12, Lemma A.4 (2)]). It is shown in [12, Proposition A.7 and
Proposition A.8] that if R is a Dedekind domain, every supplemented R-module
is ⊕-supplemented. Hollow modules are ⊕-supplemented.

Weakening the notion of “supplement”, one calls a submodule K of M a
Rad-supplement of N in M if M = N+ K and N ∩ K ⊆ Rad(K) ([4, pp.100]).

Recall from [6] that a module M is called Rad-⊕-supplemented( or gener-
alized ⊕-supplemented in [5]) if for every N ⊆ M, there exists a direct sum-
mand K of M such that M = N + K and N ∩ K ⊆ Rad(K). In [15], various
properties of Rad-⊕-supplemented modules are given. In addition, a ring R is
semiperfect if and only if every finitely generated free R-module is generalized
⊕-supplemented (see [5]).

In this paper, we define I-Rad-⊕-supplemented modules which is special-
ized of Rad-⊕-supplemented modules. We obtain various properties of this
modules adapting by [14]. We show that every finite direct sum of I-Rad-
⊕-supplemented modules is a I-Rad-⊕-supplemented module. We prove that
the class of I-Rad-⊕-supplemented modules is closed under extension in some
constriction. Finally, we characterize I-Rad-⊕-supplemented modules over a
discrete valuation ring.
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2 Some results of I-Rad-⊕-supplemented modules

A module M is called semilocal if M
Rad(M) is semisimple, and a ring R is called

semilocal if RR (or RR) is semilocal. Lomp proved in [11, Theorem 3.5] that a
ring R is semilocal if and only if every left R-module is semilocal. Using this
fact we obtain the following:

Lemma 1 Let M be a module over a semilocal ring R. Then M is Rad-⊕-
supplemented if and only if for every submodule N ⊆M, there exists a direct
summand K of M such that M = N+ K, N ∩ K ⊆ JK.

Proof. Clear by [1, Corollary 15.18]. �

By using the above lemma, we have a specialized notion which is strong of
Rad-⊕-supplemented modules. Now we define this notion.

Definition 1 Let M be an R-module and I be an ideal of R. We say that M
is a I-Rad-⊕-supplemented module, provided for every submodule N of M,
there exists a direct summand K of M such that M = N+ K, N ∩ K ⊆ IK and
N ∩ K ⊆ Rad(K).

Lemma 2 Let M be an R-module and I be an ideal of R such that IM = 0.
Then, M is I-Rad-⊕-supplemented if and only if M is semisimple.

Proof. (⇒) Let N be a submodule of M. By the hypothesis, there exists a
direct summand K ofM such thatM = N+K,N∩K ⊆ IK andN∩K ⊆ Rad(K).
Since IK ⊆ IM = 0, we obtain that M = N⊕ K. Hence M is semisimple.
(⇐) Let N be a submodule of M. Then there exists a submodule N

′
of M

such that M = N⊕N ′
. So M = N+N

′
, N∩N ′

= 0 ⊆ IN ′
and N∩N ′

= 0 ⊆
Rad(N

′
). Therefore M is a I-Rad-⊕-supplemented module. �

Lemma 3 [14, Lemma 3.4] Let M be an R-module and I be an ideal of R. If
K is a direct summand of M, then we have IK = K ∩ IM.

Proposition 1 Let M be an arbitrary R-module and I be an ideal of R such
that Rad(M) ⊆ IM. Then M is I-Rad-⊕-supplemented if and only if M is
Rad-⊕-supplemented.

Proof. (⇒) It is clear.
(⇐) Suppose that M is I-Rad-⊕-supplemented. Let N be a submodule of

M. Then there exists a direct summand K of M such that M = N + K and
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N ∩ K ⊆ Rad(K). Note that IK = K ∩ IM by Lemma 3. Since Rad(M) ⊆ IM,
we have N ∩ K ⊆ Rad(K) ⊆ K ∩ Rad(M) ⊆ K ∩ IM = IK. Therefore M is
I-Rad-⊕-supplemented. This completes the proof. �

Recall from [17] that a ring R is called a left good ring if Rad(M) = JM for
every R-module M. A semilocal ring is an example of a left good ring.

Corollary 1 Let M be an R-module. Suppose further that either

(1) R is a left good ring, or

(2) M is a projective module.

If an ideal I of R contains the Jacobson radical J of R, then M is Rad-⊕-
supplemented if and only if M is I-Rad-⊕-supplemented.

Proof. Note that Rad(M) = JM by [1, Proposition 17.10]. The result follows
from Proposition 1. �

It is clear that every I-Rad-⊕-supplemented module is Rad-⊕-supplemented
module, but the following example shows that the converse is not be always
true. Firstly, we need the following crucial proposition.

Proposition 2 Let M be an indecomposable R-module with Rad(M) � M

and I be an ideal of R. Then the following statements are equivalent.

(1) M is I-Rad-⊕-supplemented;

(2) M is local with IM =M or IM = Rad(M).

Proof. (1)=⇒(2) Let N be a proper submodule of M. By hypothesis, there
exists a direct summand K of M such that M = N + K, N ∩ K ⊆ IK and
N∩K ⊆ Rad(K). Since M is indecomposable, we have K =M. Hence, N ⊆ IM
and N ⊆ Rad(M). Since Rad(M)�M, we have N�M. Thus, M is a local
module. Moreover, note that if IM 6= M, then IM contains all other proper
submodules of M. Hence M is a local module and IM = Rad(M).

(2)=⇒(1) Let N be a proper submodule of M. Then M = N +M and
N ∩M = N ⊆ Rad(M) ⊆ IM. So M is I-Rad-⊕-supplemented. �

Example 1 (See [14, Example 3.8]) Let p and q be two different prime inte-
gers. Consider the local Z-module M = Z

Zp3 . We have Rad(M) = Zp
Zp3 � M.

Let I1 = Zp, I2 = Zq and I3 = Zp2. Then I1M = Rad(M), I2M = M and

I3M = Zp2
Zp3 . By Proposition 2, M is Ii-Rad-⊕-supplemented for each i = 1, 2

but not I3-Rad-⊕-supplemented. On the other hand, it is clear that M is Rad-
⊕-supplemented.
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Proposition 3 Let I be an ideal of R and M be an R-module. If M is an
I-Rad-⊕-supplemented R-module, then M

IM is semisimple.

Proof. Let N be a submodule of M such that IM ⊆ N. By assumption, there
exists a direct summand K of M such that M = N + K, N ∩ K ⊆ IK and
N ∩ K ⊆ Rad(K). Then N

IM + K+IM
IM = M

IM . Clearly, we have N ∩ (K + IM) =

IM + N ∩ K = IM and so N
IM ∩

K+IM
IM = IM

IM . Therefore M
IM = N

IM ⊕
K+IM
IM . It

means that M
IM is semisimple. �

Corollary 2 Let M be a Rad-⊕-supplemented R-module such that IM =M,
where I is an ideal of R. Then M is I-Rad-⊕-supplemented.

Corollary 3 Let m be a maximal ideal of a commutative ring R and M be
an R-module. Assume that I is an ideal of R such that IM = mM. If M is a
Rad-⊕-supplemented R-module, then M is I-Rad-⊕-supplemented.

Proof. Note that Rad(M) ⊆ mM by [7, Lemma 3]. The result follows from
Proposition 1. �

Recall from [17] that an R-module M is called divisible in case rM =M for
each non-zero element r ∈ R, where R is a commutative domain.

Proposition 4 Let M be a divisible module over a commutative domain R. If
M is Rad-⊕-supplemented, then M is I-Rad-⊕-supplemented for every non-
zero ideal I of R.

Proof. This follows from Corollary 2. �

Corollary 4 Let R be a Dedekind domain and M be an injective R-module.
Then, M is I-Rad-⊕-supplemented for every non-zero ideal I of R.

Proof. Since every injective module over a Dedekind domain is divisible, the
proof follows from Proposition 4. �

Theorem 1 Let I be an ideal of R. Then any finite direct sum of I-Rad-⊕-
supplemented R-modules is I-Rad-⊕-supplemented.

Proof. Let n be any positive integer and Mi (1 ≤ i ≤ n) be any finite collec-
tion of I-Rad-⊕-supplemented R-modules. Let M =M1⊕M2⊕· · ·⊕Mn. Sup-
pose that n = 2, that is, M =M1⊕M2. Let K be any submodule of M. Then
M =M1+M2+K and soM1+M2+K has a Rad-supplement 0 inM. SinceM1
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is I-Rad-⊕-supplemented, M1∩ (M2+K) has a Rad-supplement X in M1 such
that X is a direct summand of M1 and X∩(M2+K) =M1∩(M2+K)∩X ⊆ IX.
By [5, Lemma 3.2], X is a Rad-supplement of M2 + K in M. Since M2 is I-
Rad-⊕-supplemented, M2 ∩ (K+X) has a Rad-supplement Y in M2 such that
Y is a direct summand of M2 and Y ∩ (K+X) =M2 ∩ (K+X)∩ Y ⊆ IY. Again
applying [5, Lemma 3.2], we obtain that X + Y is a Rad-supplement of K in
M. Since X is a direct summand of M1 and Y is a direct summand of M2, it
follows that X⊕ Y is a direct summand of M. Note that

K ∩ (X+ Y) ⊆ X ∩ (Y + K) + Y ∩ (K+ X)
⊆ X ∩ (M2 + K) + Y ∩ (K+ X)
⊆ IX⊕ IY = I(X⊕ Y)

So M1 ⊕M2 is I-Rad-⊕-supplemented. The proof is completed by induction
on n. �

Recall from [17] that a submodule U of an R-module M is called fully in-
variant if f(U) is contained in U for every R-endomorphism f of M. Let M
be an R-module and τ be a preradical for the category of R-modules. Then
τ(M) is fully invariant submodule of M. A module M is called duo if every
submodule of M is fully invariant [13].

Proposition 5 Let I be an ideal of R and M = ⊕λ∈ΛMλ be a duo module
where M is a direct sum of submodules Mλ (λ ∈ Λ). Assume that Mλ is I-
Rad-⊕-supplemented for every λ ∈ Λ. Then M is I-Rad-⊕-supplemented.

Proof. By hypothesis, for every λ ∈ Λ, there exists a direct summand Kλ of
Mλ such that Mλ = (N ∩Mλ) + Kλ, N ∩ Kλ ⊆ IKλ and N ∩ Kλ ⊆ Rad(Kλ).
Put K = ⊕λ∈ΛKλ. Clearly K is a direct summand of M and M = N+K. Also,
we have N ∩ K = ⊕λ∈Λ(N ∩ Kλ) ⊆ IK and N ∩ K ⊆ Rad(K). This completes
the proof. �

Now, we give an example showing that the I-Rad-⊕-supplemented property
doesn’t always transfer from a module to each of its factor modules.

Example 2 (see [2, Example 4.1]) Let F be a field. Consider the local ring

R = F[x2,x3]
(x4)

and let m be the maximal ideal of R. Let n be an integer with

n ≥ 2 and M = R(n). By Proposition 2 and Theorem 1, M is m-Rad-⊕-
supplemented. Note that R is an artinian local ring which is not a principal
ideal ring. So, there exists a submodule K of M such that the factor module M

K

isn’t Rad-⊕-supplemented. Therefore M
K isn’t m-Rad-⊕-supplemented.
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Recall from [17, 6.4] that a module M is called distributive if (A + B) ∩
C = (A ∩ C) + (B ∩ C) for all submodules A,B,C of M (or equivalently,
(A ∩ B) + C = (A+ C) ∩ (B+ C) for all submodules A,B,C of M).

Now, we show that a factor module of an I-Rad-⊕-supplemented module is
I-Rad-⊕-supplemented under some conditions.

Proposition 6 Let I be an ideal of R and M be an I-Rad-⊕-supplemented
module.

(1) Let X ⊆M be a submodule such that for every direct summand K of M,
X+K
X is a direct summand of M

X . Then M
X is I-Rad-⊕-supplemented;

(2) Let X ⊆ M be a submodule such that for every decomposition M =
M1 ⊕M2, we have X = (X ∩M1) ⊕ (X ∩M2). Then M

X is I-Rad-⊕-
supplemented;

(3) If X is a fully invariant submodule of M, then M
X is I-Rad-⊕-supplemented;

(4) If M is a distributive module, then M
X is I-Rad-⊕-supplemented for every

submodule X of M.

Proof. (1) Let N be a submodule of M such that X ⊆ N. Since M is I-Rad-
⊕-supplemented, there exists a direct summand K of M such that M = N+K,
N ∩ K ⊆ IK and N ∩ K ⊆ Rad(K). Therefore M

X = N
X + X+K

X and N
X ∩

K+X
X =

X+(N∩K)
X ⊆ X+IK

X ⊆ I(X+KX ). Consider the natural epimorphism π : K −→ X+K
X .

Since N ∩ K ⊆ Rad(K), we have π(N ∩ K) = X+(N∩K)
X ⊆ Rad(X+KX ). Note that

by assumption, X+KX is a direct summand of MX . It follows that M
X is I-Rad-⊕-

supplemented.
(2), (3) and (4) are consequences of (1). �

Proposition 7 Let M be an R-module, I be an ideal of R and K be a fully
invariant direct summand of M. Then the following statements are equivalent:

(1) M is I-Rad-⊕-supplemented;

(2) K and M
K are I-Rad-⊕-supplemented.

Proof. (1)⇒ (2) Let L be a submodule of K. By hypothesis, there exist sub-
modules A and B of M such that M = A ⊕ B, M = A + L, A ∩ L ⊆ IA

and A ∩ L ⊆ Rad(A). Clearly, we have K = (A ∩ K) + L. Since K is fully
invariant in M, we have K = (A ∩ K) ⊕ (B ∩ K). Hence A ∩ K is a direct
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summand of K. By Lemma 3, I(A ∩ K) = (A ∩ K) ∩ IM. It follows that
(A ∩ K) ∩ L = A ∩ L ⊆ (A ∩ K) ∩ IM = I(A ∩ K). Since A ∩ K is a direct
summand of K and K is a direct summand of M, A∩K is a direct summand of
M such that A∩L ⊆ A∩K. Since A∩L ⊆ Rad(M), we have A∩L ⊆ Rad(A∩K).
Therefore, K is I-Rad-⊕-supplemented. Moreover, MK is I-Rad-⊕-supplemented
by Proposition 6 (3).

(2)⇒ (1) It follows from Theorem 1. �

Let I be an ideal of R. We call an R-module M is called completely I-Rad-⊕-
supplemented if every direct summand ofM is I-Rad-⊕-supplemented. Clearly,
semisimple modules are completely I-Rad-⊕-supplemented. Also, every I-Rad-
⊕-supplemented hollow module is completely I-Rad-⊕-supplemented.

Proposition 8 Let M = M1 ⊕M2 be a direct sum of local submodules M1

and M2. Then the following statements are equivalent:

(1) M1 and M2 are I-Rad-⊕-supplemented modules;

(2) M is a completely I-Rad-⊕-supplemented module.

Proof. (1)⇒ (2) Let L be a non-zero direct summand of M. If L = M, then
L is I-Rad-⊕-supplemented by Theorem 1. Assume that L 6= M. Let K be
a submodule of M such that M = L ⊕ K. Then L is a local module by [4,
5.4 (1)]. Let us prove that L is I-Rad-⊕-supplemented. To see this, it suffices
to show that IL = L or IL = Rad(L) by Proposition 2. Since M is I-Rad-
⊕-supplemented, M

IM
∼= L

IL ⊕
K
IK is semisimple by Proposition 3. Then L

IL is
semisimple and so Rad(L) ⊆ IL. Since L is local, we get that L = IL or
Rad(L) = IL.

(2)⇒ (1) Obvious. �

Now, we determine the structure of all I-Rad-⊕-supplemented modules over
a discrete valuation ring.

Theorem 2 Assume that R is a discrete valuation ring with maximal ideal
m. Let I be an ideal of R and M be an R-module.

(1) If I = m or I = R, then the following statements are equivalent.

(i) M is I-Rad-⊕-supplemented;

(ii) M is Rad-⊕-supplemented;

(iii) M ∼= Ra ⊕D⊕ B, where a ∈ N, B is a bounded R-module and D is
an injective R-module.
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(2) If I /∈ {m,R}, then the following are equivalent:

(i) M is I-Rad-⊕-supplemented;

(ii) M ∼= D ⊕ B for some injective R-module D and some semisimple
R-module B.

Proof. It is well known that, for any module M over a discrete valuation ring,
we have Rad(M) = JM = mM.
(1) (i)⇔ (ii) Since local rings are a good ring, by Corollary 1 and assumption,
the proof follows.

(ii)⇔ (iii) Clear by [15, Corollary 3.3].
(2) (i)⇒ (ii) Suppose that M is I-Rad-⊕-supplemented. Applying [15, Corol-
lary 3.3], M ∼= Ra ⊕D⊕B for some bounded R-module B, some natural num-
bers a and an injective R-module D. Since D is a fully invariant submodule of
M, it follows from Proposition 7 that N = Ra ⊕ B is I-Rad-⊕-supplemented.
Using Lemma 3 and Proposition 3, we obtain that N

IN is semisimple. Since
I /∈ {m,R}, we get that a = 0. Now we will prove that B is semisimple. Since
B
IB is semisimple and I < m, we can write Rad(B) = JB = IB. Note that B
is bounded. Then, there exists an ideal H of R such that HB = 0. Therefore,
Rad(B) = JB = HB = 0 and so B is semisimple by Lemma 2. This completes
the proof.

(ii)⇒ (i) By Corollary 4,D is I-Rad-⊕-supplemented. Since B is semisimple,
B is I-Rad-⊕-supplemented. Applying Theorem 1, we obtain that M is I-Rad-
⊕-supplemented. �
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[6] Ş, Ecevit, M. T. Koşan, R. Tribak, Rad-⊕-supplemented modules and
cofinitely Rad-⊕-supplemented modules, Algebra Colloq., 19 (4) (2012),
637–648.

[7] A. I. Generalow, w-cohigh purity in the category of modules, Math.Notes,
33 (1983), 402–408.

[8] A. Harmancı, D. Keskin, P. F. Smith, On ⊕-supplemented modules, Acta
Math. Hungar, 83 (1999), 161–169.

[9] J. Hausen, Supplemented modules over Dedekind domains, Pacific J.
Math., 100 (2) (1982), 387–402.

[10] A. Idelhadj, R. Tribak, On some properties of ⊕-supplemented modules,
Internat. J. Math. Sci., 69 (2003), 4373–4387.

[11] C. Lomp, On semilocal modules and rings, Communications in Algebra,
27 (4) (1999), 1921–1935.

[12] S. H. Mohamed, B. J. Müller, Continuous and Discrete Modules, Lon-
don Math. Soc. Lecture Note Ser.147, Cambridge University Press, Cam-
bridge, 1990.
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stanta, 21 (1) (2013), 225–238.

[16] Y. Wang, A generalization of supplemented modules, arXiv:1108.3381v1
[math.RA], 7 (3), (2014), 703–717.

[17] R. Wisbauer, Foundations of Modules and Rings, Gordon and Breach,
1991.
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