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Abstract. In the last decade huge research work has been put to the in-
door visual localization of personal smartphones. Considering the avail-
able sensor capabilities monocular odometry provides promising solu-
tion, even reflecting requirements of augmented reality applications. This
paper is aimed to give an overview of state-of-the-art results regarding
monocular visual localization. For this purpose essential basics of com-
puter vision are presented and the most promising solutions are reviewed.
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1 Introduction

Due to the increasing capabilities and penetration, more and more applications
are available on smart-phones and assist our everyday activities. In the last
decade huge research work was put to the indoor location-based applications,
from which the augmented reality based applications demand the highest re-
quirements mostly expressed in accuracy, real-time and seamless localization.
Based on the sensors that are available in recent smartphones and their com-
putational and storage capabilities, a real-time implementation of monocular
visual relative pose estimation seems to be a key to achieve the overall goal.

Besides, this topic presents great research interest, and high effort has been
put on providing scalable and accurate solutions to satisfy the real-time re-
quirements. Traditionally, the problem of visual pose estimation is discussed
as Structure from Motion (SFM) [34] [17] problem, where the main goal is
the off-line reconstruction of a 3D structure from pictures taken from different
viewpoints. During the reconstruction process the viewpoints of the camera
are also calculated, but problem formulation does not focus on relative pose
estimation. The family of SLAM (Simultaneous Localization and Mapping)
algorithms focuses on the environment modelling (map building) and relative
camera pose estimation simultaneously [9]. To overcome the real time and
accuracy requirements these solutions induced the PTAM (Parallel Tracking
and Mapping) algorithm [22]. In the meantime, the problem also targeted
by another application field, the odometry. The original requirement of the
monocular Visual Odometry (VO) [50] [14] was to accurately determine the
relative pose of a rover.

In this paper authors attempt to give a theoretical overview of the monocular
odometry problem and its solutions. Also, some of the implementations are
emphasized that seem to able to cope with the strict requirements even in
mobile environments.

During the discussion, authors focus on capabilities of recent smartphones.
Common smartphones are equipped with a thin-lens perspective camera, which
can be modelled with an ideal pin-hole model [20], and they are also equipped
with IMU (Inertial Measurement Unit) integrating gyroscope and accelerome-
ter. Reasonable capacity for storage and processing. Regarding the motion of
the device the following discussion suggests 6DOF (degree-of-freedom).

2 Theoretical background

Monocular visual odometry tries to determine pose and location of a device
mostly using visual perception aided by couple of auxiliary sensors (e.g. gyro-
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scope or acceleration sensor). The common implementation of visual percep-
tion is a monocular camera which provides continuous stream of frames at a
variable or uniform time instants.

2.1 Projection model

The camera has a couple of internal parameters which are typically fixed and
known a priori (e.g. by calibration). The most important characteristic of the
camera is the projection model which projects three dimensional world points
onto the image:

u = 7(pc) (1)

where pe = [xc,yc,zc] is a three dimensional world point in the reference
frame of the camera, u = [x,y] is the projected point and 7t() is the projection
model. It is essential to mention that in case of monocular systems the 7t()
projection model is invertible only when the depth d, of the model point is
known:

pe =7 ' (1, du) (2)

We can see that monocular systems have the big drawback of loosing the depth
information while recording frames.

In practice projection model is considered to be linear in homogeneous space
, 1.e. it can be represented by a matrix product (commonly referred to the
pinhole camera model). Let X = [X, Y, Z, 1]T be the homogeneous coordinates
of a three dimensional point in the reference frame of the camera. In this case
the projection model can be expressed with a K intrinsic camera matrix:

f 0011 000
x = K(f) [3x3031] Xe = [0 £ 0] [0 1 0 0| X (3)
00 1[0 01 0

where f is the focal length of the camera and x = [Ax, Ay, 7\]T are the homo-
geneous coordinates of the two dimensional projection. It is easy to see that
the projection model is not invertible.

To represent camera movement in world frame we assign a Ty rigid-body
transformation to each frame Iy at k time instants which contains orientation
(Ry) and location (Cy) of the camera. The transformation can be expressed
as a 4 x 4 matrix as

Y (1)

Tk:[o 1
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A fixed world point X = [X,Y,Z, 1] can be projected at the k-th image
frame as

xi. = K(f) [10] T.'X = K(f) [R.'| — R, 'Cy] X = K(f)PEX (5)

where Py is commonly called as the extrinsic matrix describing the world-to-
camera transformation. Eq. (5) is the most basic and substantial constraint in
the monocular visual odometry systems.

The goal of the monocular visual odometry algorithms is to determine the
Py extrinsic camera matrices or the Ty rigid-body transformation of the cam-
eras mainly based on (but not exclusively) the visual information encoded in
frames.

2.2 Projection distortion

An accurate algorithm must take into consideration that the projection model
of the classical pinhole camera is only an approximation. Real cameras always
have some non-linear distortion which is basically modelled as radial distor-
tion, however, other distortion models also exist (i.e. tangential distortion)[4].
Radial distortion depends on the radial distance from the radial distortion
centre (typically the principal point) and it is represented as an arbitrary
function:

X =xc +L{r)(x —xc) J=yc+ LIy —yc) (6)

where 12 = (x —xc)? + (y —y¢)? is the radial distance and x, y. are the radial
centres (commonly considered as zero). In practice, L(r) is represented as a
Taylor-series

L(r) =T+ KT+ k12 + K317 + - - (7)

where ki are the radial distortion coefficients. In practice only the lower coef-
ficients (K1, k2, K3) are used.
2.3 Visual information retrieval

Visual odometry solutions are based on visual information encoded in the se-
quence of image frames. We can distinguish two widespread methods: intensity
based direct methods and feature based methods.

2.3.1 Direct methods

In general, direct methods uses the Iy(u) intensity map of the image, which
represents the brightness of the image pixel coordinate or — rarely — the RGB
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vector. The intensity map can be either quantized (i.e. pixel accuracy) or
continuous (i.e. sub-pixel accuracy), however, the latter requires some kind of
filtering or interpolating algorithm that in some cases can cause information
loss.

2.3.2 Feature detection

Feature based methods works on point projections using feature detection and
feature extraction algorithms that are able to detect and match the same points
on different images without preliminary geometric knowledge. This way, visual
odometry solutions are simplified to use only projections of real 3D landmarks.
The efficiency of these algorithms can be measured by their invariance and
speed. Invariance means that the detector can detect features which can be
successfully matched even if the feature is rotated, scaled or suffered other
transformations (e.g. affine transformation). There are a couple of such al-
gorithms overviewed in [5], from which the most widely used are the Harris
detector [18], the Scale-invariant feature transform (SIFT) that bases on Lapla-
cian of Gaussian filters [36], the Maximally stable extremal regions (MSER)
[37], the Features from accelerated segment test (FAST) and Oriented FAST
and Rotated BRIEF (ORB) [48]. Considering the overall requirements SIFT
is the most promising, however, due to its high complexity, strict constraints
should be taken into account during its application in mobile environments.

3 Feature based solutions

Feature based solutions have the attribute to detect features on the frames
first then match them to the previous frame resulting in projection tracks over
a couple of sequential frames. These tracks can then be used to compute the
geometry of the scene and to recover the camera translations and orientations.
This method utilizes only point geometry models and correspondences, this
way the well established framework of multiple view geometry can be applied
[20].

3.1 Theory

The most important term here is pose estimation, which is the process of
estimating the extrinsic (and sometimes the intrinsic) matrix from point cor-
respondences. Depending on the point pairs we can establish two types of pose
estimation: in case of 3D-2D point pairs (i.e. the world points and their pro-
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jections) it is called absolute pose estimation and in case of 2D-2D point pairs
(i.e. the projection pairs on two images) we call it relative pose estimation.

3.1.1 PnP problem

The absolute pose estimation problem is generally called Perspective-n-Point
(PnP) problem, which has a couple of methods presented. The classical method
for n > 6 point pairs is the DLT (Direct Linear Transform) method, but it is
known to be unstable and requires the camera calibration [1]. For 5 or 4 points
the [55] uses a polynomial technique which allows it to work well even in case
of coplanar points. The EPnP solution is accurate for an arbitrary n > 4 point
pairs and can handle planar and non-planar cases [26]. The P3P leads to to
finite number of solutions using only three point pairs as the smallest subset
of points pairs [24]. The P3P solution has the advantage of using only three
points in a RANSAC framework to eliminate outlier point pairs decreasing
the required number of iterations.

3.1.2 Random Sample Consensus

Since feature matching is prone to result false matches, a method is required
to overcome this issue. It is common in image processing to use the minimal
sample set to recover model parameters and classify samples to inliers and out-
liers. The most noted algorithm is the Random Sample Consensus (RANSAC)
method, which is widely used in further solutions [12].

3.1.3 Relative pose estimation

The basic terms in relative pose estimation are the fundamental matriz and
the essential matriz, both can be computed from 3D feature projection pairs.
The fundamental matrix is a 3 x 3 matrix (F) satisfying x"TFx = 0, where
projections (x and x’) are of the same world point in two different images.
The essential matrix (E) uses normalized image coordinates, so it can be
computed from the intrinsic camera matrix (K) and the fundamental matrix
as E = K/TFK. The essential matrix is applicable to recover the pose of the
cameras by decomposition [20]. A lot of methods are known to determine the
relative pose of the cameras: the 8 point algorithm [19], the 7 point algorithm
[20], 6 point algorithm [45] and 5 point algorithms [27][42]. It is essential to
mark that these algorithms differ in handling degenerate configurations (i.e.
coplanar objects or cylinder containing the projection centres) and are unable
to recover the scale of the set-up.
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3.1.4 Bundle adjustment

The fundamental algorithms, like the relative and absolute pose estimation and
triangulation, find the right solution only in case of noiseless measurements.
Otherwise, they minimize the algebraic error which has no physical meaning. It
can be proven that the maximum likelihood (ML) solution of these problems
are the minimization of re-projection error. If we have N cameras and M
points in space, then we can assign a 0, (Ky, Ty, 71 ) projection model to each
camera that contains the projection (7,), distortions (Ky) and rigid body
transformation (T,) of the camera (i.e. intrinsic and extrinsic behaviour). For
a pm point in space the projection for the camera n yields to umn = On(pm).
If pixel measurements are Un m, then the optimization of re-projection error
equals the expression

arg min Z [Tn,m — On (Pl (8)

OnPm 1

meaning minimization of the euclidean-distance between the measurements
and the re-projected points.

As it is obvious from Eq. (8), the re-projection error is not linear so we
need an iterative Newton-like solution to solve the minimization problem. The
process of solving Eq. (8) with Levenberg-Marquardt iteration is specially
called bundle adjustment [56]. Bundle adjustment is widely used in SLAM,
SFM and odometry problems to refine a coarse solution or co-optimize the
map of landmarks and camera poses calculated before.

It is worth to mention that the special form of the projection equation yields
to a sparse matrix, which can be utilized to speed up the bundle adjustment
and relax the memory and processing requirements. This method is called
sparse bundle adjustment [35][20].

3.2 Implementations
The solutions and implementations use the algorithms shown above but com-
bine them in quite different ways.

3.2.1 PTAM

SLAM methods have the controversial problem of running at real-time speed
while building an accurate map by a slow non-linear optimization process
(i.e. bundle adjustment). Parallel Tracking and Mapping (PTAM) solves this
problem by running two threads: one for the real-time tracking and one for the
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map building [22]. PTAM was designed to work in small-scale, e.g. to provide
desk-scale augmented reality. PTAM has several extensions implemented, like
new initializer based on homography or a re-localiser [23].

PTAM detects FAST features on a scale pyramid to provide scale invari-
ance and uses these feature points to recover the geometry. PTAM applies the
5-point algorithm to recover the initial camera relative pose (i.e. the funda-
mental matrix) and to construct the initial map. Hence, the process of PTAM
odometry can be briefly described as follows:

e Tracking runs on its own thread and starts by detecting FAST features.
A motion model is used to estimate the camera a-priori pose followed
by projecting map points onto the image to detect feature matches and
finally camera pose is refined from all the matches.

e The mapping thread selects key-frames at regular intervals based on a
couple of conditions, then the thread triangulates new points and regis-
ters new projections. To refine the map, PTAM applies local and global
bundle adjustments periodically.

PTAM solution is capable to track the camera pose accurately and in real-
time thanks to the decoupled tracking and mapping processes, but its perfor-
mance is limited by the number of landmarks registered in the map. This way
PTAM is suitable only for small workspaces. One of the drawbacks of PTAM
is the simple initialization process of the 5-point algorithm which is sensitive
to planar degeneracy. It is worth to mention that PTAM does not employ any
methods to recover the accumulated odometry error (i.e. loop closing).

3.2.2 ORB-SLAM

ORB-SLAM realizes a rather complex visual odometry solution, however, it
is based basically on feature detection and point geometry [40]. As its name
suggests it uses ORB features to gather image information and provides odom-
etry and 3D reconstruction simultaneously. Besides, ORB-SLAM provides re-
localization and loop closing capabilities in order to make the process more
accurate.

ORB-SLAM works pretty much like PTAM by running three threads par-
allel to provide real-time odometry. The tracking thread is responsible for
real-time motion estimation by detecting ORB features and camera pose re-
covery. The local mapping thread calculates the 3D reconstruction of the map
in the background for every key-frame chosen by the tracking thread. The
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loop closing thread is watching for map points to reoccur using bag of words
model, and when it finds one the loop closing corrects the loop by similarity
transformation.

ORB-SLAM applies ORB feature detection as it provides rotation and scale
invariance. It is fast enough to maintain real-time performance, while it is suit-
able for both large-scale (i.e. distant frames) and small-scale (i.e. subsequent
frames) matching. The great innovation in ORB SLAM is that it uses ORB
for every part of the process: tracking, mapping and loop closing are executed
on ORB features. ORB-SLAM system provides visual odometry as follows:

1. The ORB-SLAM starts with an automatic initialization method to re-
trieve the initial pose and map by extracting the ORB features, matching
them and computing corresponding fundamental matrix and homogra-
phy (i.e. the two dimensional projective transformation) in the same
time. It computes a score to both the homography and the fundamental
matrix as:

Sm=_ (pm(d&(xh,xi, M) + pm(dh (x5, x5, M)))
i

(9)

2 2
pom(d?) = {r o dz < Iu
0 if d°>Tm
where M is the model (H for homography and F for fundamental matrix),
d2, and dZ. are the symmetric transfer errors, Ty is the outlier rejection
threshold based on the x? test at 95% (Ty = 5.99, Tr = 3.84, assuming
a standard deviation of 1 pixel in the measurement error). I is a score
compensating constant. ORB-SLAM recover initial pose and map from
homography if
_ S > 0.45 (10)
SH + Sf
Otherwise, it uses the fundamental matrix. After recovering pose and
map, it starts a non-linear optimization (bundle adjustment) to refine
the initial model.

2. After map initialization tracking tries to match ORB features of the cur-
rent frame to the ORB features of the previous frame through a guided
search employing a constant velocity model. The pose is then refined
by non-linear optimization. After pose estimation ORB-SLAM tries to
re-project the map onto the frame recovering more feature matches. The
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last step is the key-frame decision which judges that the current frame
should be passed to the local mapping thread. This step utilizes a couple
of complex conditions.

3. Parallel to tracking, every key-frame is processed to provide a consistent
map that is able to refine the tracking process and provides input to
loop closing. Briefly, local mapping triangulates new point candidates
having passed a restrictive map point culling test and uses local bun-
dle adjustment to minimize re-projection error. To maintain compact
reconstruction ORB-SLAM removes redundant key-frames

4. Loop closing happens parallel to tracking and mapping and uses bag of
words representation and co-visibility information to detect loop can-
didates [43]. In case of loop detection it computes the similarity trans-
formation accumulated while tracking to distributes the error along the
whole path.

ORB-SLAM has been proven to be a robust and accurate solution even in
large-scale areas and can successfully track ad-hoc movements while providing
stable map initialization in case of a lost track. ORB-SLAM requires at least
20 frames per second to work well, which can hardly be satisfied using ORB
feature detection on embedded devices like smartphones without exploiting
massive GPU calculations.

4 Direct solutions

The principle behind direct solutions states that using the image intensities
results in better odometry accuracy because it exploits all the information
embedded in the frames while feature based solutions discard image informa-
tion over feature points. The most important term of direct solutions is the
photo-consistency discussed in the next section.

4.1 Photo-consistency theory

From a mathematical perspective, photo-consistency means that given two
images 7 and I, an observed point p by the two cameras yields to the same
brightness in both images [21]:

L (u) = Ix(t(&, u)) (11)
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where u is the projection of p, T(-) is the warping function, which depends on
7i(-) (see Eq. (1)). The warping function maps a pixel coordinate from the first
image to the second one given the camera motion &. Here, the motion & can
be represented in any minimal representation (e.g. twist coordinates). Given
the residual function for any u point in the Q image domain

(& u) = L(t(Eu)) — Ii(u) (12)

which depends on & and assuming independent pixel noise, the Maximum
Likelihood (ML) solution is a classical minimization problem:

EmL = arg minJ TZ(E,, u) du (13)
& Q

The problem is obviously non-linear, so the common solution is to run it-
erative minimization algorithms like Newton-Gauss method over a discretised
image. To speed up the integration process, the integration can be run over a
couple of selected patches instead of every pixels in the images.

4.2 DTAM

Dense Tracking and Mapping (DTAM) uses the photo-consistency theory in
a special way to provide dense maps and real-time visual odometry [41]. The
main idea behind dense mapping is to sum the photometric error along a ray
from the camera centre and find the d distance that minimizes the sum, thus
finding the depth parameter for that pixel. The summing is made along a
couple of short baseline frames m € I(r) for a r reference frame:

1
Crlwyd) = = Y [re(Im,u, d)]s (14)
[1(r)]
mel(r)
where || - ||7 is the LT norm and the photometric error is
Tr(Im, v, d) = Ln(t(d, wi)) — Li(ui) (15)

Note that the only change in the equation is the parameter d. DTAM showed
that minimizing the cost yields to a correct estimation of pixel depth which
can be used to build dense maps.

The tracking part of the DTAM solution provides 6DOF estimation and ba-
sically happens the same way as shown in Eq. (13) with a couple of extensions
to provide robust tracking with occlusion detection.
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DTAM is robust and accurate visual odometry solution with excellent map-
ping capabilities. It is not only capable of handling occlusions but can track
the movements even in case of total lost in focus and keep on tracking even for
fast and random movements. The only drawback of the solution is real-time
performance requires huge computing capacity and massive GPU utilization.

4.3 LSD-SLAM

Large-Scale Direct Monocular SLAM (LSD-SLAM) uses direct methods com-
bined with a probabilistic approach to track camera movements and build
dense map real-time [10]. LSD-SLAM has scale-aware image alignment al-
gorithm which estimate directly the similarity transformation between two
key-frames to provide scale consistent maps and odometry.

The main process of the LSD-SLAM is as follows: at every new frame it tries
to estimate the movement relative to the current key-frame, then it decides
whether the actual key-frame should be replaced by the new frame. In case
of replacing, it initializes a new depth map, otherwise it propagates the depth
map of the current key-frame. At every key-frame replacement LSD-SLAM
runs map optimization, which is essential to create accurate dense maps.

LSD-SLAM uses image patches to recover pose around pixels with large
intensity gradients. The tracking process is composed of two steps: estimation
of rigid body transformation and depth map propagation. The former one is
a weighted optimization of the variance-normalized photometric error

2 (u, &)
Blg) =) |5 (16)
PEWD; mp(u,&) |l

for an existing key-frame and the new frame I;. In the equation 7,(-) is the
photometric error, oy, is the variance of the photometric error and ||- ||s means
the Huber-norm. Apart from normalization by variance, this is a classical
photometric error based odometry solution as in Eq. (13).

The biggest difference to other direct solutions is that the depth information
for a key-frame is calculated in a probabilistic way, i.e. it is refined as new
frames received. An inverse depth map and a depth map variance map is
assigned to every key-frame selected by the LSD-SLAM process. The depth
map is initialized with the depth map of the previous key-frame or with a
random depth map if no key-frame exists. For each new frame the depth map
is propagated as in [11], namely if the inverse depth for a pixel was dy then
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for the new frame it is approximated as

di = (dy' —t,)71
a\* (17)
O'i = <do> Gflo + Gf,

where o}, is the prediction uncertainty and t, is the camera translation along
the optical axis.

LSD-SLAM also contains solution for the problem of scale-drift over long
trajectories, which is the major source of error in the family of SLAM solutions.
LSD-SLAM thus aligns two differently scaled key-frames by incorporating the
depth residual into the error function shown above. This method penalizes de-
viations in inverse depth between key-frames and helps to estimate the scaled
transformation between them.

4.4 SVO

Fast Semi-Direct Monocular Odometry (SVO) is a great example of hybrid so-
lutions for visual odometry using direct and featured based algorithms as well
[13]. SVO combines the probabilistic approach of depth map with the com-
putationally attractive feature based concept as the name suggests providing
real-time odometry and sparse mapping.

The basic process of SVO is tracking and mapping that are implemented
on parallel threads, i.e. calculating the movement trajectory at each frame
real-time and select key-frames that can be used for mapping on the mapping
thread. As the mapping thread uses features, bundle adjustment can be used
to minimize re-projection error and construct accurate maps.

The tracking thread projects 3D points of the map onto the new frame and
uses the vicinity of the projected points in the image to estimate the motion
relative the previous frame by photometric error optimization. The pose is
refined by aligning the frame to the whole map (using Lucas-Kanade algorithm
[3]) then by local bundle adjustment to apply the epipolar constraints.

SVO is unique in the way that no depth map is computed but for each feature
point on a key-frame a depth-filter is assigned that estimates the feature depth
in a probabilistic way. First, the mapping thread decides whether a new frame
a key-frame or not. Feature extraction is executed on new key-frames and to
each feature a freshly initialized depth-filter is assigned. On inter-frames (i.e.
not key-frames) the feature depth-filters are updated until they converge to
the estimated value and the variance is small enough. Converged depth filter
are converted to map points by triangulation.
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Thanks to the feature based mapping process SVO has proven to be faster
than other direct solutions, however, the result is a sparse map rather than a
dense one. The depth filters are capable of detecting outlier measurement and
the map is always consistent and correct because triangulation happens only
when the filters converged. As the SVO uses couple of small patches around
features to estimate motion, it is capable of running real-time as well.

5 Filter-based solutions

In real applications relative pose estimation should be seamless, which cannot
be guaranteed by solutions based only on image processing. To overcome this
requirement motion models are applied to estimate the camera state between
visual pose estimations. The first reliable solution is MonoSLAM (8], which
introduces an extrapolated motion model. MonoSLAM is thus applicable for
smooth camera motion, but can cover only desk-scale local environment.

The most reasonable choice for motion estimation is to combine measure-
ments of IMU with projections of real 3D landmarks of the local environment.
The filter based family of visual odometry algorithms fuses inertial IMU mea-
surements with visual feature observations. In these methods, the current cam-
era pose and positions of visual landmarks are jointly estimated, sharing the
same basic principles with camera-only localizations. These combined tech-
niques can be categorized as loosely coupled and tightly coupled systems. In
loosely coupled systems [46] [54] [57] inertial and camera measurements are
processed separately before being fused as a single relative pose estimate, while
tightly coupled systems process all the information together [44] [25]. However,
loosely coupled systems limits computational complexity, in the following we
are focused on tightly coupled techniques due to its ability to reach higher
consistency between camera poses and map of landmarks.

5.1 Theory

The original relative pose estimation problem is hard due to its nature. The
algorithms use a map containing visual information to localize, while rela-
tive pose is necessary to construct and update the visual map. The prob-
lem becomes even harder to solve if we consider the noise of the sensors.
Various probabilistic methods are used to deal with the uncertainty intro-
duced by measurement noise, Extended Kalman Filter (EKF), Particle Filter
(PF), which are all based on Bayesian technique for random value estima-
tion of the system state parameters, including camera locations and orienta-
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tions at discrete time instants (xy) based on observations of the landmarks
(zx = {zik}) from a given camera viewpoint, in other words the map points
(m = {my,my,...,my} = my.,,), while the camera location is controlled in-
dependently of the system state by control parameters (uy). The problem of
relative pose estimation is given then in the probabilistic form as follows [9].

P(Xk) m|Z0:k) uO:k>X0) (18)

The calculation of position probability distribution is done iteratively starting
from P(xy_1, m|z1x 1, u3x_1,X0) with input of the actual control u, and mea-
surement z, using Bayesian Theorem. The computation from one side requires
the state transition or motion model for the camera that describes the new
state regarding the control input.

P (x|xi—1, ui) (19)

Secondly, the observation model describes the probability of making and ob-
servation zy when a camera and landmark locations are known.

P(zk|xx, m) (20)

The iteration is then implemented in a standard two-step recursive process.
The first step is the time update that propagates state in time according to
the control.

P(Xk) m|Z0:kf1 y U0:k) XO) =
JP(Xk|Xk—1>uk) - P(xx—1, m|zox—1, uox—1,X0) dx—1 (21)

The second step conveys the measurement or update when based on the actual
state-dependent measurements correction is done on the actual state.

P(Zk|Xk) m)P(Xk) m|Z0:k71 y U0:ky XO)
P(Zk|ZO:k—1 ) uO:k)

P(xy, m|zo.x, Uox, Xo) = (22)

The above principle is implemented in various ways assuming different terms
on the model and random value distributions.

5.2 The IMU model

In practice, gyroscope and accelerometer measurements can be used to esti-
mate actual relative pose based on the kinematic model. This is done during
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the timely filter state propagation. All these measurements are stressed with
local measurement noise, distortion and biases. The accelerometer measures
actual acceleration (ay,z € R?) in the IMU orientation frame (Z) and its model
can be formulated as follows.

am7(t) = TaRzg(t)(ag(t) —g) +ap(t) +an(t) (23)

where ag is the real acceleration in global orientation frame, g is gravitational
acceleration. Rzg represents rotational transformation between IMU frame
(Z) and global frame (G), while T, shape matrix comprises gyroscope axis
misalignments and scale errors of bases. The measurement noise a, is modelled
as a zero mean Gaussian random variable, a, ~ N (0,N,), and the bias ayp
changes over the time and is modelled as a random walk process driven by its
own noise vector ayn ~ N (0, Nyqa).

Regarding gyroscope, it measures rotational velocity (Wmz € R3) in IMU
orientation frame, its realistic model can be figured out as below.

Wmz(t) = Tgwz(t) + Tsaz(t) + wp(t) + wn(t) (24)

where w7z is the real rotational velocity in IMU orientation frame, Ty is the
shape matrix, while Tsaz represents influence of acceleration upon rotational
velocity.

In practice, due to their insignificant effects scale, misalignment and accel-
eration influence is considered idealistic (Tq = Ty = I, Ts = 0). Most of the
real implementations assume biases and noises during modelling.

5.3 Extended Kalman Filter (EKF)

The Bayesian technique can be solved by EKF, which is applicable for non-
linear systems, while noise is considered as Gaussian. In EKF, the motion or
state transition model Eq. (19) is formalized by the following equation.

xy = f(xe1, we) + wy (25)

where f function models vehicle kinematics in function of actual state x_;
and actual control input ux and wy is an additive zero mean Gaussian noise
with covariance Qy (wy ~ N (0, Qy)).
On the other side, EKF implements the generic observation model Eq. (20)
by the following equation.
7z = h(xy) + vk (26)
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where h function describes relation between actual state xy and state-dependent
measurements zy. The vy is again an additive zero mean Gaussian error of ob-
servation with covariance R (vi ~ N (0,R)).

The system state vector of filter-based visual odometry solutions can be di-
vided into the part related to the motion estimation (Xxpgse) and the auxiliary
section related to the observation model related to the certain solution (Xqux)-
The base part xpqse comprises parameters necessary to describe kinetic and
dynamic state it also contains parameters necessary for modelling gyroscope
and accelerometer. The auxiliary part xq.x, in visual based systems, is neces-
sary to describe the visual observation model. In real implementations it can
contain real 3D positions or projected positions of map landmarks (m) or even
consecutive camera positions and orientations.

Xk = [Xbase,k> Xaux,k] (27)

The related state covariance matrix (P) is also can be divided into parts related
to the motion model (Ppgse), to the observation model (Pgyyx), and describes
the relation between these parameters (Ppase,aux)-

Pk — Fbase,k Pbase,aux,k (28)
base,aux,k Paux,k

During time update the state vector estimate and related covariance matrix
are updated according to the following equations.

Kik—1 = F(Ry_qp—1, uy)

T (29)
Pyy—1 = FyPrp1 Fy + Qi

where the F is the Jacobian of f function and evaluated around at the state
estimate Xy and actual control input wuy, %(fck, uy).

Based on the visual observations, correction is formulated according to fol-
lowing equations that describe the residual, the Kalman gain, respectively.

ri = zx — h(Ryr—1)

T T 9 (30)
Ky = Py 1 Hy (Hi Py Hy + Ry)

According to the residual and the Kalman gain estimated state and covariance
matrix updates are defined as the followings.

Kk = Kygk—1 + Kyry

(31)
Py = (I - KiHy) Py
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Although, due to its flexibility and moderate complexity, EKF is the most
widely used Bayesian filter, during its application some of the drawbacks have
to be considered. Since EKF linearises the actual non-linear characteristics,
the choice of point of linearisation affects its stability, while special care has
to be taken to the estimation of noise variances.

Considering 6DOF kinematic properties of the smart-phone, application re-
quires from the filter state to store actual orientation, position, velocity and
gyroscope and accelerometer bias parameters, at least. According to this con-
sideration, kinematic part of the filter state is defined by the following vector.

X = [qQI) Pz, VIG, Wb, ab]T (32)

During state propagation using the gyroscope-accelerometer measurement pair,
the nominal values of kinetic part of the state should follow the kinetic equa-
tions below.

) 1 i
qgz = Eng ® (Wm — wy), Pz ¢ = V1,6 (33)

vzg =Rgz(am—ap) +g, @W,=0, a,=0

5.4 Particle filter

The Bayesian propagation and measurement equations (see Eq. (22) and Eq. (21))
cannot be solved in closed form for the SLAM problem. For Gaussian-distribution
the solution can be approximated with various Kalman-filters but the exact
solution for strongly non-linear models can only be found by numerical inte-
gration.

Given a g(x): R™ — R™ function, the expectation over a posterior distri-
bution:

Elg(x) 214 = Jg(x)P(xmk) ax (34)

can be approximated by drawing N independent random samples x¥ form
the p(x|z1x) distribution:

Elg(x)lz1ad = NZg (3)

This type of numerical calculation of integrals is called Monte Carlo method
[49]. However, in case of the Bayesian models it is not possible to draw samples
from P(x|z1.), so we need to use importance sampling in order to approximate
the distribution.
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5.4.1 Importance sampling

To overcome the issue of not having the P(x|z1.x) distribution, we can construct
an importance distribution TT(x|z7.) from which it is easy to draw samples [33].
It is straightforward that

P(x]z14)

Jg(X)P(X|Z1:k) dx = J [g(X)W

] M(xlz14.) dx (36)

By using this form we can establish a Monte Carlo approximation of the
expectation by drawing samples from the importance distribution as xV ~
MM(x|z1x) and calculating the sum

(M .
Elg(x)|z1x] = ! E ]]')[(X'Wg(x(l])
. | (37)

where wlt) is defined as
~ (1) _ 1 P(Xm|z1:k)
w

= NT(xTlzrs) 38)

By using normalized weights and applying Bayes-rule we can replace the pos-
terior distribution P(xV|z1,) with the prior and the likelihood function. The
normalized weights w() can be written as

P(z15/xV)P(x)
H(X(i)‘Z]:k)
W)

Z]N:1 W*(J)

WD) =

(39)
wii) —

Finally, the posterior probability density function can be formed by using the
Dirac delta function &(-):

p(xlzia) &~ ) wls(x —x) (40)
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5.4.2 Sequential importance sampling

Specifically, for state space models shown in Eq. (19) and Eq. (20), the mod-
ified version of the importance sampling algorithm can be used to calculate
the expectation and probability density efficiently. The sequentlal importance
sampling algorithm uses a weighted set of particles {(W]i), )}, which con-
tains samples from an importance distribution and their Welghts for every k

time instant. The distribution can be approximated with the particles as

p(xklz1x) ~ ZWk 5(xi — %) (41)

The weights can be calculated at every time instant with the equation

(1) 1))..(1)
. o Plzilx, )P(x, |x
W](g) OCW](:{] ( k| k ) ( X | kq) (42>

U(XE) |X(()l;])<71 ) Z]:k)

where W1(<1 ) shall be normalized to sum to unity [49].

Sequential importance sampling still has the problem of having too many
particles with almost zero weights, thanks to the special properties of the distri-
butions used in SLAM techniques. This situation is called degeneracy problem
and has a great impact on using them in real applications. To avoid degen-
eracy problem a re-sampling method called sequential importance re-sampling
is used [16]. The main idea behind re-sampling is to draw new samples from
the discrete distribution defined by the weights and use them as new parti-
cles. This way particles with relevant weights get duplicated and particles with
small weights get removed. Commonly, the sequential importance re-sampling
algorithm is referred to as particle filter.

5.5 Solutions
5.5.1 EKF-SLAM

In EKF-SLAM algorithms filter state vector contains current IMU state Xpqse
and the observed feature 3D positions (py,). Thus the filter state vector is
defined as follows.
Xk = [Xpase,ks p;r1,k---PIn‘k]T (43)
The 3D feature can be parametrized traditionally using (x,y, z) coordinates,
anchored homogeneous parametrization [52] or the inverse-depth parametriza-
tion [6]. However, the former one is straightforward the latter two increases
the consistency and accuracy.
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EKF-SLAM uses ”standard” propagation method of states (xx) and covari-
ance matrix (Py) based on the IMU inertial measurements as described above,
while the update process is calculated on the observed image features. Assum-
ing a calibrated perspective camera, observation of feature i on the actual
image at time step k is described by the following equation that describes the
actual observation.

1 Xf, C
zix = h(xmmuk, Py, ) = —— [ B I TR (44)

’ Zf; ,Cx Yrfi,Cx
where n;y is the measurement noise, and Prc. = [Xf,,Crs Ufi,Co» Zf1,0, ) describes
observed position of feature f; in camera orientation frame Cy, and this position
is described by the following equation and the pz. and Rz are the fixed

position and rotation transformations between the IMU (Z) and the camera
(C) frames.

Pr,o = RCIRIkg(pf'ug - pIk,g) +Pzc (45)

Assuming that the actual position of the IMU frame is pz, g, EKF-SLAM
defines a residual as the difference between the real observation zij of the
feature 1 and the projection of the estimated feature position (Py, ¢, ), and
linearise it around the actual state (Rimu,x) as:

rix = zix — h(Rimuk, Prc, ) = Hik(Ri) Xk + nix (46)

The Hjy(Ry) is the Jacobian matrix of h with respect to the actual filter
state estimate (Ry).

When ri and Hj are computed, the outlier detection is done using Maha-
lanobis gating. If it succeeds the test using residual and observation Jacobian,
Kalman gain and state innovation are computed according to basic EKF rules
(see Eq. (31)). For Mahalanobis gating we compute the following:

vi =r{ H;P{H! + ¢’T1) 'r; (47)

Then it is compared to the threshold given by the 96 percent of the x?2
distribution of dimensions equal to the residual vector.

Observation update step requires that all landmarks and joint-covariance
matrix must be updated every time an image is registered by the camera.
Considering the complexity of the EKF-SLAM, it is straightforward that the
computational complexity is dominated by cubic of actual number of land-
marks, thus the complexity is @(n?). In practice, a map can consists of thou-
sands of features, thus the EKF-SLAM becomes computationally intractable
for large areas.
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To provide the first-aid to this problem Sola proposed a method, when state
and covariance matrices are updated by the actual observed feature numbers,
in this way making a step to cover the real-time requirements. [47]

5.5.2 MSCKF

The fundamental advantage of filter-based algorithms is that they account
for the correlations exist between pose of the camera and 3D positions of
the observed features. On the other hand, the main limitation is its high
computational complexity.

The motivation of Multi-State Constraint Filter (MSCKF) is the introduc-
tion of consecutive camera poses into state instead of observable feature land-
marks, as it is first introduced by Nister [43], however this method does not
incorporate inertial measurements. Sliding window-based solutions also appear
in other papers [7].

Assuming that, N of the camera poses are included in the EKF state vector
at time step k the MSCK state vector has the following form.

T T T
Xk = [Xbase,k) qgc,sPc,y,g---dgen s PcN,g] (48)

Since time update is common for EKF-based pose estimators, the difference
is maintained during measurement update step, when new image is arrived
and features are tracked among the last N camera poses. The update process
is based on each single feature f; that has been observed from the set of N;
camera poses (qgci, Pc; g) that has been also available in the state vector.

The estimated feature position ﬁfj’g in the global frame is triangulated from
these N camera poses using feature observations. During this process, usually, a
least-square minimization used with inverse-depth parametrization [6]. Then,
the residual is defined as the difference between re-projections of estimated
feature ﬁfj,g to the Nj cameras and the real feature observation is defined as

()

I‘]-.

) ) RPNO) (49)

i i i

On the other hand, the residual can be approximated by linearising around
the estimates of the camera poses and the feature positions, where Hy, and
()
; i
the feature position, respectively. After stacking the residuals for each N; mea-
surements of the fj features we get the following equation.

H?) are the Jacobians of the measurement z.”” with respect to the state and

rll) ~ Hy + HY g g (50)
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Since actual state estimate x is used for estimation of f)fj .g» the error of state
x and of feature position f)fjg are correlated. The solution to this problem

is projecting r) on the left null-space of the matrix H?). Define AU as the
unitary matrix whose columns form the basis of the left null-space of Hy, we
get:

rg) ~ A(j)THEZ)f(U) + ATHO) = ng)i(j) + ng) (51)

By also stacking residuals into a single vector from observations from each f;j
features, we obtain the following single form of equation.

rg = Hx)N( + n, (52)

To reduce the computational complexity during update QR decomposition is
applied of Hy [31]. After determining the T} upper triangular matrix and its
corresponding unitary matrix whose columns form bases for the null-space of
Hy, Qq. The residual is then reformulated as the following.

rn =Qlr, =Tyx+n, (53)

Based on the above measures, the residual r,, and the measurement Jacobian
T}y the basic EKF update is applied (see Eg. (31)).

The correct co-operation between image based relative observations and in-
ertial measurements requires to exactly know the transformation between cam-
era and IMU orientation frames. In most of the solutions this transformation
assumed to be known exactly, EKF is appropriate also to estimate these pa-
rameters. The improvements in MSCKF 2.0 [31] introduces these parameters
(qIC,pC’I) to the state parameters. Besides, in this paper global orientation
errors are considered and improved linearisation and calculation of Jacobians
are provided. These methods improve the observability and increase accuracy
and stability while estimating relative orientation and positions.

MSCKF model is also augmented with estimation of rolling shutter camera
properties [28] and temporal calibration [30], while algorithm is provided for
on-line self-calibration [32].

Regarding the computational complexity, it is easy to realize that instead of
EKF-SLAM, complexity fundamentally depends on the number of registered
camera states not on the number of observed features. However, calculation of
T depends on the number of features (~ d) and the columns of the Q (7).
Other crucial factor is determined by the computation of covariance matrix up-
date. The cost of MSCKF update is then determined by max(O(r?d), O(m?)),
where m is the size of the state vector.
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One can see that since MSCKF uses sliding window for camera states,
tracked features can be observed only for a time limited to window size. To
overcome this limitation the authors designed a hybrid MSCKF-EKF SLAM
solution, where the optimality found on using MSCKF for short features and
long feature track is inserted to the state as it is done in EKF SLAM [29].

5.5.3 FastSLAM

FastSLAM implements PF method, however, high dimensional state-space of
the SLAM problem makes it computationally infeasible to apply particle filters
on the Bayesian-equations directly. FastSLAM solves this problem by applying
a factorization to the posterior distribution as follows. [38]:

P (X1, MZ0:6, Uosey X0) = P (X120, Uores X0) [ | P (mxlx16, Zox, oy X0)  (54)
K

Estimation thus can be done in two steps: first we estimate the posterior
of path trajectories then — based on estimated trajectory — we estimate the
locations of the K landmarks independently. The path estimation is done by
a modified particle estimator using Monte Carlo method, while estimation of
landmarks is achieved by Kalman-filters. Because landmarks are conditioned
on path estimation, if M particle is used to estimate the trajectory, then KM
two dimensional Kalman-filters are required to estimate the landmarks.

FastSLAM runs time linear in the number of landmarks, however, the im-
plementation of FastSLAM uses a tree representation of particles to run in
O(MlogK). This way, the re-sampling of particles can happen much faster
than using native implementation.

FastSLAM can handle huge amounts of landmarks — as extensive simulation
has shown — and is at least as accurate as EKF-SLAM. However, the biggest
problem of FastSLAM is the inability to forget the past (i.e. the pose and
measurement history) and this way the statistical accuracy is lost [2].

FastSLAM has a more efficient extension called FastSLAM 2.0, which uses
another proposal distribution including current landmark observations and
this way calculating importance weights differently [39].

6 Implementation aspects

It is essential for visual odometry and SLAM algorithms to run real-time.
Recent smartphones are equipped with a considerable amount of resources,
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like multiple cores of CPU and GPU. To face to the real-time requirements
by utilizing parallel resources, a couple of algorithms decouple real-time and
background tasks. The computational burden is still really high for embedded
devices. Fortunately, these algorithms give way to a lot of parallelisation to
speed up computations.

Feature extraction is also much faster if done parallel, e.g. SiftGPU re-
ported to extract SIFT features at 27 FPS on a nVidia 8800GTX card [58].
The widespread OpenCV! has also GPU support for various algorithms using
CUDA and OpenCL. Not only feature detection and extraction but bundle
adjustment can be parallelised to be ca. 30 times faster than native implemen-
tation as the Multi-core Bundle Adjustment project shows [59].

7 Evaluation

Beside the solutions described in this work, a huge amount of implementations
are available (see https://openslam.org). For the prudent comparison of
the methods, algorithms and real implementations, widely known datasets
are used. These datasets provide huge amount of video frames of different
trajectories with ground truth, containing mainly grayscale and RGB images
but often RGB-D and laser data is also accessible. The most widely used
datasets are the KITTI dataset [15], the RGB-D dataset [53] and New College
Data Set [51], from those the KITTI odometry dataset consists of 22 stereo
sequences (which can also be used as a monocular data) and a comprehensive
evaluation of different SLAM methods listing accuracy and speed.

Regarding the KITTI dataset a huge list about performance evaluation of
available implementations is published at http://www.cvlibs.net/datasets/
kitti/eval_odometry.php.

8 Conclusion

Huge variety of algorithms and solutions are currently available to tackle the
strict requirements of the accurate and real time visual indoor positioning that
augmented reality-based applications demand. These algorithms build on the
results of research work on computer vision from the last decades, which went
through big evolution, from SFM to the real-time SLAM approaches. However,
to face to real-time requirements filter-based solutions tightly coupling inertial
measurements with visual odometry are emerging. Through embedding inertial

'OpenCV can be found at http://opencv.org
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measurements from IMU for motion estimation to the projective geometry
principles, these approaches are promising for future implementations, however
they suffer from the capability of long-lasting state parameter estimations.
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