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Abstract. If k ≥ 1, then the global degree set of a k-partite graph G =
(V1, V2, . . . , Vk, E) is the set of the distinct degrees of the vertices of G,
while if k ≥ 2, then the distributed degree set of G is the family of the
k degree sets of the vertices of the parts of G. We propose algorithms
to construct bipartite and tripartite graphs with prescribed global and
distributed degree sets consisting from arbitrary nonnegative integers.
We also present a review of the similar known results on digraphs.

1 Introduction

In this paper we follow the terminology used in the monography of Chartrand,
Lesniak and Zhang [5] and the handbook of Gross, Yellen and Zhang [11].
Let m ≥ 0 and n ≥ 1 be integers, G = (V, E) be a finite, simple graph

with vertex set V(G) = {v1, . . . , vn} and edge set E(G) = {e1, . . . , em}. The
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degree di of a vertex vi is the number of edges of G which are incident on vi.
The degree sequence d = [d1, d2, . . . , dn] of G is the sequence of degrees of G,
usually put in nonincreasing or nondecreasing order. The number of vertices
is called the order of G, while the number of edges is called the size of G. A
degree sequence d is said to be graphic if it is the degree sequence of some
finite graph. The set of the disjoint degrees γ = {g1, g2, . . . , gp} of the vertices
of G is called its degree set. If k ≥ 2 is an integer and G = (V1, V2, . . . , Vk, E)
is a k-partite graph, then the degree set of the vertex set Vi (1 ≤ i ≤ k) is
called the global degree set of the i-th part of G and is denoted by γi(Vi); the
union

∏k
i=1 γi is called the global degree set of G and is denoted by γ(G).

In the literature instead of the global degree set usually the shorter degree
set expression is used, but we wish to underline the difference between the
simple and multipartite graphs. The family of the degree sets γi is called the
distributed degree set of G and is denoted by δ(G).
The papers of Tyshkevich and Chernyak [55, 56, 57, 58] contain a review on

the different generalizations of score sequences.
Some early results on degree sets of simple graphs and trees (acyclic con-

nected graphs) were published in 1977 by Kapoor, Polimeni and Wall. They
introduced the concept of degree set and proved the following theorem

Theorem 1 (Kapoor, Polimeni, Wall [25]) If p is a positive integer, then any
set γ = {g1, g2, . . . , gp} of positive integers with g1 < g2 < · · · < gp is the
degree set of a connected graph G and the minimum order of such a graph is
gp + 1.

Proof. See [25, 37, 54]. �
In 1979 Koukichi and Katsuhiro [28] reproved Theorem 1. They defined

(n, k)-sets as sets of integers {h1, . . . , hk} with n−1 ≥ h1 > h2 > · · · > hk ≥ 0.
Further they defined DGn(k) for any positive n and k with 1 ≤ k ≤ n− 1 as
the set of all degree sets D of graphs G of order n with |D| = k, and Fn(k)
as the set of all (n, k)-sets D = {d1, . . . , dk} satisfying: (i) if d1 = n − 1, then
dk > 0 and (ii) if n = 1 (mod k) then D contains at least one even number..
Among others they expressed DGn(2) in terms of Fn(2), and proved DGn(3)
= Fn(3) and DGn(n− 2) = Fn(n− 2) for n > 2.
A short proof of this result is due to Tripathi and Vijay [54].
A simple consequence of Theorem 1 is the following assertion allowing 0 ∈ γ

and not containing the condition of sorted γ.

Corollary 2 If p ≥ 1 is an integer, then any set γ = {g1, g2, . . . , gp} of non-
negative integers is the degree set of a graph G and if 0 /∈ γ, then the minimum
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order of such graphs is max(γ) + 1, otherwise max(γ) + 2.

Proof. If 0 /∈ γ, then we can use the proof of Theorem 1, otherwise we can
add an isolated vertex to the minimal size graph corresponding to γ \ 0. �
In 2006 Ahuja and Tripathi investigated the possible sizes of graphs having

prescribed degree set and extended Theorem 1 giving all possible size of graphs
having a prescribed degree set. We say, that a graph G is a (p, γ)-graph, if its
size is p and its degree set is γ.

Theorem 3 (Ahuja, Tripathi [1]) Let γ = {g1, g2, . . . , gp} be any finite, non-
empty set of positive integers and let m = max(γ). If all members of γ are odd,
then there exists a (p, γ)-graph if and only if p > m and p is even; otherwise
there exists a (p, γ)-graph if and only if p > m, provided also that p �= m+ 2

in the special case, where γ = {1,m} for any even integer m ≥ 4.

Proof. See [1]. �
One can ask, what is the answer, if we allow 0 ∈ γ? Using Theorem 3 it is

easy to show, that in this case all sizes greater than p are possible.
In 1980 Sipka investigated the problem or the possible orders of graphs

having a prescribed global degree set γ = {g1, g2, . . . , gn} of integers with
1 ≤ g1 < g2 < · · · < gn. His results are summarized in the following theorem.

Theorem 4 (Sipka [52]) Let γ = {g1, g2, . . . , gp} be a nonempty set of positive
integers with g1 < g2 < · · · < gp.
(i) If p is even, gi is odd for all 1 ≤ i ≤ p, p > gp, then there exists a graph

G of order p with γ(G) = γ.
(ii) If gi is even for some 1 ≤ i ≤ p, t ≥ 2 and γ �= {1, 2, . . . , 2t}, then there

exists a graph G of order p such that γ(G) = γ for all positive p > gn, then
there exists a graph G of order p such that γ(G) = γ.
(iii) If t ≥ 2 is an integer, γ = {1, 2, . . . , 2t}, then there exists a graph G of

order p for all positive p exceeding gp, with the exception of gn + 2.

Proof. See [52]. �
Let p ≥ 1 be an integer, further let γ = {g1, g2, . . . , gp} be a set of integers

with 0 ≤ g1 < g2 < · · · < gp. Then μdc(γ) = μdc{g1, g2, . . . , gp} denotes the
minimum order of disconnected graphs G for which γ(G) = γ.
In 2004 Manoussakis et al. investigated disconnected graphs. Let γ = {g1, g2,

. . . , gp} be a nonempty set of nonnegative integers with 0 ≤ g1 < g2 < · · · <
gp} and let μdc(γ) = μdc{g1, g2, . . . , gp} denote the minimum order of a dis-
connected graph G for which γ(G) = γ.
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Manoussakis, Patil and Sankar assert [32], that if g is a nonnegative integer,
then μ(g) = 2(g+1). This assertion is not correct. We give the correct formula.

Theorem 5 If g is a nonnegative integer, then μ(g) = g+ 2.

Proof. If G is disconnected and has a vertex with degree g, then it has at
least (g+1)+1 = g+2 vertices. But a star with g+1 vertices plus an isolated
vertex form a corresponding graph. �
For the case p ≥ 2 Manoussakis et al. proved the following assertion.

Theorem 6 (Manoussakis, Patil, Sankar [30, 31, 32]). Let p ≥ 2 be an integer
and γ = {g1, g2, . . . , gp} be a set of nonnegative integers with g1 < g2 < · · · <
gp. Then there exists a disconnected graph G such that γ(G) = γ. Further,
μdc = g1 + gp + 2.

Proof. See [31, 32]. �
Manoussakis, Patil and Sankar [30, 32] also investigated degree sets for k-

connected graphs, k-edge connected graphs, unicyclic graphs and maximal
k-degenerate graphs.
Let m be a positive integer. An (m,γ)-graph has m edges and degree set γ.

We denote by e(γ) the least m, for which there exists an (m,γ)-graph, and
by le(γ) this least e(γ).
In 2006 Tripathi and Vijay determined le(γ) in the following cases:
a) |γ| ≤ 3;
b) t ≥ 1 is an integer and γ = {1, 2, . . . , t};
c) min(γ) ≥ |γ|.
Further, they gave lower and upper bounds for le(γ) in all cases and exhib-

ited the cases, when the bounds are tight.
In their paper Tripathi and Vijay use the following notations. If s = [d1, d2,

. . . , dn] is an increasing degree sequence, then its short form is s = [dm1

1 , d
m2

2 ,

. . . , d
mp
p ], where d

mi

i denotes mi copies of di.

Theorem 7 (Tripathi, Vijay [53]). Let g be a nonnegative integer. If γ = {g},
then there exists a (q, γ)-graph if and only if

e ∈

⎧⎪⎨
⎪⎩

{
mg : m ≥ g+ 1

2

}
if g is odd,{

m
g

2
: m ≥ g+ 1

}
if g is even.

In particular, le({g}) =
1
2
g(g+ 1).
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Theorem 8 (Tripathi, Vijay [53]). Let a and b be positive integers with a > b

and let γ = {a, b}. Then there exists a (q, γ)-graph if and only if q has the
form 1

2
(ma+mb), where m and n are positive integers, m+ n ≥ a+ b, and

1 ≤ m ≤ b or m ≥ a+ 1 or m(a+ 1−m) ≤ mb with b+ 1 ≤ m ≤ a.

In particular,

lq({a, b}) =

⎧⎪⎨
⎪⎩

a(b+ 1)

2
if a is even or b is odd,

a(b+ 1) + (a− b)

2
if a is odd or b is even.

Theorem 9 (Tripathi, Vijay [53]). Let t be a positive integer and let γ =
{1, 2, . . . , t}. Then there exists an (e, α)-graph if and only if

e ≥
⌈
t

2

⌉
+ 1).

In particular, le(γ = � t
2
�(� t

2
	+ 1).

In their paper Tripathi and Vijay constructed a special γ = {g1, g2, . . . , gt}

and determined its l(γ) as follows:

l(γ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2
p0(γ) if p0(γ) is even

(1
2
p0(γ) + gr − gp) if p0(γ) is odd and gp is even

min(1
2
p0(α) + ar − at,

1
2
(p0(α) + ap)) if both p0(γ) and gp are odd.

Their following result shows that the above bounds are achieved for infinite
number of sets.

Theorem 10 (Tripathi, Vijay [53]). Let γ be a finite set of positive integers
such that min(γ) ≥ |γ|. Then le(γ) = l(γ).

The proofs of these theorems due to Tripathi and Vijay can be found in [53].
In 2011 Volkmann extended Theorem 1 to multigraphs, proving the follow-

ing assertion.

Theorem 11 (Volkmann [59]) Let p ≥ 1 and integer and and γ = {g1, g2, . . . ,

gp} be a set of integers such that

g1 > g2 > · · · > gp ≥ 1.
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(i) If k = 1, then γ is the degree set of a multigraph of order two.
Assume now that k ≥ 2 and g1 ≤

∑p
i=2 gi.

(ii) If
∑p

i=2 gi is even, then γ is the degree set of a multigraph of order k.
(iii) If If

∑p
i=2 gi is odd, then γ is the degree set of a multigraph of or-

der k+ 1.
Next assume that k ≥ 2 and g1 >

∑p
i=2 gi.

(iv) If g1 +
∑k

i=1 gi even, then γ is the degree set of a multigraph of order
k+ 1.
In addition, assume in the following that g1 +

∑p
i=1 gi is odd.

(v) Let
∑k

i=1 gi be even. If there exists an index 2 ≤ k such that gj is even

and g1 ≤ gj+
∑k

i=2 gi, then δ is the degree set of a multigraph of order k+1. If
there is no such index, then γ is the degree set of a multigraph of order k+ 2.
(vi) Let

∑k
i=1 gi be odd. If there exists an index 2 ≤ j ≤ k such that gj is

odd and g1 +
∑k

i=2 gi, then γ is the degree set of a multigraph of order k+ 2.
In all cases of the multigraph is the least possible one.

Proof. See [59]. �
The girth of a graph is defined as the length of a shortest cycle in the graph.

For integers r ≥ 2 and g ≥ 3 f(r, g) is defined as the smallest order of an
r-regular graph, having girth g. Such graphs are called cages [5, 37]. In 1963
Erdős and Sachs [5, 10] not only proved the existence of all cages but gave an
upper bound for their order.

Theorem 12 (Erdős, Sachs [10]). If r ≥ 2 and g ≥ 3, then

1+ r

�(g−3)/2�∑
t=0

(r− 1)t ≤ f(r, g) ≤ 4

g∑
t=1

(r− 1)t.

Proof. See [10]. �
Erdős and Sachs remarked that Theorem 12 can be improved using the

method proposed by Ferenc Kárteszi [26].
For k ≥ 1, n ≥ 3 and a set of integers γ = {g1, g2, . . . , gk} with 2 ≤ g1 <

· · · < gk we define

f(γ, g) = f(g1, g2, . . . , gk;g)

to be the smallest order of graph having girth g and degree set D.
In 1981 Chartrand, Gould and Kapoor proved the following four theorems

on the values of f(D,g).
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Theorem 13 (Chartrand, Gould, Kapoor [3]) If n ≥ 1 and γ = {g1, g2, . . . ,

gn} is a set of integers with 2 ≤ g1 < g2 < · · · < gn, then f(γ; 3) = 1+ an.

Theorem 14 (Chartrand, Gould, Kapoor [3]) For m ≥ 3 and n ≥ 3

f(2,m;n) =

⎧⎪⎨
⎪⎩

m(n− 2) + 4

2
if n is even,

m(n− 1) + 2

2
if n is odd.

Theorem 15 (Chartrand, Gould, Kapoor [3]) If 2 ≤ s, then

f(r, s; 4) = s.

Theorem 16 (Chartrand, Gould, Kapoor [3]) f(3, 4; 5) = 13, f(3, 4; 6) = 18.

In 1982 Wang published a survey [61] on the results connected with cages.
In 1988 Chernyak [6] continued the investigation of f(r, g).
A graph having the minimum number of vertices in the class of graphs with

degree set γ = {g1, g2, . . . , gp} and girth m is called a (γ;p)-cage; the order
of a (γ;p)-cage is denoted by f(γ;p). In this paper some new values of the
function f are determined constructively: f(3, 4, r; 5) = 3k + 1 for k = 5 and
r = 4, as well as for k ≥ 6 and 4 ≤ r ≤ 3+ 2�(k− 5/3)/2�; f(3, 4, k; 6) = 4k+ 1

for k ≥ 5; f(3, k; 6) = 4k + 2 for k ≥ 4; f(3, 4, k; 7) = 7k + 1 for k ≥ 4, and
f(3, 4; 8) = 39.
In 1985 Mynhardt [34] determined the condition of the existence of a degree

uniform graph having prescribed global degree set.
A signed graph G is a graph in which to each edge is assigned a positive

or negative sign. The set of distinct signed degrees D of a signed graph G is
called its global signed degree set.
The concept of signed graphs was introduced and firstly characterized by

Harary in 1953 [15]. In the first paper he proved the following assertions.
According to his paper a signed graph, G = (V, L+, L−) consists of a vertex set
V = {V1, V2, . . . , Vn}, and two disjoint sets of edges L+ and L−.

Theorem 17 (Harary [15]) A complete signed graph is balanced if and only
if its vertex set V can be partitioned into two disjoint subsets V1 and V2, one
of which may be empty, such that all edges between the vertices of the same
subset are positive, and all edges between vertices of the two different subsets
are negative.
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Proof. See [15]. �

Theorem 18 (Harary [15]) A signed graph is balanced if and only if for each
pair of distinct vertices A and B all paths joining A and B are positive.

Proof. See [15]. �

Theorem 19 (Harary [15]) A signed graph is balanced if and only if its vertex
set can be partitioned into two disjoint subsets V1 and V2 in such a way that
eachl positive edge of G joins two vertices of different subsets.

Proof. See [15]. �
In 1955 Harary [16] presented enumeration results on the different types of

graphs including also signed graphs.
A sequence σ = (d1, d2, . . . , dn) of integers is standard, if it is nonincreasing,

the sum of its element is even, d1 > 0, each |di| < n, and |d1| ≥ |dn|.
In 1968 Chartrand et al. published the following assertion, similar to the

well-known theorem of Hakimi [13] for the degree sets of graphs.

Theorem 20 (Chartrand, Gavlas, Harary, Schulz [2]) If γ = (g1, g2, . . . , gp)
is a standard sequence, then there exists a signed graph G with global signed
degree set γ if and only if there exists a signed graph G ′ with signed global
degree set

σ ′ = (g2−1, g3−1, . . . , gg1+s+1−1, gg1+s+2, . . . , gp−s, . . . , gp−s+1+1, . . . , gp+1)

for some s, 0 ≤ s ≤ p−1−g1
2

.

Theorem 21 (Yan, Lih, Kuo, Chang [62]) let γ be a standard sequence. There
exists a signed graph with global signed degree sequence γ if and only if there
exist integers r and s with g1 = r − s, 0 ≤ s ≤ p−1−g1

2
such that there exist a

a isigned graph G ′ with global signed score set

γ ′ = {g2 − 1, g3 − 1, . . . , gg1+m+1 − 1, gg1+m+2, . . . , gp−m, gp−m+1 + 1, gp + 1}.

In 2007 Pirzada et al. improved Theorem 1 proved by Kapoor, Polimeni and
Wall in 1977.

Theorem 22 (Pirzada, Naikoo, Dar [47]) Let p be a positive integer and γ =
{g1, g2, . . . , gp} be a set of integers with g1 < g2 < · · · < gp. Then γ is the
signed global score set of some connected signed graph G and the minimal order
of such signed graphs is gp + 1.
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Proof. See [47] �
In 2013 Kumar, Sarma, and Sawlami [29] studied the number of vertices

and multiplicity of degrees as parameters of directed and undirected tree re-
alizations of prescribed degree sets.

2 Bipartite graphs with prescribed global degree
sets

A graph B(V, E) is said to be bipartite (or bigraph or 2-partite graph) if its
vertex set V can be partitioned into two disjoint sets V1 and V2 with V = V1∪V2

so that if uv ∈ E, then u and v belong to different vertex sets. We will use
the notation B(V1, V2, E). A bipartite graph is complete if uv ∈ E for every
u ∈ V1 and every v ∈ V2. If |V1| = n1 and |V2| = n2, then the complete bipartite
graph is denoted by Kn1,n2

. Examples of bipartite graphs are trees, cycle graphs
with even number of vertices, planar graphs whose faces all have even length
(special cases of this are grid graphs and square graphs), hypercube graphs,
partial cubes and median graphs. Bipartite graphs can be characterized in
several different ways such as (i) A graph is bipartite if and only if it does not
contain an odd cycle, (ii) A graph is bipartite if and only if it is 2-colorable.
The set of distinct degrees {g1, g2, . . . , gp} of B = (V1, V2, E) is called the

global degree set of B and is denoted by γ(B) (or simply by γ). For any non-
empty subset U of V1 ∪ V2 γ(U) denotes the set of degrees of vertices in U.
Then, the global degree set of a bipartite graph B with a bipartition (V1, V2)
is the set γ(B) which is the union of the sets of degrees in V1 and in V2, i.e.
γ(B) = γ(V1) ∪ γ(V2).
In 1977 Kapoor et al. proved the following assertion on the existence of trees

(ie., connected, bipartite acyclic graphs) having prescribed global degree set.

Theorem 23 (Kapoor, Polimeni, Wall [25]) Let γ = {g1, g2, . . . , gp} be a non-
empty set of positive integers. Then there exists a nontrivial tree T (i.e. a con-
nected, acyclic bipartite graph) with global degree set γ(T) = γ if and only if
1 ∈ γ. Further, if 1 ∈ γ, then the minimum order of a nontrivial tree T with
γ(T) = γ is

∑n
i=1(gi − 1) + 2.

Proof. See [25]. �
If q ≥ 2, then every even cycle C2q is bipartite with γ(C2q) = {2} and

moreover, μ(C2q) = 4.
In 1979 Kapoor and Lesniak [24] studied the minimal order of bipartite

graphs, having a prescribed global degree set. They received partial results: in
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some special cases determined the minimal order of triangle-free graphs having
prescribed degree set.
In 1994 Ellis [9] published a paper on layered graphs called by him (k, 2)-

partite graphs in which he proposed effective sequential and parallel algorithms
to decide whether a given graph is (k, 2)-layered, and also for the effective
solution of several connected problems.
In 2007 Pirzada, Naikoo and Dar proved the following assertion.

Theorem 24 (Pirzada, Naikoo, Dar [48]) Every set of positive integers is the
global degree set of some connected bipartite graph.

Proof. See [48]. �
Recently Manoussakis and Patil determined the families of connected uni-

cyclic bipartite graphs having prescribed global degree set.

Theorem 25 (Manoussakis, Patil [33]). Let p ≥ 2 be an integer and γ =
{g1, g2, . . . , gp} be a set of positive integers with g1 < g2 < · · · < gp. Then
there exists a connected unicyclic bipartite graph B with γ(B) = γ if and only
if either (a) or (b) below holds:
a) p = 2, g1 = 1 and g2 ≥ 3. In this case μ(γ) = 4(g2 − 1).
b) p ≥ 3 and g1 = 1. In this case

μ(γ) =

⎧⎨
⎩

3g2 + g3 − 4, if p = 3,

2g2 + g3 + g4 − 4, if p = 4,∑n
i=2(gi − 1), if p ≥ 5.

Proof. See [33]. �
The paper of Manoussakis and Patil contains the following lemma too.

Lemma 26 (Manoussakis, Patil [33]). For any given positive integer n, there
exists a complete bipartite graph B with bipartition (X, Y) such that γ(B) = {n}

if and only if n = |X| = |Y|.

Proof. See [33]. �
Here we prove that every finite set of positive integers is the global degree

set of some connected bipartite graph. Our approach is constructive and is
different from that used in [33, 48, 39].
At first we prove a useful lemma.

Lemma 27 If g1, g2, . . . , gp is a nonempty set of nonnegative integers with
0 ≤ g1 < g2 < · · · < gp}, then there exists a bipartite graph B = (V1, V2, E)

with global degree set γ(B) =
{
g1,

2∑
i=1

gi, . . . ,
p∑

i=1

gi

}
.
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Proof. We consider two cases, (a) when g1 = 0 and (b) g1 > 0.
Case (a). Let g1 = 0. We have three subcases to consider.

(i) Suppose p = 1. We choose the null bipartite graph G(V1, V2, E) with |V1| =
|V2| = 1 and E = ∅. In this case the degrees of the vertices v1 ∈ V1 and v2 ∈ V2

are gv1 = gv2 = 0 = g1. So degree set of G(V1, V2, E) is γ = g1.
(ii) Now let n = 2. We construct a bipartite graph G(V1, V2, E) as follows.
Let V1 = X1 ∪ X2, V2 = Y1 with X1 ∩ X2 = φ, |X1| = 1, |X2| = |Y1| = g2.

Take an edge from each vertex of X2 to every vertex of Y1. The degrees of the
vertices of G(V1, V2, E) are as follows.
For x1 ∈ X1, gx1 = 0 = g1 and for all x2 ∈ X2, gx2 = |Y1| = g2 = g1 + g2;

and for all y1 ∈ Y1, gy1
= |X2| = g2 = g1 + g2.

Thus the degree set of G(V1, V2, E) is γ = {g1, g1 + g2}.
(iii) For n ≥ 3, we construct a bipartite graph G(V1, V2) whose

V1 =
( p⋃
i=1

Xi

)⋃( n⋃
i=3

X′
i

)
and V2 =

( n−1⋃
i=1

Yi
)⋃( n−1⋃

i=2

Y′
i

)
,

where for all i �= j, Xi ∩ Xj = φ,Xi ∩ X′
j = φ, Yi ∩ Y′

j = φ, Y′
i ∩ X′

j = φ;
for all i, 2 ≤ i ≤ p, |X1| = 1, |Xi| = |Yi−1| = di;

for all i, 3 ≤ i ≤ p, |X′
1| = |Y′

i−1| =
i−1∑
r=2

gr.

We choose an edge from each vertex of Xi to every vertex of Yj whenever
i ≥ j; an edge from each vertex of X′

i to every vertex of Yi−1 for all i, 3 ≤ i ≤ p;
and an edge from each vertex of X′

i to every vertex of Y′
i−1 for all i, 3 ≤ i ≤ p.

The degrees of the vertices of the bipartite graph G(V1, V2.E) constructed
above are as follows.
For x1 ∈ X1, gx1 = 0 = g1 and for 2 ≤ i ≤ p, for all xi ∈ Xi,

gxi =

i−1∑
j=1

|Yj| =

i−1∑
j=1

|gj+1|

= g2 + g3 + · · ·+ gi = g1 + g2 + · · ·+ gi;

for 3 ≤ i ≤ n, for all x′i ∈ X′
i,

d(x′i) = |Yi−1|+ |Y′
i−1|

= gi + g2 + g3 + · · ·+ gi−1

= g1 + g2 + g3 + · · ·+ gi;
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for all y1 ∈ Y1,

d(y1) =

n∑
i=2

|Xi| =

p∑
i=2

gi

= g2 + g3 + · · ·+ gn

= g1 + g2 + g3 + · · ·+ gn;

for 2 ≤ i ≤ n− 1, for all yi ∈ Yi

d(yi) =

p∑
j=i+1

|Xj|+ |X′
i+1| =

p∑
j=i+1

gj + (g2 + · · ·+ gi)

= gi+1 + gi+1 + · · ·+ gp + g2 + g3 + · · ·+ gi

= g1 + g2 + · · ·+ gp;

for 2 ≤ i ≤ p− 1, for all y′
i ∈ Y′

i

d(y′
i) = |X′

i+1| = g2 + · · ·+ gi

= g1 + g2 + g3 + · · ·+ gi.

Therefore we see that the degree set of G(V1, V2) is

γ = {g1,

2∑
i=1

gi, . . . ,

p∑
i=1

gi}.

Case (b) Now let g1 > 0. We have two subcases.
(i) Let p = 1. We consider the bipartite graph G(V1, V2) with V1| = |V2| = g1
in which there is an edge from each vertex of V1 to every vertex of V2. Here
the degrees of the vertices of G(V1, V2) are given as d(v1) = |V2| = g1 and
d(v2) = |V1| = g1, for all v1 ∈ V1, v2 ∈ V2. Thus the degree set of G(V1, V2) is
D = g1.
(ii) Let p ≥ 2. Consider the bipartite graph G(V1, V2) whose

V1 =
( n⋃
i=1

Xi

)⋃( n⋃
i=2

X′
i

)
,

V2 =
( p⋃
i=1

Yi
)⋃( p⋃

i=2

Y′
i

)
,
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where (for i �= j) each Xi ∩ Xj, Xi ∩ X′
j, X

′
i ∩ X′

j, Yi ∩ Yj, Yi ∩ Y′
j and Y′

i ∩ Y′
j are

empty, for all i, 1 ≤ i ≤ p, |Xi| = |Yi| = gi. Also for all i, 2 ≤ i ≤ p, we have
|X′

i| = |Y′
i| = g1 + g2 + · · ·+ gi−1.

Take an edge from each vertex of Xi to every vertex of Yj whenever i ≥ j;
an edge from each vertex of X′

i to every vertex of Yi for all i, 2 ≤ i ≤ n and
an edge from each vertex of X′

i to every vertex of Y′
i for all i, 2 ≤ i ≤ p.

The following are the degrees of the vertices of the bipartite graph G(U,V)
constructed above.
For 1 ≤ i ≤ p, for all xi ∈ Xi,

d(xi) =

i−1∑
j=1

|Yj| =

i∑
j=1

gj = g1 + g2 + · · ·+ gi.

For 2 ≤ i ≤ p, for all x′i ∈ X′
i,

d(x′i) = |Yi|+ |Y′
i| = gi + (g1 + g2 + · · ·+ gi−1) = g1 + g2 + · · ·+ gi.

For 1 ≤ i ≤ p, for all yi ∈ Yi,

d(yi) =

n∑
j=1

|Xj|+ |X′
i|

=
( n∑

j=1

gj
)
+ (g1 + g2 + · · ·+ gi−1)

= (gi + gi+1 + · · ·+ gn) + (g1 + g2 + · · ·+ gi−1)

= g1 + g2 + · · ·+ gp.

For 2 ≤ i ≤ p, for all y′
i ∈ Y′

i,

d(y′
i) = |X′

i| = g1 + g2 + · · ·+ gi−1.

Therefore the degree set of the bipartite graph G(U,V) constructed above

is D = {g1,
2∑

i=1

gi, . . . ,
p∑

i=1

gi}. �

Using Lemma 27, we can prove the following assertion.

Theorem 28 Every set of nonnegative integers is the global degree set of some
bipartite graph.
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Proof. Let γ = {a1, a2, . . . , an} be any set of distinct nonnegative integers.
We choose

b1 = a2 − a1, b2 = a3 − a2, · · · , bp−1 = ap − ap−1.

Now γ can be rewritten as

γ = {a1, a2 − b1 + b1, a3 − b2 + b2, · · · , ap − bp−1 + bp−1}

= {a1, a1 + b1, a2 + b2, . . . , ap−1 + bp−1}

= {a1, (a1 + b1), (a1 + b1 + b2), . . . , (a1 + b1 + b2 + · · ·+ bp−1)}.

As seen in Theorem 1, the set γ = {a1, (a1 + b1), (a1 + b1 + b2), . . . , (a1 +
b1 + b2 + · · · + bp−1)} is the global degree set of some bipartite graph which
is equivalent to say that the set γ = {a1, a2, . . . , ap} is the global degree set of
some bipartite graph. �

Example 29 Consider γ = {0, 5, 7}. We can rewrite γ as γ = {0, 5+0, 5+0+2}

and apply Corollary 2, then we get the bipartite graph with degree set γ. In
case γ = {3, 5, 10, 12}, we write γ as γ = {3, 3+ 2, 3+ 2+ 5, 3+ 2+ 5+ 2}.

From case (b) of Lemma 27, we have the following assertion.

Theorem 30 Every set of positive integers is the global degree set of some
connected bipartite graph.

The following algorithmGlobal-Bipartite is based on Theorem 41. There-
fore the algorithm is a sligtly modified version of Distributed-Bipartite.
Global-bipartite constructs a bipartite graph having prescribed global de-
gree set.
Input. p: the number of elements in the prescribed degree set γ;

γ = {g1, g2, . . . , gp}: the prescribed degree set for B(V1, V2, E).
Output. M(B): the incidence matrix of the constructed bipartite graph

(V1, V2, B).
n1: the number of lines of M, that is the size of the vertex set V1;
n2: the number of columns of M, that is the size of the vertex set V2.
Work variables. i, j: cycle variables.
The pseudocodes of this paper are written using the conventions described

in the textbook written by Cormen, Leiserson, Rivest, and Stein [7].
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Global-Bipartite(p, γ)
01 α = 0 // lines 01–03: computation of α
02 for i = 1 to p

03 α = α+ gi
04 ν = α2

08 n1 = ν/p

09 n2 = ν/p

10 for i = 1 to ν // lines 10–12: initialization of M
11 for j = 1 to ν

12 Mij = 0

13 i = 1

14 j = 1

15 x = n1

16 y = n2

17 while j < ν

18 while x > 0 and y > 0

19 Mij = 1

20 x = x− 1

21 y = y− 1

22 j = j+ 1

23 if x == 0

24 x = n1

25 i = i+ 1

26 if y == 0

27 y = n2

28 return μ,M

Theorem 31 Let
∑p

i=1 gi = s. Then the running time of Global-Bipartite
is Θ(s2/p2) in all cases.

Proof. See the proof of Theorem 43. �
Let m and n be positive integers. A signed bipartite graph B = (U,V, E)

with U = {u1, u2, . . . , un1
} and V = {v1, v2, . . . , vn2

} is a bipartite graph in
which to each edge is assigned a positive or negative sign. The signed degree
of a ui is defined as gui

= gi = g+i − g−i , where 1 ≤ i ≤ n1 and g+i (g−i ) is
the number of positive (negative) edges incident to ui, and the signed degree
of a vj is defined as gvj = gj = g+j − g−j , where 1 ≤ j ≤ n2 and g+j g

−
j ) is the

number of positive (negative) edges incident to vj. The global degree set γ of
a signed bipartite graph is the set of its distinct signed degrees.
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In 2006 Pirzada et al. proved the following properties of signed bipartite
graphs.

Theorem 32 (Pirzada, Naikoo, Dar [46, 49]) Let γ = {g1, g2, . . . , gp} be a
nonempty set set of positive (or negative) integers.Then γ is the signed global
degree set of some signed bipartite graph, and the minimal order of such graphs
is 1+max1≤i≤p |gi|.

Proof. See [49]. �

Theorem 33 (Pirzada, Naikoo, Dar [46, 49]) Let p be a positive integer and
γ = {g1, g2, . . . , gp} be a set of negative integers. Then γ is the signed global
degree set of some signed bipartite graph, and the minimal order of such graphs
is |min(γ)|.

Proof. See [46, 49]. �
As the following assertion shows, the requirement of the identical sign of the

elements of the score set can be removed.

Theorem 34 (Pirzada, Naikoo, Dar [46, 49]) Let γ be a set of integers. Then
γ is the signed global degree set of some signed bipartite graph.

Proof. See [46, 49]. �
In 2008 Pirzada et al. published the followig result.

Theorem 35 (Pirzada, Naikoo, Dar [46, 49]) Let p be a positive integer and
γ = {g1, g2, . . . , gp} be a set of positive integers. Then

∑1
i=1 gi,

∑2
i=1 gi, . . . ,∑p

i=1 gi is the signed global degree set of some signed bipartite graph, and the
minimal order of such graphs is |min(γ)|.

Proof. See [49]. �

3 Bipartite graphs with prescribed distributed de-
gree set

Let p be a positive integer and B = (V1, V2, E) a bipartite graph, where δ(V1) =
{a1, a2, . . . , ap}, and δ(V2) = {b1, b2, . . . , bp}. Then the pair (δ1, δ2) is called
the distributed degree set of B.
Given a pair (δ1, δ2) of finite, nonempty sets of positive integers, let μ(δ1 ∪

δ2) = min{|B| : B ∈ B, where B is the family of all bipartite graphs B with
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δ(B) = (δ1∪δ2). Manoussakis and Patil [33] have shown for a given pair (δ1, δ2)
of finite, nonempty sets of positive integers of same cardinality the existence of
a bipartite graph B(V1, V2) such that δ(V1) = δ1 and δ(V2) = δ2 and obtained
the minimum orders of different types of such graphs.

Theorem 36 (Manoussakis, Patil [33]) Let δ1 = {a1, a2, . . . , ap} and δ2 =
{b1, b2, . . . , bp} be nonempty sets of positive integers with a1 < a2 < · · · < ap,
and b1 < b2 < · · · < bp. Then there exists a bipartite graph B = (V1, V2, E)
with distributed score set (δ1, δ2). Furthermore, B is connected if and only if
the minimum order μ(δ1 ∪ δ2) = ap + bp, where |V1| = ap, and |V2| = bp.

Proof. See [33]. The proof of 36 begins with the interesting remark that
B =

⋃
(Kai

+ Kbi) satisfies the required property. Then comes an inductive
proof which is not correct. For example on page 387 in 6th and 5th lines from
below if n = 3, then 3 ≤ m < n is meaningless. On the next page in the third
line a1u is also an error. �
Manoussakis and Patil published also the following corollaries of Theorem

36 (the proofs can be seen in the same paper [33]).

Corollary 37 Let δ1 = {a1, a2, . . . , ap}, and δ2 = {b1, b2, . . . , bp} be nonempty
sets of different positive integers such that a1 < a2 < · · · < ap, and b1 < b2 <

· · · < bp}. Then there exists a connected, bipartite graph B(V1, V2, E) of order
ap + bp such that δ(V1) = δ1 and δ(V2) = δ2, where |V1| = ap and |V2| = bp.

Corollary 38 Let δ = {a1, a2, . . . , ap} be nonempty set of positive integers
with a1 < a2 < · · · < ap. Then there exists a connected, bipartite graph B

with bipartition (V1, V2) such that the global degree sets δ(V1) and δ(V2) are
different, and the global degree set δ(B) is δ. Moreover, the minimum order of
B with δ(B) = δ is

μ(δ) =

{
ap/2 + ap if p is even,

a�p/2� + ap if p is odd.

Corollary 39 Let δ = {a1, a2, . . . , ap} be a nonempty set of positive integers
with 1a1 < a2 < · · · < ap. Then there exists a bipartite graph B = (V1, V2, E)
such that δ(B) = δ. Furthermore, B(V1, V2, E) is a connected, bipartite graph
such that δ(V1) = δ(V2) if and only if its minimum order is 2ap so that
|V1| = |V2| = ap.

Corollary 40 Let δ1 = {a1, a2, . . . , ap} be a nonempty set of positive inte-
gers with a1 < a2 < · · · < ap. Then there exists a connected bipartite graph
B(V1, V2, E) of order 2ap, such that δ(V1) = δ(V2) = δ, where |V1| = |V2| = ap.
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It is worth to mention, that this corollary is not true: e.g. if δ1 = {−5,−3},
then ”order 2an” is meaningless, therefore in the lemma we substituted ”the
set of integers” with ”a set of positive integers”.
Manoussakis and Patil finished their paper so: ”For arbitrary sets δ1 and δ2

of positive integers with different cardinalities, the problem of determining a
bipartite graph that holds the property in Theorem 36 is open.”
Our next theorem shows, that the existence of a bipartite graph having

prescribed distributed degree set does not require the condition |δ1| = |δ2|.

Theorem 41 Let δ1 = {a1, a2, . . . , ap} and δ2 = {b1, b2, . . . , bq} be nonempty
sets of nonnegative integers. Then there exists a bipartite graph B = (V1, V2, E)
such that δ(V1) = δ1 and δ(V2) = δ2.

Proof. If a1 = 0, then we delete a1 from δ1 resulting δ
′
1 = {c1, c2, . . . , cp−1}.

If b1 = 0, then we delete b1 from δ2 resulting δ
′
2 = {d1, d2, . . . , dq−1}.

Let α =
∑p

i=1 ai, β =
∑q

j=1 bj, μ = αβ, V1 = {u1, u2, . . . , uμ} and V2 =
{v1, v2, . . . , vμ}. Let the multiplication factor of V1 be m1 = μ/p, the multipli-
cation factor of V2 be m2 = μ/q, the degree sequence of V1 be σ1 = [cn1

1 ]
Now let consider the bipartite graph B(V1, V2, E), where |V1| = pβ, and

|V2| = qα, the degree sequence of V1 is σ1 = (aβ
1 , a

β
2 , . . . , a

β
p } = (e1, e2, . . . , , eμ),

and the degree sequence of V2 is σ2 = (bα
1 , b

α
2 , . . . , b

α
p) = (f1, f2, . . . , fμ). Let

V1 = {u1, u2, . . . , uμ} and V2 = {v1, v2, . . . , vμ}.
We construct the edge set of B as follows. We connect in cyclical order u1

with the next e1 vertices in V2 (that is with v1, v2, . . . , ve1), then connect u2

with the next e2 vertices in V2 (that is with ve1+1, ve1+2, . . . , ve1+e2) and so on.
�
It is a simple observation, that if 0 ∈ δ1∪δ2, then the graphs with distributed

degree set (δ1, δ2) are never connected.
The following example shows that the absence of zero in the prescribed

distributed degree set is not sufficient to guarantee the existence of a corre-
sponding connected bipartite graph.

Example 42 Let δ1 = {1} and δ2 = {1, 2}. In all construction we have to
connect vertices whose degree is 1, and so this pair of vertices will not be
connected with the remaining part of the constructed graph.

The following program constructs a bipartite graph having a prescribed
distributed degree set.
Input. p: the number of elements in the prescribed degree set δ1 of V1;

q: the number of elements in the prescribed degree set δ2 of V2;
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δ1 = {a1, a2, . . . , ap}: prescribed degree set for V1

δ2 = {b1, b2, . . . , bq}: prescribed degree set for V2.
Output. μ = αβ: the number of rows and columns of M, that is the common

length of the degree sequence of V1 and V2;
M: the incidence matrix of the constructed bipartite graph B = (V1, V2, E).
Work variables. i, j: cycle variables;

α: the sum of the elements of δ1;
β: the sum of the elements of δ2;
ν: the common length of the degree sequence of V1 and V2, and so the common
number of rows and columns in the incidence matrix M;
n1 = ν/p: the multiplication factor of the degree sequence of V1;
n2 = ν/q: the multiplication factor of the degree sequence of V2.

Distributed-Bipartite(p, q, δ1, δ2)

01 α = 0 // lines 01–03: computation of α
02 for i = 1 to p

03 α = α+ ai

04 β = 0 // lines 04–06: computation of β
05 for i = 1 to q

06 β = β+ bi

07 ν = αβ // lines 07–09: computation of β,n1 and n2

08 n1 = ν/p

09 n2 = ν/q

10 for i = 1 to ν // lines 10–12: initialization of M
11 for j = 1 to ν

12 Mij = 0

13 i = 1 // lines 13–16: initialization of i, j, x, and y

14 j = 1

15 x = n1

16 y = n2

17 while j ≤ ν // lines 17–27: connecting of the vertices
18 while x > 0 and y > 0

19 Mij = 1

20 x = x− 1

21 y = y− 1

22 j = j+ 1

23 if x == 0

24 x = n1

25 i = i+ 1
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26 if y == 0

27 y = n2

28 return μ,M

Theorem 43 The running time of Distributed-Bipartite is in all cases
Θ(ν).

Proof. The deciding parts of the running time are required by lines 10–12 and
by lines 17–27 and both parts requires Θ(ν) time. �
Comparing with the algorithm proposed by Manoussakis and Patil disadvan-

tage of Distributed-Bipartite is that it constructs usually larger solution.

4 Tripartite graphs with prescribed global degrees

A graph T(V, E) is said to be tripartite graph (or trigraph or 3-partite graph)
if its vertex set V can be partitioned into three disjoint sets V1, V2, and V3

with V = V1 ∪ V2 ∪ V3 such that if uv ∈ E, u ∈ Vi and v ∈ Vj, then i �= j. A
tripartite graph is complete if there is edge from each v ∈ Vi to every v ∈ Vj

with i �=, 1 ≤ i, j ≤ 3. If |V1| = n1, |V2| = n2 and |V3| = n3, then the complete
bipartite graph is denoted by Kn1,n2,n3

.

The set of distinct degrees of T is called its global degree set and is denoted
by γ(T) (or simply γ).
In 2007 Pirzada, Naikoo and Dar proved the following assertions.

Theorem 44 (Pirzada, Naikoo, Dar [48]) Let γ{g1, g2, . . . , gp} be a nonempty
set of nonnegative integers. Then there exists a tripartite graph T = (V1, V2, V3,

E) with global degree set γ.

Proof. See [48] �

Theorem 45 (Pirzada, Naikoo, Dar [48]). Let γ = {g1, g2, . . . , gp} be a non-
empty set of nonnegative integers with g2g3 · · ·gp > 0. Then there exists a

tripartite graph whose global degree set is γ = {g1,
∑2

i=1 gi, . . . ,
∑p

i=1 gi}.

Proof. To prove the existence of such tripartite graphs, we consider two cases,
(a) when g1 = 0 and (b) g1 > 0.
Case (a) Let g1 = 0. We consider three subcases.
(i) Suppose n = 1. We choose the null tripartite graph G(V1, V2, V3, E) with

|V1| = |V2| = |V3| = 1. Here the degrees of the vertices v1 ∈ V1, v2 ∈ V2
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and v3 ∈ V3 are dv1 = dv2 = dv3 = 0 = g1. So the global degree set of
G(V1, V2, V3, E) is γ = {g1}.
(ii) We now take n = 2. Consider a tripartite graph G(V1, V2, V3, E) with

|V1| = 1, |V2| = |V3| = d2. Suppose there is an edge from each vertex of V2 to ev-
ery vertex of V3. We observe that the degrees of the vertices of G(V1, V2, V3, E)
are as under.
For v1 ∈ V1, dv1 = 0 = g1; for all v2 ∈ V2, dv2 = |V3| = g2 = g1 + g2; and for
all v3 ∈ V3, dv3 = |V2| = g2 = g1 + g2.

Thus the degree set of G(V1, V2, V3, E) is D = {g1, g1 + g2}.
(iii) Now let p ≥ 3. We construct a tripartite graph G(V1, V2, V3, E) whose

V1 =

n⋃
i=1

Xi, V2 =

n−2⋃
i=1

Yi and V3 = Z1

⋃( n−1⋃
i=2

Zi

)⋃( p−1⋃
i=2

Z′
i

)
,

where for all i �= j, Xi ∩ Xj = φ, Yi ∩ Yj = φ, Zi ∩ Zj = φ, Zi ∩ Z′
j = φ,

Z′
i ∩ Z′

j = φ;
for all i, 2 ≤ i ≤ p, |X1| = 1, |Xi| = |Zi−1| = di;

for all i, 1 ≤ i ≤ p− 2, |Yi| = |Z′
i+1| =

i+1∑
r=2

gr = g2 + g3 + · · ·+ gi+1.

We choose an edge from each vertex of Xi to every vertex of Zj whenever
i ≥ j; an edge from each vertex of Yi to every vertex of Zi+1 for all i, 1 ≤
i ≤ p− 2; and an edge from each vertex of Yi to every vertex of Z′

i+1 for all i,
1 ≤ i ≤ p− 2.
The degrees of the vertices of the tripartite graph G(V1, V2, V3, E) con-

structed above are as follows.
For x1 ∈ X1, dx1 = 0 = g1;
and for 2 ≤ i ≤ n, for all xi ∈ Xi,

dxi =

i−1∑
j=1

|Zj| =

i−1∑
j=1

|gj+1|

= g2 + g3 + · · ·+ gi = g1 + g2 + · · ·+ gi;

for 1 ≤ i ≤ n− 2, for all yi ∈ Yi,

d(yi) = |Zi+1|+ |Z′
i+1|

= gi+2 + g2 + g3 + · · ·+ gi+1

= g1 + g2 + g3 + · · ·+ gi+2;
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for all z1 ∈ Z1,

d(z1) =

n∑
i=2

|Xi| =

n∑
i=2

gi

= g2 + g3 + · · ·+ gn

= g1 + g2 + g3 + · · ·+ gn;

for 2 ≤ i ≤ n− 1, for all zi ∈ Zi

d(zi) =

n∑
j=i+1

|Xj|+ |Yi−1| =

n∑
j=i+1

gj + (g2 + · · ·+ gi

= gi+1 + gi+2 + · · ·+ gn + g2 + g3 + · · ·+ gi

= g1 + g2 + · · ·+ gn;

for 2 ≤ i ≤ n− 1, for all z′i ∈ Z′
i

d(z′i) = |Y′
i−1| = g2 + g3 + · · ·+ gi

= g1 + g2 + g3 + · · ·+ gi.

Thus we see that the degree set of G(V1, V2, V3) is

D = {g1,

2∑
i=1

gi, . . . ,

p∑
i=1

gi}.

Case (b) Assume g1 > 0. We have two subcases.
(i) Let p = 1. We consider the tripartite graph G(V1, V2, V3, E) with V1 = X1,

V2 = Y1, V3 = Z1

⋃
Z2 and Z1

⋂
Z2 = φ, |X1| = |X2| = |X3| = 1. In this graph,

let there be an edge from each vertex of X1 to every vertex of Z1, and from
each each vertex of Y1 to every vertex of Z2. Then the degrees of the vertices
of G(V1, V2) are given as d(v1) = |V2| = g1 and d(v2) = |V1| = g1, for all
v1 ∈ V1, v2 ∈ V2. Thus the degree set of G(V1, V2, V3, E) is γ = g1.
Now, let p = 1 and g1 > 1. Consider the tripartite graph G(V1, V2, V3, E)

with |V1| = 1, |V2| = g1 − 1, |V3| = g1, and let there be an edge from each
vertex of V1 to every vertex of V3, and from each vertex of V2 to every vertex
of V3. The degrees of the vertices of this graph are as follows.
For v1 ∈ V1, we have d(v1) = |V3| = g1; for all v2 ∈ V2, we have d(v2) =

|V3| = g1; and for all v3 ∈ V3, we have d(v3) = |V1| + |V2| = 1 + g1 − 1 = g1.
Therefore the degree set of G(V1, V2, V3, E) is γ = g1.
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(ii) Let p ≥ 2. Consider the tripartite graph G(V1, V2, V3, E) whose

V1 =

n⋃
i=1

Xi, V2 =

n−1⋃
i=1

Yi, and V3 = Z1

⋃( p⋃
i=2

Zi

)⋃( p⋃
i=2

Z′
i

)
,

where for all i �= j, Xi ∩ Xj = φ, Yi ∩ Yj = φ, Zi ∩ Zj = φ, Zi ∩ Z′
j = φ,

Z′
i ∩ Z′

j = φ for all i, 1 ≤ i ≤ p, |Xi| = |Zi| = gi. Also for all i, 1 ≤ i ≤ p − 1,
we have |Yi| = |Zi+1| = g1 + g2 + · · ·+ gi.

Take an edge from each vertex of Xi to every vertex of Zj whenever i ≥ j; an
edge from each vertex of Yi to every vertex of Zi+1 for all i, 2 ≤ i ≤ n−1, and an
edge from each vertex of Yi to every vertex of Z′

i+1 for all i, 1 ≤ i ≤ p−1. The
following are the degrees of the vertices of the tripartite graph G(V1, V2, V3, E)
constructed above.
For 1 ≤ i ≤ p, for all xi ∈ Xi,

d(xi) =

i∑
j=1

|Zj| =

i∑
j=1

vj = v1 + v2 + · · ·+ vi.

For 1 ≤ i ≤ n− 1, for all yi ∈ Yi,

d(yi) = |Zi+1|+ |Z′
i+1| = gi+1 + (g1 + g2 + · · ·+ gi+1) = g1 + g2 + · · ·+ gi+1.

For all z1 ∈ Z1, we have

d(z1) =

p∑
i=1

|Xi| =

p∑
i=1

gi = g1 + g2 + · · ·+ gp.

For 2 ≤ i ≤ p, for all zi ∈ Zi,

d(zi) =

p∑
j=1

|Xj|+ |Yi−1|

=
( p∑

j=1

dj

)
+ (g1 + g2 + · · ·+ gi−1)

= (gi + gi+1 + · · ·+ gp) + (g1 + g2 + · · ·+ gi−1)

= g1 + g2 + · · ·+ gp.

For 2 ≤ i ≤ p, for all z′i ∈ Z′
i,

d(z′i) = |Yi−1| = g1 + g2 + · · ·+ gi−1.
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Therefore the degree set of the tripartite graph G(V1, V2, V3, E) constructed
above is γ = {g1,

∑2
i=1 gi, . . . ,

∑p
i=1 gi}. �

Corollary 46 (Pirzada, Naikoo, Dar [48]). Every nonempty set of positive
integers, except {1}, is the global degree set of some connected tripartite graph.

Proof. Here we give a new, correct proof. In case g1 > 0 in the proof of
Theorem 44, the construction gives a connected tripartite graph.
If the global degree set of a tripartite graph is γ = {1}, then let u and v

be two connected vertices. If we connect one of these vertices with any other
vertex, then the degree of this vertex will be at least 2. �
The following algorithm Global-Tripartite is based on Theorem 44. It

constructs a tripartite graph having prescribed global degree set.
Input. p: the number of elements in the prescribed degree set γ;

γ = {g1, g2, . . . , gp}: the prescribed degree set for B(V1, V2, E).
Output. M(B): the incidence matrix of the constructed tripartite graph

(V1, V2, V3, E);
n1: the number of lines of M, that is the size of the vertex set V1;
n2: the number of columns of M, that is the size of the vertex set V2.
Work variables. i, j: cycle variables;

n ′
1 =

⋃
i = 1p|Xi|;

n ′
1 =

⋃
i = 1p|Xi|;

n ′
2 =

⋃p−1
i=1 |X ′

i |;

n ′′
2 =

⋃p−1
i=3 |X ′′

i |.

Global-Tripartite(p, q, r, δ1, δ2, δ3)

01 if a1 == 0 // lines 01–06: the case a1 = 0

02 if p == 1 // lines 02–06: the subcase a1 = 0 and p = 1

03 n1 = 1

04 n2 = 1

05 Mn1,n2
= 1

06 return M

07 if p == 2 // lines 7–16: the subcase a1 = 0 and p = 2

08 n1 = a2 + 1

09 n2 = a2

10 for i = 1 to n1 // lines 10–12: initialization of M
11 for j = 1 to n2

12 Mij = 0

13 for i = 2 to n1
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14 for j = 1 to n2

15 Mij = 1

16 return M

17 if p == 3 // lines 17–33: the subcase a1 = 0 and p = 3

18 n ′
1 =

∑p
i=2 ai // lines 18–23: computation of n1 and n2

19 n ′′
1 =

∑p
i=3

∑i
j=2−1ai

20 n1 = n ′
1 + n ′′

1

21 n ′
2 =

∑n−1
i=1 ai

22 n ′′
2 =

∑n
i=3

∑i−1
j=2 aj

23 n2 = n ′
2 + n ′′

2

24 for i = 1 to n1 // lines 24–26: initialization of M
25 for j = 1 to n2

26 Mij = 0

27 for i = 2 to n1 // lines 27–32: drawing of the edges of M
28 for j = 1 to i

29 Mij = 1

30 for i = n ′
1 + 1 to n1

31 for j = n ′
2 to n2

32 Mij = 1

33 return n1, n2, M // line 33: return of the result

Theorem 47 The running time of Global-Bipartite is Θ(1) in best case
and Θ(n1n2) in worst case.

Different authors proved that signed tripartite graphs have similar proper-
ties, then tripartite graphs.

Theorem 48 (Pirzada, Dar [38]) Let γ = {g1, g2, . . . , gp} be a nonempty set
of positive integers. Then there exists a connected signed tripartite graph with

signed global degree set
{∑1

i=1 gi,
∑2

i=1 gi, . . . ,
∑p

i=1 gi

}
.

Proof. See [38]. �
The next result follows from Theorem 48 by interchanging positive edges

with negative ones.

Corollary 49 (Pirzada, Dar [38]) Every set of negative integers is the global
degree set of some connected signed tripartite graph.

Proof. See [38] �
Pirzada and Dar proved the following stronger assertion too.
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Theorem 50 (Pirzada, Dar [38]) Let γ = {g1, g2, . . . , gp} be a nonempty set
of positive integers. Then there exists a connected signed tripartite graph with
signed global degree set γ.

Proof. See [38]. �

5 Tripartite graphs with prescribed distributed de-
gree set

As the following theorem shows, the existence of a corresponding tripartite
graph do not require the condition |γ1| = |γ2|, |γ3|.

Theorem 51 Let δ1 = {a1, a2, . . . , an1
}, δ2 = {b1, b2, . . . , bn2

}, and δ3 =
{c1, c2, . . . , cn3

} be nonempty sets of positive integers. positive integers with
a1 < a2 < · · · < an1

, b1 < b2 < · · · < bn2
and c1 < c2 < · · · < cn3

. Then there
exists a tripartite graph B = (V1, V2, E) such that δ(V1) = δ1, and δ2(V2) = δ2
and δ3(V3) = δ3.

Proof. Let A =
∑n1

i=1 ai and B =
∑n

i=1 bi and C =
∑n3

i=1 ci. �
The following programDistributed-Tripartite constructs a tripartite graph

having a prescribed distributed degree set.
Input. p: the number of elements in the prescribed degree set for V1;

q: the number of elements in the prescribed degree set for V2;
r: the number of elements in the prescribed degree set for V3;
δ1 = {a1, a2, . . . , ap}: prescribed degree set for V1;
δ2 = {b1, b2, . . . , bq}: prescribed degree set for V2;
δ3 = {c1, c2, . . . , cr}: prescribed degree set for V3.
Output. n1: the size of vertex set V1;

n2: the size of vertex set V2;
n2: the size of vertex set V3;
M1: the incidence matrix of the constructed bipartite graph with distributed
degree set δ1, δ2;
M2: the incidence matrix of the constructed bipartite graph with distributed
degree set δ1, δ3;
M3: the incidence matrix of the constructed bipartite graph with distributed
degree set δ2, δ3;
M: the incidence matrix of the constructed tripartite graph B = (V1, V2, V3, E).
Work variables. i, j: cycle variables;

α: the sum of the elements of δ1;
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β: the sum of the elements of δ2;
τ: the sum of the elements of δ3;
σ1α: the least common multiple of α and β;
n1 = σ/α: the number of rows of M, that is the size of V1;
n2 = σβ: the number of columns of M, that is the size of V2;;
φ = (p1, p2, . . . , pβ): the degree vector of V1;
ρ = (r1, r2, . . . , rα: the degree vector of V2.

Distributed-Tripartite(p, q, r, δ1, δ2, δ3)

01 Distributed-Bipartite(p, q, δ1, δ2) // lines 01–03: computation of M1

02 N = M

03 μ2 = μ

04 Distributed-Bipartite(p, r, δ1, δ3) // lines 04–06: computation of M2

05 P = M

06 μ2 = μ

07 Distributed-Bipartite(q, r, δ2, δ3) // lines 07–09: computation of M3

08 Q = M

09 μ3 = μ

10 for i = 1 to μ1 + μ2+ μ3 // lines 10–11: initialization of M
11 Mij = 0

12 for i = 1 to μ1 // lines 12–20: computation of M
13 for j = 1 to μ1

14 Mij = Nij

15 for i = 1 to μ2

16 for j = 1 to μ2

17 Mμ1+i,μ1+j = Pij
18 for i = 1 to μ3

19 for j = 1 to μ3

20 Mμ1+μ2+i,μ1+μ2+j = Qij

21 Σ = μ1 + μ2 + μ3 // lines 21–21: computation of Σ
22 return Σ,M // lines 22–22: return of the results

Theorem 52 The running time of Distributed-Triipartite is in all cases
cases Θ(Σ2) .

Proof. The deciding part of the running time is required by lines 10–12. �
In 2007 Pirzada and Dar proved the following result on the global degree

set of signed tripartite graphs.
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Theorem 53 (Pirzada, Dar [38]) Let γ = {g1, g2, . . . , gp} be a nonempty set
of positive integers. Then there exists a connested signed tripasrtite graph G

whose global degre set is
∑1

i=1 gi,
∑2

i=1 gi, . . . ,
∑p

i=1 gi.

Proof. See [38]. �

Corollary 54 (Pirzada, Dar [38]) Every set of negative integers is the global
degree set of a connected tripartite signed graph.

Proof. See [38]. �

Theorem 55 (Pirzada, Dar [38]) Every set of integers is the global signed
degree set of some connected signed tripartite graph.

Proof. See [38]. �

6 Simple, bipartite and tripartite digraphs with pre-
scribed global score sets

For directed graphs there are similar results as for undirected graphs.

6.1 Simple digraphs with prescribed score sets

The following papers contain the known results on the simple digraphs having
a prescribed score set: [3, 12, 18, 19, 20, 23, 22, 35, 37, 40, 44, 50, 51, 63].
A directed graph is called asymmetric or oriented, if whenever a vertex

uv ∈ E, then vu /∈ E. A complete asymmetric graph is called tournament. The
outdegrees of the vertices of a tournament are called scores, and the sequence
of the scores is called score sequence, the set of scores is called score set.
Reid in 1978 proved the following sufficient conditions for a tournament T

to have a prescribed score set.

Theorem 56 (Reid [50])

1. Every singleton and doubleton set of positive integers is the score set of
a tournament.

2. Let a ≥ 1, d ≥ 2 and n ≥ 0 be integers and γ = {a, ad, ad2, . . . , adn}.
Then there exists a tournament T whose score set is γ.

3. Let a ≥ 1, d ≥ 1 and n ≥ 0 be integers and γ = {a, a+d, a+2d, . . . , a+
nd}. Then there exists a tournament T whose score set is γ.
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Proof. See [50] �
Since a single vertex is also a tournament, therefore S = 0 is also the score

set of a tournament. If a ≥ 1 and T is the union of of T1, consisting of a single
vertex and T2 is such (2a+1)-regular tournament, that the elements of T2 win
against the players in T1, then the score set of T is {0, a},that is the first part
of Theorem 56 is true not only for positive, but also for nonnegative elements.
In the same paper [50] Reid formulated the conjecture, that any set of

nonnegative integers is a score set of some tournament.
In 1986 Hager [12] continued the researches of Reid proving that any set of

3, 4 or 5 nonnegative elements are also the score sets of some tournament.
Finally in 1989 Yao [63] proved the conjecture of Reid.

Theorem 57 (Yao [63]) Any set of nonnegative integers is the global degree
set of some tournament.

Proof. See [63]. �
Let n ≥ 1 a positive integer and μo(γ) be the minimal order of oriented

graphs having score set γ = {g1, g2, . . . , gn}. In 1976 Chartrand, Lesniak and
Roberts proved the following assertions.

Lemma 58 (Chartrand, Lesniak and Roberts [4]). If a is a nonnegative in-
teger, then μo({a}) = 2a+ 1.

Lemma 59 (Chartrand, Lesniak and Roberts [4]). If γ is a finite, nonempty
set of nonnegative integers and p is an integer such that p ≥ μo(γ), then there
exists an asymmetric digraph D of order p such that γ(D) = γ.

As a simple consequence of Lemma 59, we have the following result.

Lemma 60 (Chartrand, Lesniak and Roberts [4]). If γ is a finite, nonempty
set of nonnegative integers and p is an integer such that p ≥ μ0(γ), then there
exists an asymmetric digraph D of order p such that D(D) = γ.

Corollary 61 (Chartrand, Lesniak and Roberts [4]). If p is a positive integer
and γ = {a1, a2, . . . , ap} is a set of nonnegative integers with a1 < a2 < · · · <
ap and a1 = 0, then μ0(γ) = ap + 1.

Lemma 62 (Chartrand, Lesniak and Roberts [4]). If n ≥ 2 and 1 ≤ a1 <

· · · < an, then μ0(a1, a2, . . . , an) ≥ 2a1+ t, where t > 1 is the least integer for
which (n+ t− 2)a1 +

(
t
2

) ≥ ∑p
i=1 ai.
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The main result of Chartrand, Lesniak and Roberts is the following theorem.

Theorem 63 (Chartrand, Lesniak and Roberts [4]). Let p ≥ 2 be an integer
γ = (a1, a2, . . . , ap) be a sequence of positive integers, and let t be the least
integer exceeding one for which (p+ t− 2)a1 +

(
t
2

) ≥ ∑n
i=1 ai. Then

μ0(a1, a2, . . . , ap) =

{
ap + 1 if ap ≥ μ0(a1, a2, . . . , ap−1),
2a1 + 1 if ap < μ0(a1, a2, . . . , ap−1).

Proof. The proofs of Lemma 60, Corollary 61, Lemma 62, Lemma ?? are in
[4]. �
In 1983 Harary and Harzheim [17] investigated the degree sets of infinite

connected graphs.
Im 2006 Pirzada and Naikoo proved the following assertion on the score sets

of k-partite tournaments.

Theorem 64 (Pirzada, Naikoo [43]) Let k ≥ 1, d1, d2, . . . , dk be nonnega-
tive integers with d2d3 ldotsdk > 0. Then there exists a tripartite tournament
with global score set {

∑1
i=1 d1,

∑2
i=1 di, . . . ,

∑k
i=1 di} except for p = 1, d1 = 0,

and p = 2, d1 = 0, d2 = 2.

Proof. See [43]. �

Theorem 65 (Pirzada, Naikoo [43]) Let d1, d2, . . . , dp be nonnegative in-
tegers with d2, d3, . . . , dp > 0. Then for every p ≥ k ≥ 2 then there exists a

k-partite tournament with global score set {
∑1

i=1 di,
∑2

i=1 di, . . . ,
∑k

i=1 di}.

Proof. See [43]. �
In 2006 Dziechcińska-Halamoda, Majcher, Michael, and Skupień [8] studied

the properties of sets of pairs of scores in oriented graphs.
In 2006 Pirzada, Naikoo and Chishti proved the following conditions which

are sufficient for an oriented graph to have special degree sets.

Theorem 66 (Pirzada, Naikoo, Chishti [45]) If γ contains one, two or three
positive integers, then there exists an oriented graph whose global degree set is
γ.

Proof. See [45]. �
It is also a sufficient condition, if γ contains an arithmetical or geometrical

sequence.
In 2008 Pirzada and Naikoo gave the following sufficient conditions for an

oriented graph G to have the global degree set γ.
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Theorem 67 (Pirzada, Naikoo [44]). Let Let a > 0, d > 1 and n ≥ 0 be
integers and A = {a, ad, ad2, . . . , adn}. Then there exists an oriented graph
with degree set A except for a = 1, d = 2, n > 0 and for a = 1, d = 3, n > 0.

Theorem 68 (Pirzada, Naikoo [44]) Let If n ≥ 1 and a1, a2, . . . , an are non-
negative integers with a1 < a2 < · · · < an, then there exists an asymmetric
graph with an + 1 vertices and global degree set a ′

1, a
′
2, . . . , a

′
n, where

a ′
i =

{
ai for i = 1,

ai−1 + ai + 1 for i > 1.

In 2014 Khan [27] proved, that the problem of construction of a tournament
having prescribed imbalance set is weakly NP-complete.

6.2 Bipartite digraphs with prescribed score sets

A bipartite tournament is a complete asymmetric bipartite graph. Let δ1 =
{a1, a2, . . . , ap = a} and δ2 = {b1, b2, . . . , bq = b} be finite, nonempty, in-
creasingly ordered sets, containing nonnegative integers, whose elements are
nonnegative integers with a1 + b1 > 0.
In 1983 Wayland proved the following assertion.

Theorem 69 (Wayland [60]). There exists a bipartite tournament T = (V1,

V2, E) with distributed score set (δ1, δ2), if and only if
p∑

i=1

si + (t− p+ 1)q+

q∑
j=1

+bj + 1− q(bq + 1)

is positive.

Proof. See [60]. �

Corollary 70 If s > m + 1, then there exists a bipartite tournament with
distributed score set (δ1, δ2).

Proof. See [60]. �
Also in 1983 Petrović published the following assertion.

Theorem 71 (Petrović [36]) The set of nonnegative integers δ1 = {a} and
δ2 = {b1, b2, . . . , bn} form a distributed score set for some bipartite tournament
if and only if one of the following conditions are satisfied:
a) b1 + b+ 2+ . . .+ bn = b(n− a− 1)bn;
b) b1 + b+ 2+ . . .+ bn > (n− a+ 1)bn;
c) b1 + b+ 2+ . . .+ bn = (n− a+ 1)bn + d, 1 ≤ d ≤ n− a− 1.
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Proof. See [36]. �

Corollary 72 (Petrović [36], Wayland [60]). Any nonempty set of nonnega-
tive integers except {0} is the global degree set of some bipartite tournament.

Proof. See Petrović [36], Wayland [60]. �

6.3 Tripartite digraphs with prescribed global score sets

Let k be a positive integer and D = (V1, V2, . . . , Vk, E) be a k-partite ori-
ented graph. In 2006 Pirzada, and Naikoo [42]—using an unusual definition
of score sets—published sufficient conditions of the existence of 3-partite ori-
ented graphs having special singleton sets, arithmetical and geometrical series
as their prescribed global score set.
In 2007 Pirzada et al. [41] gave further sufficient conditions for the existence

of oriented tripartite graphs having prescribed global score set.

Acknowledgement. The authors thank the useful remarks of the unknown
referee.
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