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Abstract. Pairwise comparison matrices are of key importance in multi-
attribute decision analysis. A matrix is incomplete if some of the elements
are missing. The eigenvector method, to derive the weights of criteria,
can be generalized for the incomplete case by using the least inconsistent
completion of the matrix. If inconsistency is indexed by CR, defined by
Saaty, it leads to the minimization of the Perron eigenvalue. This problem
can be transformed to a convex optimization problem. The paper presents
a method based on the Newton iteration, univariate and multivariate.
Numerical examples are also given.

1 Introduction

When faced with a multi-attribute decision problem, where all alternatives are
already evaluated with respect to all relevant criteria, one has to determine
the subjective weights of criteria to rank the alternatives. When a decision
maker is asked to determine his own subjective weights of criteria, it is often
impossible to determine them directly. However, it may be simpler to tell
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how many times more important a criterion is compared to another. Ratios
are arranged in a positive n × n matrix A = [aij]i,j=1,...,n, which is called a
pairwise comparison matrix (PCM), where n is the number of criteria. For
a PCM aij =

1
aji

holds for all i, j = 1, . . . , n, thus every element is 1 in the

diagonal. A PCM is consistent, if the cardinal transitivity property aikakj = aij

holds for all i, j, k = 1, . . . , n, otherwise it is called inconsistent. The aim is
to derive weight vector w = (w1,w2, . . . , wn)

T from a PCM that includes the
decision maker’s subjective judgments.
PCMs can also be used to rank alternatives with respect to a given criterion.

Another application of PCMs is to determine the voting power of each decision
maker in a group decision problem.
There are several methods for deriving the weight vector [4], we however

use the so called eigenvector method proposed by Saaty [14, 15]. For a con-
sistent PCM the following eigenvector equation holds: Aw = nw, where
wi/wj = aij,wi > 0,

∑
wi = 1. However, PCMs given by real decision makers

are rarely consistent. Following the previous equation, Saaty proposed the fol-
lowing method (called the eigenvector method), to gain a weight vector, and
also to measure inconsistency. Applying the Perron-Frobenius theorem to a
(consistent or inconsistent) PCM, it yields that there is a unique positive Per-
ron eigenvalue λmax, and the corresponding right eigenvector is also positive. It
is also known that λmax � n. Weights can be approximated even in the incon-
sistent case by the right eigenvector corresponding to λmax (normalizing such
that the sum of the weights equal 1), also denoted w. The eigenvector method
provides the weights as the normalized right eigenvector corresponding to the
Perron eigenvalue of the PCM.
There are several inconsistency indices in the literature [4], but in the paper

we will only discuss one of them: Saaty defined [14] inconsistency index CR =
CI
ACI , where CI = λmax−n

n−1 , and ACI denotes the mean value of CI calculated
from randomly generated PC matrices of size n × n. Saaty also proposed
that PCMs below the threshold CR = 0.1 are to be considered acceptably
inconsistent. CR is a positive linear transformation of λmax: the higher λmax

is, the more inconsistent the given PCM is.
In some cases, not all elements of a PCM can be or are desired to be filled in.

It can take a lot of effort to obtain all n(n−1)
2 pairwise comparisons, especially

for large PCMs. In this case, missing elements are allowed in the matrix. Such
a matrix is called an incomplete pairwise comparison matrix [7, 9], and has
the following general form:
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A =

⎛
⎜⎜⎜⎜⎜⎝

1 a12 ∗ . . . a1n

1/a12 1 a23 . . . ∗
∗ 1/a23 1 . . . a3n
...

...
...

. . .
...

1/a1n ∗ 1/a3n . . . 1

⎞
⎟⎟⎟⎟⎟⎠

,

where ∗ stands for missing elements. They can be in any position except the
diagonal, and are symmetric in the sense that if aij is missing, then aji is
missing, too.
Substitute a variable for each missing element while keeping the reciprocal

symmetry rule in mind, and let M denote the number of missing elements
above the main diagonal:

A(x) = A(x1, x2, . . . , xm, . . . , xM) =

⎛
⎜⎜⎜⎜⎜⎝

1 a12 x1 . . . a1n

1/a12 1 a23 . . . xM
1/x1 1/a23 1 . . . a3n
...

...
...

. . .
...

1/a1n 1/xM 1/a3n . . . 1

⎞
⎟⎟⎟⎟⎟⎠

.

The aim is still to obtain a weight vector from the matrix. To facilitate this,
the eigenvector method can be generalized to the incomplete case, as pro-
posed by Shiraishi, Obata and Daigo [16, 17]. The solution to the eigenvector
method shall be the Perron eigenvector corresponding to the least inconsistent
completion of the incomplete PCM. Let inconsistency index CR be applied,
therefore, the aim is to minimize CR, or equivalently, the Perron eigenvalue
λmax:

min
x∈RM

+

λmax(A(x)), (1)

where RM
+ denotes the positive orthant of the M-dimensional Eucledian space.

This will be our basic problem from now on.
Key to the existence of the minimum of λmax is that problem (1) can

be transformed into a convex optimization problem [2], using the following
method: Parametrize incomplete PCM A(x) = A(x1, x2, . . . , xm, . . . , xM) such
that xm = etm , (m = 1, 2, . . . ,M). This way we gain matrix B:

A(x) = B(t) = B(t1, t2, . . . , tm, . . . , tM) = A(et1 , et2 , . . . , etm , . . . , etM).

λmax(B(t)) is now a convex function of t [2].
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Bozóki et al. [2] characterized when a unique solution exists to problem
(1). The graph corresponding to an incomplete pairwise comparison matrix is
defined as follows: G = (V, E), V = 1, 2, . . . , n (vertices correspond to criteria),
E = {e(i, j) | aij is given in the matrix, i < j} (edges correspond to pairwise
comparisons). In other words, two vertices are connected by an edge if the
element corresponding to their pairwise comparison is not missing.

Theorem 1 [2] There exists a unique solution to minx∈RM
+
λmax(A(x)) if and

only if the graph corresponding to matrix A is connected.

We will also need the partial derivatives of λmax with respect to the elements
of the PCM. According to Harker’s formulas [8] both the first and second
derivatives can be calculated. These formulas can be found in the Appendix.
In the next section three methods are presented to solve problem (1). First

one is the method used by Bozóki et al. [2], which is based on the method
of cyclic coordinates, and uses Matlab’s fminbnd function to solve univariate
problems. Second and third ones are the main contributions of the paper. Both
methods apply Newton iteration, univariate (Section 2.1.2) and multivariate
(Section 2.2). The univariate method is similar to the method using fminbnd.
It also uses cyclic coordinates, but the inner univariate problem is solved by
Newton iteration. The multivariate method is based on the multivariate New-
ton iteration. A numerical example is presented in section 3. Some of the issues
presented in the paper have already been considered, in Hungarian, in [1].

2 Algorithms for optimal completion

2.1 Cyclic coordinates

Let us consider an incomplete pairwise comparison matrix A with a connected
graph. Let d denote the number of missing elements from the upper triangle
of A, so A = A(x1, . . . , xM). Bozóki et al. [2] proposed a completion method
based on cyclic coordinates, as follows. Every variable is given a starting value

of x
(0)
m ,m = 1, 2, . . . ,M. Every iteration is composed of M steps. In the first

step of the first iteration, let x1 be the only free variable, while the others are

fixed at their starting values x
(0)
m ,m = 2, 3, . . . ,M. Let the single optimum of

this single variable optimization problem (minx1λmax) be x
(1)
1 . In the second

step of the first iteration, let x1 be fixed at the value of x
(1)
1 , and let x2 be

the free variable, while all other variables are fixed at their value of x
(0)
m ,m =

3, 4, . . . ,M. Again, from optimizing λmax in x2, we obtain the optimum x
(1)
2 .
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Continue these steps, until we obtain x
(1)
M . In the second iteration the starting

values are x
(1)
m ,m = 1, 2, . . . ,M. So the mth step of the kth iteration is as

follows:

x
(k)
m = argmin

xm
λmax

(
A(x

(k)
1 , . . . , x

(k)
m−1, xm, x

(k−1)
m+1 , . . . , x

(k−1)
M )

)
,m = 1, 2, . . . ,M.

For the stopping criteria they propose the following: the algorithm stops at
the end of the kth iteration if k is the smallest integer for which

max
m=1,2,...,M

|x
(k)
m − x

(k−1)
m | < T, (2)

where T is the tolerance threshold (T = 10−4 is chosen for their and our tests
as well).
Another important question is the choice of the starting values. Bozóki et

al. [2] in their numerical example used x
(0)
m = 1,m = 1, 2, . . . ,M. In the paper

we will use values based on the solution of the incomplete logarithmic least
squares method (ILLSM) [11]. This method determines weight vector w by
minimizing

min

n∑
i,j=1

aij is given

[
logaij − log

(
wi

wj

)]2
, (3)

where
∑n

i=1 wi = 1 and wi > 0 i = 1, . . . , n. Solving this problem is based
on solving a system of linear equations [2]. Although the ILLSM method can
generate ordering different from that of the eigenvector method, it provides
reasonable starting values for our iteration [10]. Therefore, the solution of
the ILLSM problem will be used for the starting values for x. Let wL

i , i =
1, . . . , n denote the ith component of the weight vector derived from solving
the ILLSM problem, and let xm be in position (i, j). The starting values will

be x
(0)
m = wL

i /w
L
j ,m = 1, 2, . . . ,M.

Again, in order to transform problem (1) to a convex optimization problem,
rescaling xm = etm ,m = 1, . . . ,M is done [2]. Let L(tm) = λmax(e

tm).
The global convergence of cyclic coordinates is stated and proved in [12,

pages 253–254].
The cyclic coordinates method presented above will be the framework for the

single variable method presented here as well, with the fundamental difference
being in how we obtain the optimum.
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2.1.1 Cyclic coordinates with Matlab’s fminbnd

Bozóki et al. [2] used a general optimization function in Matlab (fminbnd) for
obtaining mintmλmax. Function fminbnd uses an algorithm which combines
golden section search and parabolic interpolation [3, 5, 13]. A method tailored
for this problem and based on the Newton iteration is presented next.

2.1.2 Cyclic coordinates with univariate Newton iteration

Using the method of cyclic coordinates, we are optimizing in only one variable
at a time. Let us denote this variable by x, while the other variables are fixed
while the minimization occurs. Our goal is to write the Newton iteration of
this optimization. Let x = et (similarly x(r) = et

(r)
) and L(t) = λmax(e

t). With
these notions, we are searching for t where L ′(t) = 0. Because of this, the rth
iteration of Newton’s method can be written as

t(r+1) = t(r) −
L ′(t(r))
L ′′(t(r))

.

According to Harker [8] the derivatives ∂λmax(x)
∂x and ∂2λmax(x)

(∂x)2
are known,

and depend on the position (i, j) of x in of the matrix.

To write the Newton iteration we need ∂L(t)
∂t and ∂2L(t)

(∂t)2
.

∂L(t)

∂t
=

∂λmax(e
t)

∂t
=

∂λmax(x)

∂x
· ∂e

t

∂t
=

∂λmax(x)

∂x
· et. (4)

Similarly

∂2L(t)

(∂t)2
=

∂2λmax(e
t)

(∂t)2
=

∂λmax(x)
∂x · et
∂t

=

=
∂λmax(x)

∂x

∂t
· et + ∂λmax(x)

∂x
· ∂e

t

∂t
=

∂2λmax(x)

(∂x)2
· e2t + ∂λmax(x)

∂x
· et.

(5)

Newton iteration can now be written as

t(r+1) = t(r) −
L ′(t(r))
L ′′(t(r))

= t(r) −
∂λmax(x)

∂x (x(r)) · et(r)
∂2λmax(x)

(∂x)2
(x(r)) · e2t(r) + ∂λmax(x)

∂x (x(r)) · et(r)
=

= t(r) −
∂λmax(x)

∂x (x(r))
∂2λmax(x)

(∂x)2
(x(r)) · et(r) + ∂λmax(x)

∂x (x(r))
.

(6)
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As mentioned,
∂λmax(x)

∂x
and

∂2λmax(x)

(∂x)2
depend on the position of the el-

ement x in the matrix (i, j). In a particular step of an iteration all the other
variables are temporarily fixed, as described earlier.
A full step of the Newton iteration (which is only a subroutine of a step of

the cyclic coordinate iteration) consists of the following steps, where x is in
position (i, j):

1. t(r) = ln x(r),

2. Apply (6),

3. x(r+1) = et
(r+1)

, 1/x(r+1) = e−t(r+1)
.

With this algorithm we managed to apply the Newton iteration specifically
for the problem of minimizing the Perron eigenvalue of incomplete PCMs.

2.2 Multivariate Newton iteration

Instead of using the method of cyclic coordinates and optimizing in one vari-
able at a time, one can optimize in all of the variables at the same time, using
the multivariate Newton iteration. Let L(t) = λmax(e

t1 , . . . , etM). We want to
minimize L, so we need:

t(r+1) = t(r) − γ[HL(t(r))]−1∇L(t(r)), (7)

where HL(t(r)) is the Hessian matrix of L(t), and ∇L(t(r)) is the gradient
vector of L(x) (both in the rth Newton iteration), and γ is the step size as
usual in multivariate Newton iteration. Again, because of the parametrization
x = et, we have to adapt this formula for our case. All of the elements of

the gradient vector ∇L(t) =

(
∂L(t)

∂t1
, . . . ,

∂L(t)

∂tM

)
can be calculated with the

method described earlier, namely (4).
Now let us write the Hessian matrix:

HL(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2L(t)

∂t21

∂2L(t)

∂t1∂t2
. . .

∂2L(t)

∂t1∂tM

∂2L(t)

∂t2∂t1

∂2L(t)

∂t22
. . .

∂2L(t)

∂t2∂tM
...

...
. . .

...
∂2L(t)

∂tM∂t1

∂2L(t)

∂tM∂t2
. . .

∂2L(t)

∂t2M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Diagonal elements are calculated by (5). We still need to reformulate the off-
diagonal elements of the Hessian matrix, where we differentiate with respect
to different variables. From now on, xp = etp is in position (i, j) and xq = etq

is in position (u, v).

∂2L(t)

∂tp∂tq
=

∂2λmax(e
t1 , . . . , etM)

∂tp∂tq
=

∂
(
∂λmax(et1 ,...,etM )

∂tq

)
∂tp

.

We can apply (4), and get ∂λmax(et1 ,...,etM )
∂tq

= ∂λmax(x)
∂xq

· etq . Including the case
p = q as well,

∂2L(t)

∂tp∂tq
=

∂
(
∂λmax(x)

∂xq
· etq

)
∂tp

=
∂
(
∂λmax(x)

∂xq

)
∂tp

· etq +
∂λmax(x)

∂xq
· ∂e

tq

∂tp
. (8)

Here
∂etq

∂tp
= etq · χ{p=q}, (9)

where

χ{p=q} =

{
1 if p = q

0 if p �= q
.

On the other hand,

∂
(
∂λmax(x)

∂xq

)
∂tp

=
∂
(
∂λmax(x)

∂xq

)
∂xp

· ∂xp
∂tp

=
∂
(
∂λmax(x)

∂xq

)
∂tp

· ∂e
tp

∂tp
=

∂2λmax(x)

∂xp∂xq
· etp ,
(10)

which also includes the case p = q. Writing (9) and (10) back into (8) we get
the final form of

∂2L(t)

∂tp∂tq
=

∂2λmax(x)

∂xp∂xq
· etp+tq +

∂λmax(x)

∂xp
· etp · χ{p=q}. (11)

Note that (5) is a special case of (11) with p = q. In (11) we can calculate
∂2λmax(x)
∂xp∂xq

and ∂λmax(x)
∂xp

according to Harker’s formulas [8], and they depend on
the positions of the variables in the matrix.
Using these formulas, and given a starting value of t0 for t, we can calculate

the gradient vector and Hessian matrix for every iteration of the multivariate
Newton’s method (7). Again, the iteration continues while (2) is satisfied. The
stopping criteria is determined for x (not t), because a small difference in t

can lead to large differences in x.
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3 Numerical example

Let us consider the following incomplete pairwise comparison matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 5 3 7 6 6 1/3 1/4

1/5 1 x1 5 x2 3 x3 1/7

1/3 1/x1 1 x4 3 x5 6 x6
1/7 1/5 1/x4 1 x7 1/4 x8 1/8

1/6 1/x2 1/3 1/x7 1 x9 1/5 x10
1/6 1/3 1/x5 4 1/x9 1 x11 1/6

3 1/x3 1/6 1/x8 5 1/x11 1 x12
4 7 1/x6 8 1/x10 6 1/x12 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This is an incomplete version of Saaty’s ”buying a house” example matrix
[15]. Further, it is the same incomplete PCM which was used as an example
by Bozóki et al. [2], where it is shown that the graph corresponding to this
matrix is connected.
In Tables 1 and 2 the values of each variable in each iteration are shown

using the univariate Newton iteration and the multivariate Newton iteration,
respectively. However, iteration does not mean the same thing in these cases.
For the univariate Newton method, an iteration k is the outer iteration which
contains m = 12 complete univariate Newton iterations for each k. For the
multivariate Newton iteration, an iteration r is one iteration of the multivariate
Newton method itself.
As mentioned earlier, T = 10−4 in (2), and the starting values x

(0)
m are

chosen to be equal to the optimal solution of the ILLSM problem (3). For
the multivariate case, several γ values have been experimented with. γ =
0.45 yielded the lowest number of iterations, therefore this value was used for
the results in Table 2. The number of iterations required was k = 14 in the
univariate case, and r = 14 in the multivariate case.

Tests were also done for starting values x
(0)
m = 1,m = 1, . . . ,M (again with

γ = 0.45 in the multivariate case). The univariate method required k = 15

iterations, while the multivariate method required r = 26 iterations.
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k x
(k)
1 x

(k)
2 x

(k)
3 x

(k)
4 x

(k)
5 x

(k)
6 x

(k)
7 x

(k)
8 x

(k)
9 x

(k)
10 x

(k)
11 x

(k)
12

0 0.3823 1.8430 0.4758 8.9920 4.2690 0.5228 0.5361 0.1384 0.8855 0.1085 0.2916 0.4200
1 0.3460 1.7620 0.4699 9.6590 4.7370 0.5667 0.5320 0.1434 0.9206 0.1091 0.2932 0.4008
2 0.3338 1.7320 0.4690 9.8410 4.8230 0.5671 0.5283 0.1431 0.9270 0.1088 0.2924 0.4016
3 0.3315 1.7270 0.4678 9.8840 4.8370 0.5681 0.5271 0.1428 0.9283 0.1090 0.2919 0.4023
4 0.3308 1.7240 0.4671 9.9000 4.8440 0.5687 0.5264 0.1427 0.9295 0.1091 0.2916 0.4026
5 0.3305 1.7220 0.4668 9.9090 4.8470 0.5691 0.5259 0.1426 0.9302 0.1092 0.2914 0.4028
6 0.3303 1.7210 0.4666 9.9140 4.8500 0.5693 0.5256 0.1425 0.9306 0.1093 0.2913 0.4029
7 0.3302 1.7210 0.4665 9.9170 4.8510 0.5694 0.5255 0.1425 0.9309 0.1093 0.2913 0.4030
8 0.3301 1.7200 0.4664 9.9180 4.8520 0.5695 0.5254 0.1425 0.9310 0.1093 0.2913 0.4030
9 0.3301 1.7200 0.4664 9.9190 4.8520 0.5696 0.5253 0.1425 0.9311 0.1093 0.2912 0.4031
10 0.3300 1.7200 0.4664 9.9200 4.8520 0.5696 0.5253 0.1424 0.9311 0.1093 0.2912 0.4031
11 0.3300 1.7200 0.4664 9.9200 4.8520 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031
12 0.3300 1.7200 0.4664 9.9200 4.8520 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031
13 0.3300 1.7200 0.4664 9.9200 4.8520 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031
14 0.3300 1.7200 0.4664 9.9210 4.8520 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031

Table 1: Univariate Newton
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(r)
1 x

(r)
2 x

(r)
3 x

(r)
4 x

(r)
5 x

(r)
6 x

(r)
7 x

(r)
8 x

(r)
9 x

(r)
10 x

(r)
11 x

(r)
12

0 0.3823 1.8430 0.4758 8.9920 4.2690 0.5228 0.5361 0.1384 0.8855 0.1085 0.2916 0.4200
1 0.3385 1.7160 0.4484 9.7830 4.7170 0.5786 0.5006 0.1276 0.9592 0.1221 0.2739 0.4427
2 0.3430 1.7540 0.4707 9.5490 4.6180 0.5500 0.5368 0.1446 0.9082 0.1087 0.2946 0.4040
3 0.3285 1.7070 0.4581 9.9020 4.8210 0.5755 0.5169 0.1376 0.9436 0.1149 0.2848 0.4172
4 0.3323 1.7260 0.4672 9.8070 4.7800 0.5640 0.5297 0.1435 0.9243 0.1096 0.2924 0.4035
5 0.3287 1.7140 0.4637 9.9140 4.8430 0.5715 0.5234 0.1412 0.9349 0.1112 0.2894 0.4074
6 0.3302 1.7200 0.4664 9.8880 4.8320 0.5682 0.5268 0.1428 0.9294 0.1096 0.2916 0.4034
7 0.3295 1.7180 0.4656 9.9170 4.8490 0.5702 0.5251 0.1422 0.9322 0.1099 0.2908 0.4043
8 0.3299 1.7200 0.4664 9.9110 4.8470 0.5693 0.5258 0.1426 0.9308 0.1094 0.2913 0.4033
9 0.3298 1.7190 0.4662 9.9190 4.8520 0.5698 0.5253 0.1424 0.9315 0.1095 0.2911 0.4035
10 0.3300 1.7200 0.4664 9.9180 4.8510 0.5696 0.5255 0.1425 0.9311 0.1094 0.2913 0.4032
11 0.3299 1.7200 0.4663 9.9200 4.8520 0.5697 0.5253 0.1424 0.9313 0.1094 0.2912 0.4032
12 0.3300 1.7200 0.4664 9.9200 4.8520 0.5696 0.5253 0.1425 0.9312 0.1093 0.2912 0.4031
13 0.3300 1.7200 0.4663 9.9200 4.8520 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031
14 0.3300 1.7200 0.4664 9.9200 4.8520 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031

Table 2: Multivariate Newton
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4 Conclusions

When using the generalized eigenvector method for incomplete pairwise com-
parison matrices, the matrix is to be completed optimally with regard to its
inconsistency, or equivalently minimizing its Perron eigenvalue λmax. Although
eigenvalue minimization problems are generally difficult due to nonconvexity,
the special case of incomplete PCMs proves to be convex. In order to solve
the problem, a method based on the Newton iteration (both univariate and
multivariate) is presented in the paper.
Future research can be focused on the choice of γ in case of the multivariate

method. Fülöp [6] has recently proposed an alternative method for minimizing
λmax, further research includes a comparative analysis of the algorithms.
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for his remarks. The author thanks his PhD supervisor Sándor Bozóki (In-
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(SACI 2013), Timişoara, Romania, 23–25 May 2013. ⇒69
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Appendix

Harker’s [8] formulas for the derivatives of the Perron eigenvalue are presented
in the appendix.
Let A denote a PCM, and let x = x(A) and y = y(A) denote its right

and left Perron eigenvectors, and λmax = λmax(A) its Perron eigenvalue, so
Ax = λmaxx and yTA = λmaxy

T . The normalization for the eigenvectors in

this case is yTx = 1. Let Q = λmaxI−A. Also let Q+ denote the pseudoinverse
of Q, which satisfies the following properties: QQ+Q = Q, Q+QQ+ = Q+,
Q+Q = QQ+. Finally, ∂aij denotes differentiation with respect to the element
in position (i, j) in A, and similarly ∂akl denotes differentiation with respect
to the element in position (k, l). Using these notations, the formulas are as
follows:
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The first derivatives:

∂λmax

∂aij
= yixj −

yjxi

a2
ij

, if i > j.

The second derivatives:

∂2λmax

∂aij∂akl
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(xyT )liQ
+
jk + (xyT )jkQ

+
li −

(xyT )kiQ
+
jl+(xyT )jlQ

+
ki

a2
kl

−

−
(xyT )ljQ

+
ik+(xyT )ikQ

+
lj

a2
ij

+
(xyT )klQ

+
il+(xyT )ilQ

+
kj

a2
ija

2
kl

if i > j, k > l, (i, j) �= (k, l)

2
(xyT )ij

a3
ij

+ 2(xyT )jiQ
+
ji−

−2
(xyT )iiQ

+
jj+(xyT )jjQ

+
ii

a2
ij

+ 2
(xyT )ijQ

+
ij

a4
ij

if i > j, (i, j) = (k, l).
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