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Abstract. The Bin Packing problem is a well-known and highly investi-
gated problem in the computer science: we have n items given with their
sizes, and we want to assign them to unit capacity bins such, that we use
the minimum number of bins.

In this paper, some generalizations of this problem are considered,
where there are some additional stackability constraints defining that
certain items can or cannot be packed on each other. The correspond-
ing model in the literature is the Bin Packing Problem with Conflicts
(BPPC), where this additional constraint is defined by an undirected
conflict graph having edges between items that cannot be assigned to
the same bin. However, we show some practical cases, where this conflict
is directed, meaning that the items can be assigned to the same bin, but
only in a certain order. Two new models are introduced for this problem:
Bin Packing Problem with Hanoi Conflicts (BPPHC) and Bin Packing
Problem with Directed Conflicts (BPPDC). In this work, the connection
of the three conflict models is examined in detail.

We have investigated the complexity of the new models, mainly the
BPPHC model, in the special case where each item have the same size.
We also considered two cases depending on whether re-ordering the items
is allowed or not.

We show that for the online version of the BPPHC model with unit
size items, every Any-Fit algorithm gives not better than 3

2
-competitive,
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when it is forbidden for the optimum to re-order the items, even if only
2 stackability classes, called Hanoi classes, are applied. This lower bound
is generalized for arbitrary number of Hanoi classes. However, we also
prove, that asymptotically the First-Fit algorithm is 1-competitive for
this case.

Finally, we introduce an algorithm for the offline version of the BP-
PHC model with unit size items, which has polynomial time complexity,
if the number of the Hanoi classes and the capacity of the bins are con-
stant.

1 Introduction

The Bin Packing Problem is one of the most known and investigated fields of
the computer science, probably because it has several practical applications
such as filling up boxes with certain products, loading trucks, etc. The problem
is that we have n items given with their sizes, and we want to assign them to
unit capacity bins so, that we use the minimum number of bins.
More formally, we have a set N = {1, 2, . . . , n} of items, each item i has a

size si, the bins have a capacity c, and we want to assign each item to one bin
such that the total size of items in each bin is not exceeding c, and we use the
minimum number of bins.
There are several variants of this problem in the literature including multi-

dimensional cases, fragile objects, class-constrained items, coloured items, etc.
We will summarize these models in Section 2.
In this work, we investigate a variant of the Bin Packing Problem, where

additional constraints are occurred because of practical directed stackability
conflicts, like some items are fragile and others are too heavy to pack them on
each other. This kind of conflicts are quite common in industrial applications,
especially in logistical ones.
After a short summary of the relevant existing variants of the Bin Packing

Problem in Section 2, two new models are introduced for the mentioned di-
rected stackability conflicts in Section 3. Then, the new models are compared
with the corresponding model from the literature in Section 4.
We examined the complexity of a special case of the new models, where each

item has unit size. This case is described, and the complexities are investigated
for the two new models in Section 5.
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2 Previous results

Unfortunately, in the real world applications the bin packing problem, just like
a lot of computational problems, rarely happens in a pure way. Usually, there
are additional constraints permitting or forbidding the assignment of specific
items to specific bins based on the content of the bins, or determining the
order of items in the bins. Various models are published for the Bin Packing
Problem handling different kind of additional constraints mostly inspired by
some kind of practical application. In this section, we will overview some of
the existing models, especially the ones that are created for a similar approach
to the current work.
First of all, we recall some definitions in connection with the approximation

algorithms. For an algorithm A, the solution of A for a given input X is de-
noted by A (X), and the optimal offline solution is usually denoted by OPT (X).
The approximation ratio (called also competitive ratio in online cases) for a
minimization problem is the minimal C value such that A (X) ≤ C ·OPT (X)
is true for any X input. The asymptotic approximation (or competitive) ratio
is defined similarly, but with OPT (X) approaching infinity.
Our first discussed generalization is the Bin Packing Problem with Fragile

Objects, where each item have a fragility value in addition to its size, and
the corresponding constraint is that the sum of the item sizes in a bin cannot
exceed the fragility of any item in that bin. This problem is studied by for
example Bansal et al. [2] and Clautiaux et al. [4]. The idea of handling the
fragile objects is similar to the practical applications inspiring the current
work, but we believe this model is quite difficult to extend to more than only
one special object type, meaning the fragile ones.
In the Class Constrained Bin Packing problem, proposed by Shachnai and

Tamir [22, 23], we have an additional parameter for every items defining the
class of that item, and each bin has a storage capacity beside the load capacity,
meaning that the number of different classes in the bins cannot exceed this
storage capacity. In their paper, Shachnai and Tamir introduced a PTAS for
the offline version of this problem. The online version was first investigated in
a paper of the same authors [21]. Xavier and Miyazawa published results of
application of this problem to Video-on-Demand services [26]. Further research
on approximation algorithms for special cases of the problem was presented
by Epstein et al. [11].
The class-constraint is limiting the number of different items in each bins,

but this does not say anything about the order of the items in the bins. The
next studied variant is exactly a constraint specifying this order. This is the
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Colored Bin Packing problem studied recently in some papers [1, 3, 7]. In this
model, the items have a color value, and the additional constraint is that one
cannot put two items with the same color successively in the same bin. Böhm
et al. [3] showed that the classical algorithms First-Fit, Best-Fit and Worst-Fit
are not constant competitive. A special case is investigated by Balogh et al.
[1], when there are only two colors, black and white, and they have shown a
lower bound about 1.7213 on the asymptotic competitive ratio for any online
algorithm.
There is a model which is more similar to the one discussed in this work,

than the above ones, this is the Bin Packing Problem with LIB (’Largest
In Bottom’) constraints, which has been also investigated by several authors
[10, 9, 16, 17]. This additional constraint means that one cannot put an item
on another one with smaller size. Epstein [10] proved that First-Fit gives not
better than 2.5 competitive for the online case, which was improved by Dósa
et al. [9] to about 2.1666, and they also mentioned a model of Generalized LIB
constraint, where the constraint is defined by an undirected incompatibility
graph based on the sizes of the items, and adjacent items cannot be packed
into the same bin.
The Bin Packing Problem with Conflicts (BPPC) model, investigated by

several authors, like Jansen and Öhring [14], Jansen [13], Sadykov and Van-
derbeck [20] etc., is very similar to the Generalized LIB constraint in the sense
that both models use a conflict graph G = (V, E), where E is the set of edges
so, that if (i, j) ∈ E, then the items i and j cannot be packed into the same
bin.
The Bin Packing Problem with Conflicts model is very general as basically

any kind of graph can be used as a valid conflict graph. There are papers also
about special conflict graphs, for example McCloskey and Shankar published
results for the case of clique-graphs [19], Jansen and Öhring [14], and also
Epstein and Levin [12] studied perfect conflict graphs, and bipartite graphs.
Khanafer et al. [15] investigated the two-dimensional variant of this problem.
Finally, our contribution to the field of constrained bin packing is that, in

this work, we will introduce a new stackability constraint considering the order
of the items, and we will generalize the BPPC model with directed edges.

3 Model definition

In this section, we show some of the real world applications where the undi-
rected conflict graph of the BPPC model is not appropriate, and we define a
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new model, which is partly based on the practical solutions, handling these
special stackability constraints. Then, we introduce another model, which is
generalizing all of the mentioned conflict models.

3.1 Problem definition

As we already mentioned, the computational problems rarely happen purely
in the real-world applications, and this is true for the Bin Packing Problem
as well. At several fields of the everyday life, we want to assign our items into
bins such that some items cannot be packed on each other. This problem is
partly handled by the existing BPPC model, but this is not able to handle
the case where the conflict is directed. This direction means that the conflict
occurs only when the items are packed into the same bin in a given order.
For example, there are some fragile products, and we do not want to put
them at the bottom of the bins, but we can put them on the top of the bins
independently from the content of the bins.
These stackability problems are present in several logistical approaches, like

palletisation, when heterogeneous unit loads are expected to be stable enough
for transportation, or truck loading, where we want to consider the unload-
ing order. This also occurs in the everyday life, when we want to pack into
minimum number of bags at the shop, such that we do not want to put the
milk carton on the tomatoes but it can be packed on the potatoes, or even the
tomatoes can be placed on the cartons.
Many other examples could be written for the practical applications, where

the conflicts are directed. However, this kind of constraints is not handled in
the BPPC. Actually, when we have a fixed order of the items, then we can
define the edges such that this constraint is taken into consideration, as we
will show this in Section 4., but this is not the case for the general problem.

3.2 Bin packing problem with hanoi conflicts (BPPHC)

What is common in the mentioned applications is that there are constraints
between the items specifying the order of the items in the bins. These con-
straints are describing some kind of stackability between the items, which can
be defined by precedences or stability expectations, but in either cases it means
that some items can or cannot be put on other ones. This definition is very
similar to the one appearing at the mathematical game called Tower of Hanoi,
in the sense that there are also specific items that cannot be put on other ones.
So we will name these restrictions to Hanoi conflicts in this work.
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Based on the observation of the real-world approaches, we introduce a gen-
eralized bin packing problem handling these stackability constraints. The gen-
eralization appears in the description of the items. In our model, each item i is
described not only by its size si, but also by an additional value determining
its Hanoi property.

Definition 1 The Hanoi property of an item i is hi ∈ H = {1, . . . ,m}, where
H is the set of possible Hanoi properties.

Definition 2 The Hanoi conflict is that one cannot put any item on another
one with higher Hanoi property. More formally, if item i is assigned to a bin
earlier than item j, then one can put item j into the same bin as item i if and
only if hi ≤ hj.

Using the definition of the Hanoi conflict, the Bin Packing Problem with
Hanoi Conflicts is defined as following. We have a set N = {1, 2, . . . , n} of
items, each item i has a size si and a Hanoi property hi, the bins have a
capacity c, and we want to assign each item to one bin such that the total size
of items in each bin is not exceeding c, the Hanoi conflicts are considered, and
we use the minimum number of bins.
In order to describe a possible mathematical formulation for this model, we

have to introduce some indicator variables, based on the formulation for the
standard BPP by Martello and Toth [18]. Let denote xi,j if item j is assigned
to the bin i, or not, and let yi denote if the bin j is used or not. More precisely:

xi,j =

{
1 if item j is assigned to bin i,

0 otherwise,
(1)

yi =

{
1 if bin i is used,

0 otherwise.
(2)

Then the model for the BPPHC can be defined as the following.
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minimize z =

n∑
i=1

yi (3)

subject to

n∑
j=1

sixi,j ≤ cyi i ∈ N = {1, . . . , n} (4)

n∑
i=1

xi,j = 1 j ∈ N (5)

(
n∑

k=1

xk,i · xk,j
)
(i− j) (hi − hj) ≥ 0 i ∈ N, j ∈ N (6)

yi ∈ {0, 1} i ∈ N (7)

xi,j ∈ {0, 1} i ∈ N, j ∈ N. (8)

This formulation differs from the one for the standard Bin Packing Problem
only in the extra constraint (6). The sum is defining that item i and j are
assigned to the same bin taking the value of either 1 or 0. The second and
the third factors are assuring the consideration of Hanoi conflict between the
two items: the sign of them must be the same, meaning that the item assigned
later to the bin must have the higher Hanoi property.
We note that this formulation is not linear, because we take the product

of variables in the constraint (6). We also mention that this constraint is
assuming that item i is the ith item being assigned to a bin, which means that
re-ordering the items is not allowed. We will discuss this additional assumption
in detail in Subsection 5.2.

3.3 Bin packing problem with directed conflicts (BPPDC)

Obviously, our Bin Packing Problem with Hanoi Conflicts model is somehow
connected to the BPPC model, as the Hanoi constraints can be represented
as a conflict graph. However, while in the BPPC an edge (i, j) means item i

and item j cannot be assigned to the same bin, in the BPPHC model this edge
means only that item j cannot be assigned to the same bin as item i later than
item i, but it can be assigned to that bin earlier. Thus, in our model the graph
is directed according to the Hanoi conflicts.
Since the Hanoi conflicts imply a directed conflict graph, let introduce the

Bin Packing Problem with Directed Conflicts (BPPDC) model. We have the
set of items N = {1, 2, . . . , n}, each item i has a size si, the bins have a capacity
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c, and we have a directed conflict graph G = (V, E), where E is the set of edges
so, that if (i, j) ∈ E, then the item i cannot be packed on top of item j in
the same bin. We want to assign each item to one bin considering this conflict
graph such that the total size of items in each bin is not exceeding c, and we
use the minimum number of bins.
The mathematical formulation of this model can be created using the idea

of the BPPHC model.

minimize z =

n∑
i=1

yi (9)

subject to

n∑
j=1

sjxi,j ≤ cyi i ∈ N = {1, . . . , n} (10)

n∑
i=1

xi,j = 1 j ∈ N (11)

(
n∑

k=1

xk,i · xk,j
)
(i− j) ≥ 0 (i, j) ∈ E (12)

yi ∈ {0, 1} i ∈ N (13)

xi,j ∈ {0, 1} i ∈ N, j ∈ N (14)

The notes for the model of the BPPHC are relevant for this model as well:
this is not a linear formulation, and re-ordering the items is not allowed.

4 Connection to the bin packing problem with con-
flicts

In this section, firstly, we will show the connections between the mentioned
three conflict models. Then, we will show the importance of the order of the
input items, and we will analyse the models considering this order.
The connection of the models is briefly visualized, and also the theorems

describing that certain connection is shown, on Figure 1.

4.1 Connections between the three conflict models

In this subsection, we will show that the BPPDC model is the most general
among the three models, and that the BPPDC and the BPPHC models are
equivalent under certain conditions.
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Figure 1: The connection of the three models and the corresponding theorems

First, we present a theorem about the connection of the BPPC and the
BPPDC models.

Theorem 3 The BPPDC model is a generalization of the BPPC model.

Proof. We show that for any G = (V, E) undirected conflict graph, we can
create a G′ = (V, E′) directed conflict graph so, that the corresponding BPPC
and BPPDC models are equivalent.
This can be achieved quite simply by generating E′ from E in the following

way: E′ = {(i, j) , (j, i) | (i, j) ∈ E}, which means that we take two directed
edges for each undirected edge. It can be easily seen that this will result
exactly the same problem, because, if item i and j cannot be assigned to the
same bin in the BPPC model, then one cannot pack them into the same bin
in any order, so we have to take two directed conflicts. �
Now, let investigate the connection of the two new models: the BPPHC and

the BPPDC models.

Theorem 4 The BPPDC model is a generalization of the BPPHC model.
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Proof. We show that we can create a G = (V, E) directed conflict graph so,
that each of the Hanoi conflicts are covered by the edges meaning that, two
items are in Hanoi conflict if, and only if, there is an edge between them with
proper direction in the resulting G graph.
Let the Hanoi constraint be given by item i and j, and hi < hj, then we

take an edge (i, j) into the directed conflict graph. It is trivial, that with this
transformation we get an equivalent BPPDC model for any BPPHC input,
because the Hanoi conflict of the item i and j represents that the item i

cannot be assigned to the same bin as the item j later, than the item j, and
the taken edge denotes exactly the same in the BPPDC model. �
Our next theorem will be about the equivalency of the BPPHC and the

BPPDC models, but this is realized only under some certain conditions for
the type of the directed conflict graph. So before saying that theorem, we
have to recall some definitions in connection with the directed graphs.

Definition 5 If in a directed graph G = (V, E) having edges (u, v) ∈ E and
(v,w) ∈ E implies also having the edge (u,w) ∈ E, then the graph is called
transitive.

We also have to define a special type of the graphs, for which the equivalency
will occur.

Definition 6 A directed graph G = (V, E) is called a transitive path, if it is a
path with additional edges such that G is transitive.

Definition 7 A directed graph G = (V, E) is called a Hanoi graph, if the
graph containing its independent sets as vertices is a transitive path. With
other words, G is a Hanoi graph if it can be generated from a transitive
path G′ = (V ′, E′) in the following way. We create an independent set of
vertices Vi′ ⊆ V for every vertex i′ ∈ V ′, and we take the edges such that
E =

{
(i, j) : i ∈ Vi′ , j ∈ Vj′ , (i′, j′) ∈ E′}.

Now, we can present our equivalency theorem.

Theorem 8 A directed conflict graph is generated by Hanoi conflicts, if and
only if, it is a Hanoi graph.

Proof. First, we prove that the directed conflict graph generated by Hanoi
conflicts must be a Hanoi graph.
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It is easy to see by the definition of Hanoi conflicts (Definition 2), that if
we consider the directed conflict graph G = (V, E), created with the algorithm
described in the proof of Theorem 4 from the Hanoi properties themselves,
meaning we have exactly one item for every property, then G is a transitive
path. Then, based on the definition of the Hanoi graph (Definition 7), we only
have to create the independent sets of vertices from the items with equal Hanoi
property, which is possible because there is not conflict between these items.
So, we get a Hanoi graph G′ = (V ′, E′). This means that we can always create
a directed conflict graph from the Hanoi conflicts so, that it is a Hanoi graph.
Now, we have to prove that this directed conflict graph is unique. This is

proved indirectly. Let assume that there is another directed conflict graph
G′′ = (V ′′, E′′), which defines exactly the same conflicts as the Hanoi conflicts,
and which is different from G′. As the items are the same, V ′ = V ′′ must occur,
so the difference can appear only in the edges, which is possible in two cases:

1. If there is an edge e such that e ∈ E′, but e /∈ E′′, then G′′ skips a
conflict, which is defined by the Hanoi conflicts, so it is not valid. This
is a contradiction.

2. If there is an edge e such that e /∈ E′, but e ∈ E′′, then G′′ has an extra
conflict, which is not defined by the Hanoi conflicts, so it is also not
valid. This is a contradiction, as well.

So we get, that the generated directed conflict graph is unique and it is
Hanoi graph indeed.
Secondly, we prove that any G = (V, E) Hanoi graph can be generated by

Hanoi conflicts. For this, we show that one can set the Hanoi properties of
the items such that, the resulting BPPHC model is equivalent to the original
BPPDC model.
We can give an algorithm for this transformation. First, we create the tran-

sitive path G′ = (V ′, E′) from the independent sets of vertices of G. Actually,
we make this inversely as in the definition of the Hanoi graph (Definition 7).
Then we have to set the Hanoi properties for every vertices in G′ according to
the edges. For this, we define for every vertex i′ ∈ V ′ the set of predecessors
Pi′? {j

′ | (j′, i′) ∈ E′}. Then for every item i′ with |Pi′ | = 0, actually there is only
1 such item because G′ is a transitive path, let hi′ = 1, and for every item i′

with |Pi′ | > 0 let hi′ = 1 +maxj′∈Pi′ hj′ . The resulting Hanoi properties are
correct, because any item can be packed on the items without predecessors,
and the other items cannot be packed below their predecessors, because of the
definition of the Hanoi conflicts (Definition 2). With this algorithm, we set
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the Hanoi properties only for the independent sets, but we need them for all
items. As the items in the same independent sets are not in conflict, we can
set the same Hanoi property for every item in the same independent set. So,
we managed to show that G can be generated by Hanoi conflicts. �
So, we have proved, that the equivalency between the BPPHC and the

BPPDC models is really existing under the quite strict condition of having a
Hanoi graph.

4.2 Importance of the order of the items

By definition, the effect of the Hanoi conflicts are highly dependent on the
order of the items. For example, given an item i and j, if hi < hj and item i is
assigned earlier to a bin, then item j can be assigned to the same bin. However,
if item j is arrived earlier, then item i cannot be assigned to the same bin as
item j. This means, that one can change if two items are assigned to the same
bin by changing only the order of the items. This kind of importance of the
input order is not apply in the BPPC model, because the conflict graph defines
the conflicts independently from the order.
In this section, we will show that for a fixed order of the items, any directed

conflict graph has an equal undirected conflict graph. Also, we will show that
with fixed order of items there is a special type of the directed conflict graphs
that can be transformed into Hanoi conflicts.

Theorem 9 Let be given a fixed order of the input items. Then for any di-
rected conflict graph one can find an undirected conflict graph defining exactly
the same conflicts.

Proof. Let (i, j) be an edge in the directed graph, which means that the item i

cannot be assigned to the same bin as the item j later, than item j. Considering
the given order of the items, there are two cases we have to investigate.
If item i is arrived earlier, then there is no way to assign this to a bin later,

than the item j, which is still not arrived. This means, that we can ignore this
edge, so there will not be (i, j) edge in the undirected graph.
If item j is arrived earlier, then item i definitely cannot be assigned to the

same bin as item j, because of the (i, j) directed edge. Thus, we have to add
an (i, j) edge to the undirected graph, and, according to the given order, this
has exactly the same meaning as the directed edge. �
Now, we observe the general and the acyclic directed conflict graphs for this

case. For this, we need the definition of the directed acyclic graph.
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Definition 10 A directed acyclic graph (DAG) is a directed graph without
directed cycles, meaning that there is no way to get back to a vertex through a
path following the directed edges [24].

Theorem 11 Let be given a fixed order of the input items. Then for any
directed conflict graph G = (V, E) one can find an acyclic directed conflict
graph G′ = (V, E′) defining exactly the same conflicts.

Proof. Let C be a cycle in G. Considering the first vertex of C in the order, we
get that the edge starting from this vertex must go to a vertex arrived later,
so we can ignore this edge, because having a conflict with an item not arrived
yet is irrelevant.
This means, that, according to the given input order, we can ignore at least

one of the edges from any cycle. Thus, there exists an acyclic directed conflict
graph for any directed conflict graph. �
Before we can introduce our theorem about under which conditions is it

possible to transform a BPPDC model to a BPPHC model for a given order of
the input items, we still have to recall the definition of the (weakly) connected
directed graphs.

Definition 12 A directed graph is called (weakly) connected, if removing the
directions of the edges and considering them as undirected ones, results to a
connected undirected graph.

Theorem 13 Let be given a fixed order of the input items and a directed
conflict graph. Assuming that the items of each (weakly) connected components
of the graph is arrived in continuous blocks, meaning there is no item from
another component between any two items of the same component, and every
such component is a Hanoi graph, one can set the Hanoi properties for the
items such that, according to the given order, the resulting BPPHC model is
equivalent to the original BPPDC model.

Proof. In the second part of the proof of Theorem 8, we have shown that any
directed conflict graph, which is a Hanoi graph, can be generated by Hanoi
conflicts, and we described an algorithm to set the Hanoi properties based on
that graph. To prove the current theorem, we have to expand that algorithm
so, that it can handle multiple (weakly) connected components.
Let denote the (weakly) connected components of G = (V, E) by G1 =

(V1, E1) , G2 = (V2, E2) , . . . , Gm = (Vm, Em). Without loss of generality, we
can assume that the components are arriving in the order of their indices. We
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note, that we use here the fact that the items of each components are arrived in
a continuous block. This is important, because, if the components are merged
in the order, then we cannot disjoin them to set the Hanoi properties correctly.
Using this notation, we can define Algorithm 1, which makes the necessary

transformation. The set properties for Hanoi graph(Gi, start) function is
actually the algorithm in the second part of the proof of Theorem 8 with a
little change, that the lowest Hanoi property set for any item of Gi is at least
start, and it also updates the value of globalmax by the maximal property
appearing in Gi.

Algorithm 1: Algorithm setting the Hanoi properties for the items ac-
cording to a directed conflict graph and a fixed input order

1 globalmax := 0 ;
2 foreach Gi in G do // in the fixed input order

3 start := globalmax;
4 set properties for Hanoi graph (Gi, start);

5 end

Now, we have to prove the correctness of this algorithm. Obviously, the
Hanoi properties are set correctly inside each components as shown in the proof
of Theorem 8. We have to prove only that the Hanoi properties are appropriate
between the components, as well. In this case, appropriateness means that for
any two items from two different components, the item arrived later has the
greater Hanoi property. More formally, ∀i ∈ Gt,∀j ∈ {G\Gt} : hi ≤ hj if and
only if item i is arrived earlier than item j. This is ensured by the usage of the
globalmax variable so, that the items of the currently visited components get
the greatest Hanoi properties, and we are visiting the components in the fixed
order. So, the items of the earlier components get the lower Hanoi properties.
�

4.3 Summary of the connections of the models

In this section, we reported our results on investigating the connections be-
tween the Bin Packing Problem with Conflicts (BPPC) from the literature,
and our two proposed models: the Bin Packing Problem with Hanoi Conflicts
(BPPHC) and the Bin Packing Problem with Directed Conflicts (BPPDC).
We have shown that the last one is the most general as the other two models
can be reduced to this one. Then we proved an equivalency theorem about BP-
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PHC and BPPDC stating that a directed conflict graph is generated by Hanoi
conflicts, if and only if, it is a Hanoi graph. This theorem actually characterizes
the BPPHC model compared to the BPPDC model.
Then we discussed the importance of the order of the items, because, unlike

the BPPC model, this is essential for the two new models. We examined pos-
sible transformations between the models for fixed order. We pointed out that
for a fixed order, a directed conflict graph can be transformed into an undi-
rected conflict graph. Furthermore, we presented an algorithm transforming a
’special type’ of BPPDC input into BPPHC input that is this algorithm can
set the Hanoi properties for the items based on the directed conflict graph.
The ’special type’ means here that the (weakly) connected components of the
directed conflict graph must arrive in continuous blocks, meaning separately
from the other components, in the fixed order, and each of these components
must be a Hanoi graph.

5 Variants with unit size items

In this section, we will consider the above described models with a further
assumption that each item have the same unit size. This case is also investi-
gated for other variants of the Bin Packing Problem and other packing prob-
lems as well. Several authors, like Coffman et al. [5, 6], studied the ordinary
Bin Packing Problem with discrete item sizes, which is a similar, but weaker
assumption for the sizes. Shachnai and Tamir [21] proposed algorithms for the
Class-Constrained Bin Packing Problem with unit sizes.
This case has practical applications, too, mainly in logistics. For example,

we have to load truck with equal size pallets and we have to consider the order
of unloading, meaning we cannot put some pallets in front of others. Also,
this case can occur in several approaches, where different products have boxes
with same size and the conflicts are based on some logical conditions such as
one item has to be used earlier than others.
For this variant, we slightly modify our models such that si = 1 for every

item i, and c > 1 that is the capacity of the bins is higher than 1. We will call
the modified versions of the BPPHC and the BPPDC models BPPHCU and
BPPDCU models respectively, adding the ’and Unit size items’ suffix for the
names of the models.
As shown in the Subsection 4.2, the order of the items is crucial, so we will

consider two cases based on whether the algorithm can or cannot change the
order of the items.
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5.1 Ordering is allowed

If one can change the order of the input, then the problems usually becomes
easier, and this is the case for our problems, as well. In this, part, we will
introduce algorithms for both new models, when it is allowed to change the
input order.

5.1.1 BPPHCU with ordering

For the case of Hanoi conflicts, if one can re-order the items, the problem
becomes absolutely easy. Actually, in this case, there is no real effect of the
Hanoi conflicts for the result, because we can always sort the items per bin
such that we get a valid solution. This is concluded in the next theorem, where
we define an algorithm based on Next Fit giving optimal solution.

Theorem 14 The following algorithm gives optimal solution for the BPPHCU
model.
Firstly, we pack the items into bins using the Next-Fit algorithm not con-

sidering the Hanoi conflicts at all. Then we sort the items inside each bins
separately such that the Hanoi conflicts do not occur, meaning the items with
lower Hanoi property will be the earlier in the item-list of each bin.

Proof. Obviously, Next-Fit gives optimal solution for the ordinary Bin Pack-
ing Problem with Unit sizes. Then, we have to prove only, that we can sort
the items in each bins such that the Hanoi conflicts are avoided. This is also
quite trivial, because one can always sort positive integers, that is the Hanoi
properties, into non-decreasing order. �

5.1.2 BPPDCU with ordering

The BPPDCU model usually also becomes relatively easy, if we can re-order
the items, because we can make a topological order of the items resolving
exactly the directed conflicts. However, the topological sort is possible only,
if the graph is acyclic, meaning if there are items that cannot be packed into
the same bin, independently from their order in the bin, then the problem is
still not trivial.
In this work, we consider only the acyclic graphs for this problem, and the

next theorem defines an efficient algorithm, similar to the one described in
Theorem 14, to find the optimal solution in this case.
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Theorem 15 The following algorithm gives optimal solution for the BPPDCU
model.
Firstly, we pack the items into bins using the Next-Fit algorithm not consid-

ering the directed conflict graph at all. Then we sort the items inside each bins
separately corresponding to the topological order, meaning the items appearing
earlier in the topological order will be the earlier in the item-list of each bin.

Proof. The correctness of this algorithm trivially comes from the proof of
Theorem 14 and the definition of the topological order. �

5.2 Ordering is forbidden (BPPHCU)

As we already described in Section 4.2, the order of the items is crucial in
connection with the directed conflicts including the Hanoi conflicts as well.
We have seen in the previous subsection that the problem becomes kind of
easy if we have the ability to re-order the input items. However, this is not
possible in several cases. In logistics, this is forbidden usually because of lack
of puffer spaces. For example, we have to put the pallets on a truck when it is
ready for transport, because we do not have enough space in the warehouse to
wait all the pallets. This is similar to the definition of the online problems, but
sometimes the full list of pallets is available, so the online and offline variants
of the problem is also interesting.
In this subsection, we will first investigate the online case, meaning we get

each item one-by-one, and we do not know anything about the later ones. We
show a lower-bound on the approximation ratio of the Any-Fit algorithms.
Then, we will prove that asymptotically the First-Fit algorithm, modified for
Hanoi conflicts, is 1-approximation. Finally, we will show an offline optimal
algorithm with polynomial time complexity if the number of different Hanoi
properties and the capacity of the bins are considered to be constants.

5.2.1 Online case

In this part, we investigate the online algorithms for the BPPHCU model,
when the offline optimum is restricted such that the offline algorithm can
neither re-order the items, so it has to pack the items in their incoming order.
First-Fit algorithm is widely investigated for different variants of the Bin

Packing Problem. For the standard version, it was proved by Ullman [25]
that its asymptotic approximation ratio is 1.7, and Dósa and Sgall [8] proved,
that the absolute approximation ration is the same. We have to modify this
algorithm to handle the Hanoi conflicts: the current item is assigned to the
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first not-filled bin, where the top-item, meaning the last item packed into that
bin has a lower or equal Hanoi property.
First-Fit is a member of a group of algorithms, called Any-Fit algorithms

defined by a general idea. Any-Fit algorithms always assign the current item
to any of the already open, incomplete bins, if it is possible, otherwise they
open a new bin for this item.
In the next theorem, we present a lower-bound for the Any-Fit algorithm,

when m = 2, meaning there are only 2 Hanoi classes.

Theorem 16 Every Any-Fit algorithm gives not better than 3
2
-approximation

for the BPPHCU model with m = 2.

Proof. To prove this theorem, we show an example, where the approximation
ratio of the Any-Fit algorithm is 3

2
.

Let I = [1, 1, 1, 2, 2, 2, 2, 1] be the list of input items, where the items are
given only with their Hanoi properties because we have unit sizes, and the
capacity of the bins is 4.
This is packed by Any-Fit as follows:

AF (I) = {1, 1, 1, 2} , {2, 2, 2} , {1} .

OPT can pack the items, like following:

OPT (I) = {1, 1, 1, 1} , {2, 2, 2, 2} .

We can see, that Any-Fit packed the items into 3 bins, while the optimum
can solve that problem instance with only 2 bins. So, the approximation ratio
in this case is AF(I)

OPT(I) =
3
2

�
This lower bound can be generalized to arbitrary number of Hanoi classes

using the same structured of input. This result is stated in the next theorem.

Theorem 17 Let assume m is the number of Hanoi classes, c is the capacity
of the bins, and �x� denotes the integer part of x. If c is a divisor of m, then ev-

ery Any-Fit algorithm gives not better than

⌊
m
c

⌋
(c− 1) +m

m
-approximation,

otherwise they are not better than
2m−

⌊
m
c

⌋
− 1

m
-approximation for the BP-

PHCU model.

Proof. To prove this theorem, we show an input structure for arbitrary m

and c, where the approximation ratio of the Any-Fit algorithms is exactly the
one mentioned in the theorem.
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Let I be the list of input items as follows:

I = [1, 1, . . . , 1; ; 2, 2, . . . , 2; ; . . . ; ;m,m, . . . ,m; ;m,m− 1, . . . , 2, 1] .

Where the items are given only with their Hanoi properties because we have
unit sizes, and the capacity of the bins is c. In the input above, the semicolons
denote a separator of input blocks such that, the number of items in each
block, except the last one, is c− 1.
As the last block contains exactly one item for each Hanoi property, an

optimal solution, denoted by OPT (I), is to fill 1 bin for each Hanoi property,
because there are exactly c items for each of them, thus OPT (I) = m.
Now, let consider how the Any-Fit algorithms work on such an input. As the

items can be packed on each other in the order of input until the last block,
Any-Fit packs these items on each other until the bin is filled, then open a new
bin and do the same, which is basically a simple Next-Fit method. However,
when the algorithm reaches the last block, then it has to pack each item into
a new bin, so we get a lot of bins with only 1 item.
Firstly, let investigate the blocks containing c− 1 items. As the capacity of

the bins is c, every bin will contain items from the consecutive blocks so, that,
when we iterate through the input, the packed bins will always contain one
more item from the next block, than the previous bin. This is clearly seen on
an example, where c = 4. In this case, Any-Fit packs these input-blocks as
following:

AF (I) = {1, 1, 1, 2} , {2, 2, 3, 3} , {3, 4, 4, 4} , {5, 5, 5, 6} , {6, 6, 7, 7} , . . .

This means that after c blocks c−1 bins, called bin-block, are filled and the
next block starts with a new empty bin. Based on this property of Any-Fit, we
can divide into 3 groups the packed bins according to which part of the input
items are packed into them. The bins that are packed with items from the
blocks containing c − 1 items have 2 groups: the bins that are in a complete
bin-block, meaning having exactly c − 1 bins, and the ones that are in the
remainder bin-block. The third group of bins contains the ones being packed
with items from the last block. We note, that the first item of the last block
can be packed on the items of the previous block, and, in this case, this bin is
also in the third group.
So, to determine the bins used by the Any-Fit algorithms, we have to count

them in each groups. The number of bins in the first groups is quite trivial
considering the already mentioned fact, that after every c blocks c − 1 bins
are filled. As the number of such input blocks is m, the number of bins in the
first groups is

⌊
m
c

⌋
(c− 1).
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The third group contains exactly m bins, because every item in the last
block is placed into a new bin. We note again, that the first item is possibly
packed into the same bin as the last item of the previous block, and we count
this bin also for the third group.
The second group, that is the remainder bin-block, is a bit more complicated.

We have to consider two cases. If c is a divisor of m, then there are not any
bin in the remainder block, so the number of bins in the second group is 0.
Otherwise, let denote r the number of remained input blocks for this part.
Then r = m − 1 −

⌊
m
c

⌋
c, which is similar to the definition of the remainder

of the division m
c
, except we decrease this by one, because the last block is

counted in the third group. As r < c, the number of bins used to pack these
items is exactly r, because we should have at least c blocks to save one bin.
So by summarizing the number of bins in the 3 groups, we get that if c is a

divisor of m, then the approximation ratio is the following:

AF (I)

OPT (I)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⌊
m
c

⌋
(c− 1) +m

m
if c is a divisor of m⌊

m
c

⌋
(c− 1) +m− 1−

⌊
m
c

⌋
c+m

m

=
2m−

⌊
m
c

⌋
− 1

m
otherwise.

�
Although, we have seen that Any-Fit has at least 3

2
-approximation ratio even

for m = 2, asymptotically the situation is much better for the First-Fit algo-
rithm. Before we show our results about this, firstly we have to introduce an
intermediate result about the incomplete bins (the ones that are not filled up
totally) during the execution of this algorithm.

Theorem 18 There are no two incomplete bins having top-items with the
same Hanoi property at any time during the execution of the First-Fit algo-
rithm.

Proof. This is proved by induction on the number of items arrived (let denote
this by i, and the Hanoi property of the last item by hi):

1. If i = 1, then we have only one item, and we have to put it into a bin,
which is incomplete, but there cannot be any other incomplete bins, so
the statement is true.

2. Let assume, we have i = k and the statement is true.
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3. If we have i = k+1, meaning we get another item, then we have 2 cases:

(a) We can put the new item into an already incomplete bin. Then, we
have to investigate 2 sub-cases:

i. If there is not any incomplete bin with top-item having Hanoi
property hi, then we put this item into the first incomplete bin
with top-item with Hanoi property less, than hi. Thus, we have
only 1 bin with this Hanoi property on the top after assigning
this item, so the statement is true.

ii. If there is already a bin b with top-item having Hanoi property
hi, then we have to prove that the ith item is assigned to this bin
by First-Fit. We show this indirectly. Let suppose, that First-
Fit packs this item into a bin b′ such that b′ 	= b. This can
happen only if b′ is earlier, than b, but in this case, the top-item
of b would have been assigned to b′, which is a contradiction.
So the statement is true.

(b) We cannot put the new item into any of the incomplete bins because
of the Hanoi conflicts. In this case, there is not any bin with top-item
having Hanoi property hi, so, when we open a new bin to assign
the ith item, then this will be the only bin with such top-item. So
the statement is true in this case, too.

�
We note, that, although it might looks like Theorem 18 is true for the

optimal solution, this is not the case. This is shown by the following example:
Let I = [1, 2, 2, 4, 4, 4, 3, 3, 3, 3] be the list of input items, where each item is

given by its Hanoi property, and the capacity of the bins is 5.
The optimal solution for this instance is:

OPT (I) = {1, 2, 4, 4, 4} , {2, 3, 3, 3, 3} .

However, if we want to keep true for every step, that there are no two incom-
plete bins having top-items with the same Hanoi property, then we get the
following:

A (I) = {1, 2, 2, 4, 4} , {4} , {3, 3, 3, 3} .

Now, using this theorem for First-Fit, we can introduce our main result
about the asymptotical approximation ratio of this algorithm.
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Theorem 19 First-Fit algorithm is 1-approximation asymptotically for the
BPPHCU model.

Proof. The proof is based on the idea that First-Fit algorithm uses at most
OPT (I) + m bins, where OPT(I) is the number of used bins in the optimal
solution and m is the number of Hanoi classes. Consequently, we get that
lim|I|→∞

OPT(I)+m

OPT(I) = 1. To prove this, we have to consider only the incomplete
bins, because these are the ones making difference to the optimum, as even
the optimum cannot put more items to the complete bins. As we have seen in
Theorem 18, there are no two incomplete bins with top-item having the same
Hanoi property, which implies that there are at most as many incomplete bins
as Hanoi classes, that is m. Thus, we get that FF (I) − OPT (I) ≤ m, which
implies the statement. �

5.2.2 Offline case

As we already mentioned, there are some practical applications, when, despite
the fact that all the items are known in advance, we cannot sort them arbi-
trarily, for example because of lack of space or other resources. In this part, we
investigate this case: we have a full list of unit size items with Hanoi conflicts,
and we want to assign them into minimum number of bins. We propose an
offline algorithm giving optimal solution and we examine its complexity.
In the BPPHCU model, we have finite number of Hanoi properties, thus we

can define a finite number of patterns representing the possible loads of the
bins. Each pattern p looks like the following:

p =

⎡
⎢⎢⎢⎣
p1,1 p1,2 · · · p1,c

p2,1 p2,2 · · · p2,c

...
...

. . .
...

pm,1 pm,2 · · · pm,c

⎤
⎥⎥⎥⎦ .

Here pi,j is the number of the used bins for the bin-pattern with load j and
top-item with Hanoi property i. This implies, that there are nc·m different
possible patterns, where n is the number of input items, c is the capacity of
each bin and m is the number of Hanoi classes, because there are c·m different
bin-patterns, and we can have n used bins from any of them.
Considering these patterns, we can introduce an algorithm, giving optimal

solution using a dynamic programming approach represented by the Algorithm
2. Before explaining this method, we have to introduce some notations.
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Let P be the set of possible patterns, that is P ⊆ NH×{1,2,...,c}. We will
generate a matrix A ⊆ P (P)P×H, giving the set of possible patterns reached
from a specific pattern through a transition generated by an item with a
specific Hanoi property. This means, that A [p, h] is the set of patterns that
can be reached from the pattern p by assigning an item with Hanoi property
h to a bin. Furthermore, we will handle a set Ri of possible patterns for each
item i in the input, that is Ri ⊆ P (P).
Now, with these notations we can describe our algorithm finding optimal

solution for the sort-restricted BPPHCE model. Firstly, we open the first bin
for the first item by adding a pattern to R1. The added pattern pstart is defined
as follows:

pstarti,j =

{
1 if i = h1 and j = 1

0 otherwise.

Algorithm 2: Dynamic programming algorithm solving the BPPHCU
model for fixed order

1 R1.add(pstart) ; // initialize with the first item

2 for i := 1 to n− 1 do // iterate through the items

3 foreach p ∈ Ri do
4 foreach q ∈ A [p, hi+1] do
5 Ri+1.add(q);
6 S[i+ 1, q] := p;

7 end

8 end

9 end

// find the optimum;
10 min := inf;
11 min p := nil;
12 foreach p ∈ Rn do
13 x := sumi∈H,j∈{1,2,··· ,c} pi,j;

14 if x < min then
15 min := x;
16 min p := p;

17 end

18 end
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Then, we iterate through the items, and meanwhile we add the possible pat-
terns to Ri+1. This is done such that for every item i the elements of A [p, hi+1],
that is the possible patterns reached from the pattern p through a transition
generated by the item i+ 1, are inserted. Furthermore, the algorithm creates
backward pointers for every added pattern to help determine the assignments
for the optimal solution. This is handled by the matrix S ⊆ PN×P containing
a pointer to source pattern in Ri.
At the end of this loop, the set Rn contains the possible patterns after every

item is assigned, so we only have to count the used items in each patterns
and choose the minimal one. The optimal assignment of items into bins can
be retrieved by following the pointers of the matrix S.
To determine the running time of this algorithm, we have to find out the

sizes of the sets in the matrix A. As each item i can be assigned to any bin
having a top-item with Hanoi property less or equal than hi, and the elements
of matrix A contains exactly these successors, we get that for any pattern p

and Hanoi property h, |A [p, h]| = c · h, because there are c different loads for
every top-item, which means, that c ·h different patterns can be reached from
p through a transition generated by an item with Hanoi property of h. As
h ≤ m, we can say that c ·m is an upper-bound on the sizes of the sets in the
matrix. Then, we have to specify the size of the Ri sets for every item i, which
is clearly upper-bounded by the number of all possible patterns, that is nc·m,
as shown earlier. So the time complexity of the algorithm is O

(
nc·m+1 · c ·m).

We can see that in this time complexity only c and m occur in exponent,
meaning that the running time of the algorithm is polynomial, if we consider
c, the capacity of the bins, and m, that is the number of Hanoi classes, as
constants, meaning these are independent from the input. This consideration
is not uncommon in practical applications, because in several fields fix Hanoi
classes are used, such as fragile, or heavy products, so the number of these
classes is really independent from the current input items, and the capacity of
the containers are also often fix.

6 Conclusion

As conclusion, we can say that we have found some practical applications of
the Bin Packing Problem that are not fully handled by the already existing
models, so we introduced two relevant variants: the Bin Packing Problem
with Hanoi Conflicts (BPPHC) and the Bin Packing Problem with Directed
Conflicts (BPPDC).
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We deeply investigated the connection of the new models to the Bin Packing
Problem with Conflicts (BPPC), which exists in the literature. We pointed out
some important connections depending on the type on the conflict graphs. We
also examined the importance of the order of the input items. We found that
our BPPDC model is the most general one.
Furthermore, we presented results about the complexity of the problems

if all the items have unit size. We showed that in this case every Any-Fit
algorithm gives not better than 3

2
-approximation for the online version of the

Hanoi Conflicts model even for only 2 Hanoi classes, if re-ordering the input is
forbidden for the optimum. This lower bound is also generalized for arbitrary
number of Hanoi classes. However, we proved that the First-Fit algorithm is
asymptotically 1-approximation for this case.
Last, but not least, we proposed an offline algorithm giving optimal solution

for the sort-restricted Hanoi Conflicts model with unit size items which has
polynomial time complexity, if the capacity and the number of the Hanoi
classes are considered as constants.
We believe this work introduced practically important models for the Bin

Packing Problem, and further research will be useful to help solving industrial
problems.
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