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Abstract. Using different definitions of split graphs we propose quick
algorithms for the recognition and extremal reconstruction of split se-
quences among integer, regular, and graphic sequences.

1 Basic definitions

In this paper a, b, l, m, n, p and q denote nonnegative integers with b ≥ a

and l +m ≥ 1. We follow the terminology of Handbook of Graph Theory [28]
written by Gross, Yellen and Zhang.
An (a, b, n)-graph is a loopless graph in which different vertices are con-

nected at least by a and at most by b edges [43, 44]. A (b, b, l)-graph is de-
noted by Kb

l and is called a b-clique or b-complete graph . Clearly, K1
l = Kl,

where Kl is the complete graph on l vertices. Its complement, Kl is called
independent graph on l vertices.
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The join [12, 28, 66] of two graphs G and H is denoted by G + H. It has
the following vertex set and edge set:

V(G+H) = V(G) ∪ V(H)

and
E(G+H) = E(G) ∪ E(H) ∪ {uv | u ∈ V(G) and v ∈ V(H)}.

A nonincreasing integer sequence σ = (s1, . . . , sn) with s1 ≤ b(n − 1) and
sn ≥ a(n − 1) is said (a, b, n)-regular [43, 44]. A (0, b, n)-regular sequence
shortly is said b-regular [17]. An integer sequence σ is said (a, b, n)-graphic,
if it is the degree sequence of an (a, b, n)-graph G [43, 44], and such a graph
G is referred to as a realization of σ. An integer sequence is called even, if
the sum of its elements is even.
In this paper we denote the integer sequences by σ and the degree sequences

by δ.
In 1965 Fulkerson, Hoffman and McAndrew [24] proposed the following

definition of (γ, δ)-multigraphs with capacity bounds. Let n ≥ 1, δ =
(d1, . . . , dn) and γ = (c11, . . . , c1n, c21 . . . , c2n, . . . , cn−1,n, cn,n) sequences of
nonnegative integers with cii = 0 and cij = cji for 1 ≤ i < j ≤ n. Fulkerson
and his coathors call δ degree vector, while γ is the capacity vector. Let Gγ

denote the graph in which there is an edge between the vertex with degree di

and vertex with degree dj, if cij = 1. The capacity vector γ has the odd-cycle
condition if the graph Gγ has the property that any two of its odd length
(simple) cycles either have a common vertices or there exists a pair of vertices,
one vertex from each cycle, which are connected with an edge.
With other words, the distance between two odd length cycles is at most 1.

In particular, if Gγ is bipartite (has no odd length cycle) or Gγ is complete
(all cij equals to 1) then γ obviously satisfies the odd-cycle condition.
An (a, b, n)-regular sequence is said potentially Kb

l -graphic, if it has a
realization G containing Kb

l as a subgraph. If b = 1, then we write simply Kl

instead of K1
l .

An (a, b, n)-regular sequence σ = (s1, . . . , sn) is said potentially Ab
l -gra-

phic, if it has a realization G containing Jbl (definition see later) on vertices
having degrees s1, . . . , sl+m.
An (a, b, n)-regular sequence σ = (s1, . . . , sn) is said potentially Ab

l,m-
graphic, if it has a realization G containing Jbl,m (definition see later) on
vertices having degrees s1, . . . , sl+m.
A (0, b, n)-regular sequence σ = (s1, . . . , sn) is said potentially Jbl,m-graphic

if it has a realization G containing Jbl,m (definition see later) on vertices having
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degrees s1, . . . , sl+m. If b = 1, then we write simply Al insted A1
b,, A

1
l,m instead

of Ab
l,m, Jl,m instead of J1l,m, and Jl,m instead of J1l,m.

Let n ≥ 2 and σ = (s1, . . . , sn) be a nonnegative integer sequence, and k be
any integer 1 ≤ k ≤ n. Let σ ′ = (s ′1, . . . , s

′
n) be the sequence obtained from s

by setting sk = 0 and s ′i = si − 1 for the sk largest elements of s other than
sk. Let Hk be the graph obtained on the vertex set V = {v1, . . . , vn} by joining
vk to the sk vertices corresponding to the sk elements used to obtain s ′. This
operation of getting s ′ and Hk is called laying off sk, s

′ is called residual
sequence, and Hk is called the subgraph obtained by laying off sk [51].
Now we formulate several definitions of split graphs.
The classical and most distributed definition of split graphs was introduced

by Földes and Hammer in 1977 [21, 22, 26, 28].

Definition 1 (Földes, Hammer [21, 22]) An (l,m)-partitioned split graph
(shortly: psplit graph) is one whose vertex set can be partitioned into two dis-
joint subsets spanning a clique Kl and an independent graph Km. It is denoted
by Sl,m.

It is worth to mention that one of l and m can be zero, that is if l ≥ 1, then
Sl,0 is also a psplit graph, and ifm ≥ 1, then S0,m is also a psplit graph, and the
independent graph K0,m = S0,m are also psplit graphs. For the number of edges
|E(Sl,m)| of an Sl,m hold the inequalities l(l−1)/2 ≤ |E(Sl,m)| ≤ l(l−1)/2+l·m
and between these bounds every integer value is realizable.
Consider the following example (Figure 1). Let G = (V, E), where V =

{v1, . . . , v5} and E = (v1v2, v1v3, v1v4, v2v3, v2v4, v3v4}, that is G contains six
edges. Then G is S3,2 and also S4,1 due to the following two partitions of V :
{v1, v2, v3, v4} plus {v4, v5} (Figure 1a)) containing all six edges and also is S3,2
due to the partition {v1, v2, v3} plus {v4, v5} (Figure 1b)) containing only three
edges.
In 1996 Brandstädt introduced the following definition of (l,m)-multiparti-

tioned split graphs. Let G = (V, E) with |V | = n. V1, . . . , Vk is a partition of
V , if and only if for all u, v ∈ {1, . . . , k} with i < j Vi∩Vj = ∅ and

⋃k
i=1 Vi = V.

A partition C1, . . . , Cm, I1, . . . , Im, with cliques Ci, i ∈ {1, . . . , l} and
independent sets Ij, j ∈ {1, . . . , m} is an (l,m)-partition of V .

Definition 2 (Brandstädt [7, 8, 10]) A graph G = (V, E) is called an (l,m)-
split graph, if its vertex set has an (l,m)-partition.

In 1998 Gyárfás generalized (l,m)-psplit graphs to (l,m)-bsplit graphs.
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Figure 1: Partition of a psplit graph is not unique.

Definition 3 (Gyárfás [30]) A graph G is called (l,m)-bounded split graph
(shortly: bsplit graph) if its vertex set can be partitioned into A and B so that
the order of the largest clique graph in A is l and the order of the largest
complete subgraph in B is m.

In 2001 Hell, Klein, Protti, and Tito [41] defined (k, l)-graphs so, that their
vertex set can be partitioned into k cliques and l independent sets.
In 2005 Bradstädt, Hammer, Le and Lozin studied bisplit graphs, defined

as follows.

Definition 4 (Brandstädt, Hammer, Le, Lozin [9]) A graph G is called (l,m)-
bisplit graph (shortly: bisplit graph) if its vertex set can be partitioned into a
complete bipartite graph and an independent graph. It is denoted by Bl,m.

For the number |E(Bl,m)| of edges of a bisplit graph Bl,m hold the inequalities
l2 ≤ |E(Bl,m)| ≤ l2 + 2lm.
In 2007 Le and Ritter [55] defined probe split graphs (modifying the defini-

tion of interval split graphs [61]).

Definition 5 (Le, Ritter [55]) A G(V, E) graph is probe split graphs, if V
can be partitoned into two parts N (nonprobes) and P (probes) where N is an
independent set and there exists E ′ ⊂ N × N such that G ′ = (V, E ∪ E ′) is a
psplit graph.

In 2009 [6] Boros, Gurvich and Zverovich [6] proposed the definition of
almost CIS-graphs.
The following simple definition appeared in 2011 and later in the papers of

different authors as Chat, Pirzada, and Yin [67, 86, 87].
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Definition 6 (Yin [86, 87]) An (l,m)-join split graph (shortly: jsplit graph)
is the join of Kl and Km. It is denoted by Jl,m.

It is worth to remark, that jsplit graphs are special cases of psplit graphs: if
G is a jsplit graph, then any vertex of Kl is connected with any vertex of Km,
while in the corresponding psplit graph even all such edges can be absent.
Consider the following example Let H = (V, E), where V = {v1, . . . , v5} and

E = (v1v2, v1v3, v1v4, v1v5, v2v3, v2v4, v2v5, v3v4, v3v5, v4v5}, that is H is a clique
on 5 vertices and so it contains ten edges. Then H is J5,0 and also J4,1 due to
the following partition of V : {v1, v2, v3.v4, v5} plus ∅ and is J4,1 for example due
to the partition {v1, v2, v3, v4} plus {v5}. We can remark that these partitions
at the same time give psplit graphs with the same size parameters.

Let Kb
l and Kb

m be b-cliques, and let K
b
m be the complement of Kb

m, that
is an empty graph on m vertices. We propose the following generalization of
psplit-graphs.

Definition 7 A (b, l,m)-partitioned split graph (shortly: b-psplit graph)
is one whose vertex set can be partitioned into two disjoint subsets spanning a

b-clique Kb
l and an empty graph K

b
m. It is denoted by Sbl,m.

Clearly, S1l,m = Sl,m.
In 2011 Yin extended the definition of the jsplit-graphs to b-jsplit graphs.

Definition 8 (Yin [87]) A (b, l,m)-join-split graph (shortly: b-jsplit graph)

is the join of Kb
l and K

b
m. It is denoted by Jbl,m.

Clearly, J1l,m = Jl,m.
Figure 2 shows J3,2 (part a) and J23,2 (part b).
The structure of the paper is as follows. After the basic definition (Section

1) in Section 2, 3 and 4 the most important mathematical background results
connected with graphical, potentially graphical and potentially split graphical
sequences are reviewed, then in Sections 5, 6 the new mathematical results are
presented.
We review the known algorithms in Sections 7 and 8, while the now proposed

algorithms are presented in Section 9.
The main results of the paper are that using different definitions of split

graphs [4, 5, 7, 8, 9, 10, 21, 22, 23, 26, 28, 30, 67, 82, 86, 87, 88] we propose quick
algorithms for the recognition and extremal reconstruction of split sequences
among integer, regular [17, 45] and graphic [43, 45, 48] sequences.
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Figure 2: Jsplit graphs J3,2
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and J23,2
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2 Known results on graphic sequences

In 1955 Havel, in 1962 Hakimi proposed the following necessary and sufficient
condition for n-regular sequences to be graphic.

Theorem 9 (Havel [32], Havel [36]) Let n ≥ 2. An n-regular sequence σ =
(s1, . . . , sn) is graphical if and only if the sequence σ ′ = (s2−1, s3−1, . . . , ss1−
1, ss1+1 − 1, ss1+2, . . . , sn−1, sn) is graphical.

Proof. See Hakimi[32], Havel [36]. �
The recursive algorithm implementing this theorem requires in worst case

Θ(n2) time. It is worth to remark, that this algorithm not only tests the
sequences, but if they are graphic, the algorithm constructs a realization of
the tested sequence.
In 1973 Kleitman and Wang improved the Havel-Hakimi theorem: according

to their following theorem it is sufficient to test any nonzero element of the
input sequence. The central element of their proof is the laying off the tested
sequence.

Theorem 10 (Kleitman, Wang [51]) Let n ≥ 2. A nonnegative integer se-
quence σ is graphic if and only if the residual sequence obtained by laying off
any nonzero element of s is graphic.

Proof. See Kleitman [51]. �
In 1974 Chungphaisan [13] extended the definition of laying off and resid-

ual sequence to b-laying off and b-residual sequence as follows. Let σ =
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(s1, . . . , sn) be an n-regular sequence and 1 ≤ k ≤ n. Define σ
′
k = (s′1, . . . , s

′
n−1)

to be the nonincreasing rearrangement of the sequence obtained from (s1, . . . ,
sk−1, sk+1, . . . , sn) reducing by 1 the remaining largest term that has not al-
ready been reduced b times, and repeating the procedure sk times. s

′
k is called

the b-residual sequence obtained from σ by b-laying off sk.
Using the b-laying off operation Chungphaisan proved the following gener-

alization of Kleitman-Wang theorem.

Theorem 11 (Chungphaisan [13]) Let n ≥ 2. A nonnegative integer sequence
σ is b-graphic if and only if the b-residual sequence obtained by b-laying off
any nonzero element of σ is graphic.

Proof. See Chungphaisan [13]. �
In 1960 Erdős and Gallai gave the following necessary and sufficient condi-

tion.

Theorem 12 (Erdős, Gallai [17]) Let n ≥ 1. An n-regular even sequence
σ = (s1, . . . , sn) is graphical if and only if

k∑
i=1

di ≤ k(k− 1) +

n∑
i=k+1

min(di, k)

is satisfied for each integer k, 1 ≤ k ≤ n.

Proof. See Erdős, Gallai [17]. �
Later several new proofs of this theorem were published, among others by

to Gasharov in 1997, [25], by Tripathi and Tiagy in 2008 [77], by Tripathi,
Venugopalan and West in 2010 [78].
In 1974 Chungphaisan extended Erdős-Gallai theorems to (0, b, n)-graphs.

Theorem 13 (Chungphaisan [13]). Let σ = (s1, . . . , sn) be an (a, b, n)-regular
even sequence. Then σ is (0, b, n)-graphic if and only if for each positive inte-
ger t ≤ n,

t∑
i=1

si ≤ bt(t− 1) +

n∑
i=t+1

min(bt, si).

Proof. See Chungphaisan [13]. �
We remark then if we use the theorems of Erdős-Gallai [17], Havel-Hakimi

[32, 36], Kleitman-Wang [51] or Chungphaisan [13] to decide whether an inte-
ger sequence is graphic, the decision requires quadratic time. In 2012 Iványi
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proposed an algorithm for (0, b, n) graphs, then in 2012 [45] for (a, b, n)-graphs
allowing the decision in worst case in O(n) time.
In the worst case the algorithm based on Theorem 13 requires quadratic

time, but the following assertion allows us to test the sequences in linear time.
Since this is an important result, we repeat its proof.

Theorem 14 (Iványi [45]) If n ≥ 1, then the σ = (s1, . . . , sn) (0, b, n)-regular
sequence is (0, b, n)-graphic if and only if

n∑
i=1

si is even

and

Hi > bi(yi − 1) +Hn −Hy (i = 1, . . . , n− 1), (1)

where

yi = max(i,wi) (i = 1, . . . , n− 1). (2)

Proof. This proof is an improved version of the proof of linearity of EGL in
[48] and was published in 2012 [45]
We exploit that s is monotone and determine the capacity estimations

ck = min(jb, sk) appearing in (1) in constant time. The base of the quick com-
putation is again the sequence of the weight points w(σ) = (w1, . . . , wn−1)
containing the weight points belonging to the elements of σ, and the sequence
y(σ) = (y1, . . . , yn) containing the cutting points of the elements of s. For
given si the weight point wi is the largest k (1 ≤ k ≤ n) having the property
sk ≥ i. . The cutting point yi belonging to si is the maximum of i and wi,
see (2).
During the testing of the elements of s there are two cases:
a) if i > wi, then the maximal contribution Ci =

∑n
k=i+1min(i, sk) of the

actual tail of s is at most Hn − Hi, since the maximal contribution ck =
min(i, sk) of the element sk is only sk, and so

Ci =

n∑
k=i+1

ck = Hn −Hi,

implying the requirement

Hi ≤ bi(i− 1) +Hn −Hi; (3)
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b) if i ≤ wi, then the maximal contribution Ci of the actual tail of s consists
of contributions of two types: ci+1, . . . , cwi

are equal to bi, while cj = sj for
j = wi + 1, . . . , n, therefore we have

Ci = bi(wi − i) +Hn −Hwi
, (4)

implying the requirement

Hi = bi(i− 1) + bi(wi − i) +Hn −Hwi
. (5)

Transforming (5) we get

Hi = bi(wi − 1) +Hn −Hwi
. (6)

Considering the definition of yi given in (2), further (4) and (5) we get the
required (1). �
In 1981 Rao [69] analyzed the conditions for graphic sequences to be P-

graphic.
In 2009 Hell Hell and Kirkpatrick [40] extended the concept of graphic se-

quences defining quasi-graphic sequences and proposing a linear time algo-
rithm for their certifying. A state of art of certifying algorithms was published
in 2011 [59] by McConell, Mehlhorn, Näher and Schweitzer.
The following assertion is the base of the quick testing of integer sequences

whether they are (a, b, n)-graphic or not. In 2012 Iványi proved that theo-
rem of Chungphaisan has the following consequence allowing the quick test of
potential (a, b, n)-graphic sequences..

Corollary 15 (Iványi [45]) If n ≥ 2, then an (a, b, n)-regular sequence σ =
(s1, . . . , sn) is (a, b, n)-graphic if and only if the sequence s ′ = (s1 − a, s2 −
a, . . . , sn − a) is (0, b− a, n)-regular.

Proof. See [45] �
This corollary allows the testing of (a, b, n)-regular sequences in worst case

inO(n) time using algorithm Erdős-Gallai-Linear [48] or algorithmHavel-
Hakimi-Chungphaisan [45].
The following sources contain results on the enumeration of graphic and

b-graphic sequences [35, 45, 46, 47, 48, 49, 74].

3 Known results on A-graphic sequences

The following two results due to J. H. Yin are generalizations from 1-graphs
to b-graphs of two well-known results given by A. R. Rao [50, 68, 70]
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Theorem 16 (Yin [84]). Let n ≥ l + 1 and σ = (s1, . . . , sn) be a b-graphic
sequence with sl+1 ≥ bl. Then σ is potentially Ab

l+1-graphic if and only if s′l+1

is b-graphic.

Proof. See [84]. �

Theorem 17 (Yin [84]) Let n ≥ l + 1 and σ = (s1, . . . , sn) be a b-graphic
sequence with sl+1 ≥ 2bl− 1, then s is potentially Ab

l+1-graphic.

Proof. See [84]. �
In 1978 Hakimi and Schmeichel [33] studied potentially and forcibly P-

graphic sequences.
In 2009 Yin generalized a result Gould, Jacobson and Lehel [27].

Theorem 18 (Yin [85]) If δ = (d1, . . . , dn) is is a b-graphic sequence with
a realization G containing a b-graph H as a subgraph, then there exists a
realization G ′ of δ so that the vertices of H have the largest degrees of δ.

Proof. See [85]. �
In 2009 Yin wrote [84] that the following assertion is a special case of The-

orem 18.

Corollary 19 A b-graphic sequence is potentially Kb
l -graphic, if and only if

it is potentially Ab
l -graphic.

Proof. We prove a bit stronger assertion.
It is trivial, that if an integer sequence is Ab

l -graphic, then it is b-graphic.
The sufficiency can be proved following the proof of Lemma 2.1. in [85]. �
We remark, that Theorem 18 contains only a sufficient condition.
Let l,m, r and n be positive integers, n ≥ l+m, and let σ = (s1, . . . , sn)

be an n-regular sequence with sl ≥ l+m− 1 and sl+m ≥ l. We construct the
sequences σ1, . . . , σl as follows. At first we construct the sequence

σ1 = (s1 − 1, . . . , sl − 1, sm+1, sl+1, . . . , s
1
l+m+1, . . . , s

1
n)

from σ by deleting s1, reducing the first s1 remaining elements of σ by one, and
then reordering the last n− l−m elements to be nonincreasing. For 2 ≤ i ≤ l,
we recursive construct

σi = (si+1 − i, . . . , sl − i, sl+1 − i, . . . , sl+1 − i, si−1
l+m+1, . . . , s

i
n)



262 B. A. Chat, S. Pirzada, A. Iványi

from σi−1 by deleting si − i + 1, reducing the first si − i + 1 remaining ele-
ments of σi−1 by one, and then reordering the last n − l −m elements to be
nonincreasingIn 2012 Yin proved the two following theorems.
In 2012 Yin proved the following two theorems.

Theorem 20 (Yin [87]) σ is potentially Ab-graphic if and only if σb is graphic.

Proof. See [87]. �

Theorem 21 (Yin [87]) Let n ≥ l + m and let σ = (s1, . . . , sn) be a non-
increasing graphic sequence. If sl+m ≥ l +m − 2, then σ is potentially Al,m-
graphic.

Proof. See [87]. �
Using the algorithm Erdős-Gallai-Linear [48] or algorithm Havel-Ha-

kimi-Linear [45] we can decide in worst case in O(n) time whether π is
graphic.
The following theorem allows to decrease the expected running time of

Havel-Hakimi-Split.

Theorem 22 (Yin [87]). Let n ≥ l + m and let σ = (s1, . . . , sn) be an n-
regular sequence. If sr+s ≥ 2l+m− 2, then σ is Al+m-graphic.

Proof. See [87]. �
In the same paper Yin [87] published a Havel-Hakimi type algorithm which

constructs the corresponding Jl,m-graph.
Let An = (a1, . . . , an) be an n-regular sequence, and Bn = (b1, . . . , bn)

a sequence of nonnegative integers with ai ≤ bi and ai + bi ≥ ai+1 + bi+1

for i = 1, . . . , n − 1. (An;Bn) is said to be potentially Km+1-graphic (resp.
Am+1-graphic) if there exists a graph G with vertices v1, . . . , vn such that
ai ≤ vi(G) ≤ bi for i = 1, . . . , n and G contains Km+1 as a subgraph. In 2013
Yin [88] characterized (An;Bn) so, that it is potentially Am+1-graphic and
potentially Km+1-graphic.
In 2014 Yin [89] characterized the sequences having a realization containing

an arbitrary subgraph.
In 2014 Pirzada and Chat proved the following assertion.

Theorem 23 (Pirzada, Chat [67]) If G1 is a realization of σ1 = (s11, . . . , s
1
l ),

containing Kl as a subgraph and G2 is a realization of σ2 = (s21, . . . , s
2
m) con-

taining Km as a subgraph, then the degree sequence σ = (s1, . . . , sl+m) of the
join of G1 and G2 is Kl+m-graphic.
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Proof. See [67] �

4 Known results on split sequences

The girth g(G) of a graph G containing at last one cycle is the length of its
shortest cycle. The girth of an acyclic graph is infinite. A graph G is called
chordal, if it does not contain an induced subgraph with finite girth greater
then 3.
In 1977 Földes and Hammer gave the following characterization of psplit

graphs.

Theorem 24 (Földes, Hammer [22]) For any graph G the following three con-
ditions are equivalent:
(i) G and G both are chordal;
(ii) V(G) can be partitioned into a complete and an empty set;
(iii) G does not contain an induced subgraph isomorphic to 2K2, C4 or C5.

In 1993 Blázsik, Hujter, Pluhár and Tuza [5] characterized the pseudo split
graphs defined as graphs with no induced C4 and 2K2 (see also [2]). In 1998
Maffray and Preissmann [58] proved the following assertion.

Theorem 25 (Maffray, Preissmann [58]) G is a pseudo split graph with a
nonincreasing degree sequence δ = (d1, . . . , dn), then G is a pseudo split graph,
if G is a split graph or

q∑
i=1

di = q(q+ 4) +

n∑
i=m+1

di (7)

and
dq+1 = dq+2 = dq+3 = dq+4 = dq+5 = q+ 2, (8)

where q = max(i | di ≥ q+ 4).

Proof. See [58]. �
The following theorem allows to design a linear time algorithm recognising

the psplit graphs in linear time.

Theorem 26 (Golumbic [26]; Hammer, Simeone [34]; Tyshkevich [79]; Tyshke-
vich, Melnikow, Kotov [81], Wikipedia [82]) Let the nonincreasing degree se-
quence of a graph G be δ = (d1, . . . , dn), and let m be the largest value of i



264 B. A. Chat, S. Pirzada, A. Iványi

such that di ≥ i− 1. Then G is a psplit graph if and only if

m∑
i=1

di = m(m− 1) +

n∑
i=m+1

di. (9)

If this is the case, then the m vertices with the largest degrees form a maxi-
mum clique in G, and the remaining vertices constitute and independent set.

Proof. See [34]. �
An extremal problem for 1-graphic sequences to be potentially K1

l -graphic
was considered by Erdős, Jacobson and Lehel [19], and solved by Gould et al.
[27] and Li et al. [56, 57]. Recently, Yin [85] generalized this extremal problem
and the Erdős-Jacobson-Lehel conjecture from 1-graphs to b-graphs.
Different split graphs are closely connected with the problems of colorings

of graphs, since the clique number gives a lower bound of coloring number.
E.g. Erdős and Gyárfás [18], Gyárfás and Lehel [29] deal with coloring of psplit
graphs. Yin and Li [90] gave sufficient conditions for graphic sequences to have
a realization with prescribed clique size.
There are many publications on the maximal clique algorithms. Recently

Zavalnij [91] analysed parallel algorithms for the the solution of the maximal
clique problem. This problem was earlier studied e.g. in [60, 63, 64, 75, 72, 73,
76].
In 2000 observed a bijection between nonisomorphic psplit graphs and min-

imal covers of a set by its subsets. Using the formula proved by Clarke [15]
for the number of minimal covers, Royle [71] proved the following assertion,
giving the number p(n) of the nonisomorphic psplit graphs on n vertices. This
result was published also by Tyshkevich and Chernak in 1990.

Theorem 27 (Royle [71], Tyshkevich, Chernak [80]) If n ≥ 1, then

p(n) =

n∑
k=1

t(n− k, k), (10)

where

t(n, k) =
1

n!k!

∑
α∈Pn,β∈Pk

(
n

α

)(
β

k

)∏
i

⎛
⎝
⎛
⎝∏

j

2(αi,βj)

⎞
⎠
⎞
⎠ , (11)

(
n

α

)
=

n!∏
i μi!iμi

, (12)
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where μi is the number of i’s in the partition α, (u, v) denotes the greatest
common divisor of u and v, Pn is the set of all partitions of n.

Figure 3 contains the values of p(n) for n = 1, . . . , 20. This data are taken
from Encyclopedia of Interger Sequences [39] containing the values of p(n) for
n = 1, . . . , 40 vertices.

n p(n) n p(n)

1 1 11 64 956

2 2 12 501 696

3 4 13 5 067 146

4 9 14 67 997 750

5 21 15 1 224 275 498

6 56 16 29 733 449 510

7 164 17 976 520 265 678

8 557 18 43 425 320 764 422

9 2 223 19 2 616 632 636 247 976

10 10 766 20 213 796 933 371 366 930

Figure 3: The number p(n) of nonisomorphic psplit graphs for n = 1, . . . , 20

vertices.

In 1995 Nikolopoulos proposed a constant-time parallel algorithm for the
recognition of psplit graphs.

Theorem 28 (Nikolopoulos [62]) Let G(V, E) be a graph with |V | = n and
|E| = m. Then algorithm Split-Recognition decides—using O(nm) proces-
sors— in O(1) time whether G is a psplit graph.

Proof. See [62]. �
Several papers deals with the hamiltonicity of split graphs. E.g. in 1980

Burkard and Hammer [11] gave a necessary condition of the hamiltonicity of
psplit graphs.
In 1988 Peemüller analyzed the condition of Burkard and Hammer and

proved new necessary conditions for hamiltonian psplit graphs.

Theorem 29 (Peemüller [65]) Let G = (C, I, E1, E2) be a psplit graph with
|C| < |I|. If G is hamiltonian, then

2|X ′|−m(X ′, Y ′) + f(X ′, Y ′) ≤ m(Y ′, Y) − fY ′, Y), (13)

for all X ′ ⊂ X, X ′ 	= ∅, , while m, f and N is defined in [65].
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Proof. See [65]. �
In 1998 Woeginger proved the following property of the taughness [14] of

psplit graphs solving a problem posed by Kratsch, Lehel and Müller in 1996
[53].

Theorem 30 (Woginger [83]) The toughness of psplit graphs can be computed
in polynomial time.

Proof. See [83]. �
It is worth to remark that in 1990 Burkard, Hakimi and Schmeichel [3] that

recognising of the toughness of a graph is NP-hard.
In 1999 Brandstädt, Le and Spinrad [10], in 2012 Almeida, Mello and Mor-

gana [1] studied the classification problem of split graphs.
In 2006 Kratsch, McConnell, Mehlhorn, and Spinrad [52] reviewed certifying

algorithms for recognizing interval graphs and permutation graphs
In 2008 Ibarra [42] studied fully dynamical algorithms of maintenance of

psplit graphs.
In 2009 Heggernes and Mancini [38] analysed the minimal completion of

psplit graphs.
In 2012 LaMar [54] defined directed psplit graphs and derived conditions

for integer sequences to be degree sequences of directed psplit graphs.
In 2014 Habib and Mamcarz [31] investigated split decompositions of graphs.

5 New results for A-graphic sequences

In the next result, we use the Havel-Hakimi procedure to test whether a b-
graphic sequence δ is potentially Ab

l,m-graphic.

Theorem 31 Let b ≥ 1 and n ≥ 1. A b-graphic sequence σ = (s1, . . . , sn) is
potentially Ab

l,m-graphic if and only if σl is b-graphic.

Proof. Assume that σ is potentially Ab
l,m-graphic. Then σ has a realization

G with the vertex set V(G) = {v1, ldots, vn} such that dG(vi) = si for (1 ≤
i ≤ n) and G contains Jbl,m on the vertices v1, . . . , vl+m, where l +m ≤ n, so

that Vb(Kl) = {v1, . . . , vl} and V(K
b
m) = {vl+1, . . . , vl+m}. We will show that

by applying a sequence of b-exchanges to G in order that there is one such
realization G

′
such that G

′
\ v1 has degree sequence σ1. If not, we may choose

such a realization H of b-graphic sequence σ such that the number of vertices
adjacent to v1 in {vl+m+1, . . . , vs1+1} is maximum. Let vi ∈ {vl+m+1, . . . , vs1+1}
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and assume that there is no edge between v1 and vi and let vj ∈ {vs1+2, . . . , vn}

and there are b edges between v1vj. We may assume that si > sj, since the
order of i and j can be interchanged if si < sj. Hence there is a vertex vt, t 	= i, j

such that there are b edges between vi and vt and no edge between vj and
vt. Clearly G =

(
H \ {vb1vj, v

b
i vt}

)⋃
{vb1vi, v

b
j vt}—where vbi vj means that there

are b edges between vi and vj—is a realization of σ such that dG(vi) = si
for 1 ≤ i ≤ n, G contains Sbl,m on v1, . . . , vl+m with Vb(Kl) = {v1, . . . , vl}

and V(K
b
m) = {vl+1, . . . , vl+m} and G has the number of vertices adjacent to

v1 in {vl+m+1, . . . , vs1+1} larger than that of H. This contradicts the choice of
H. Repeating this procedure, we can see that σi is potentially Ab

l−i-graphic
successively for i = 2, . . . , l. In particular, σl is b-graphic.
Conversely suppose that σl is b-graphic and is realized by a graph Gl with a

vertex set V(Gl) = {vl+1, . . . , vn} such that dGl
(vi) = si for l+ 1 ≤ i ≤ n. For

i = l, . . . , 1 form Gi−1 from Gi by adding a new vertex vi that is adjacent to
each of vi+1, . . . , vl+m with b-edges and also to the vertices of Gi with degrees
si−1
l+m+1 − b, . . . , si−1

di+1 − b. Then for each i, Gi has degrees given by πi and Gi

contains Jbl−i,m on l + m − i vertices vi+1, . . . , vl+m whose degrees are si+1 −

ib, . . . , sl+m−ib so that V(Kb
l−i) = {vi+1, . . . , vl} and V(K

b
m) = {vl+1, . . . , vl+m}.

In particular, G0 has degrees given by σ and contains Sbl,m on l +m vertices
v1, . . . , vl+m whose degrees are s1, . . . , sl+m so that V(Kb

l ) = {v1, . . . , vl} and

V(K
b
m) = {vl+1, . . . , vl+m}. Hence the result follows. �

Now we prove a sufficient condition for a b-graphic sequence to be poten-
tially Ab

l -graphic.

Theorem 32 Let n ≥ l+m and let σ = (s1, . . . , sn) be a b-graphic sequence.

If sl+m ≥ 2bl+ bm− 2, then σi is potentially A
b
l,m-graphic.

Proof. Let n ≥ l +m and let σ = (s1, . . . , sn) be a nonincreasing b-graphic
sequence with sl+m ≥ 2bl+m−2. By Theorem 17, σ is potentially Kb

l -graphic
and hence by Lemma 33, Ab

l -graphic. Therefore, we may assume that G is a
realization of σ with a vertex set V(G) = v1, . . . , vn such that dG(vi) = si,
(1 ≤ i ≤ n) and G contains Kb

l on v1, . . . , vl, that is, V(K
b
l ) = {v1, . . . , vl} and

M = eG({v1, . . . , vl}, {vl+1, . . . , vl+m}) (that is, the number of edges between
{v1, . . . , vl} and {vl+1, . . . , vl+m}) is maximum. If M = blm, then G contains

S
b
l,m on v1, . . . , vl+m with V(K

r
m) = {vl+1, . . . , vl+m}. In other-words, sigma is

potentially A
b
l,m-graphic. Assume that M < blm. Then there exists a vk ∈

{v1, . . . , vl} and vm ∈ {vl+1, . . . , vl+m}, (i 	= j) such that eG(vk, vm) < b. Let

A = NG\{vl,...,vl+m}(vk) \NG\{v1,...,vl}(vm),
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B = NG\{v1,...,vl+m}(vk) ∩NG\{v1,...,vl}(vm).

Then eG(x, y) = b for x ∈ NG\{v1,...,vl}(vm) and y ∈ NG\{v1,...,vl+m}(vk). Oth-
erwise, if eG(x, y) < b, then G′ = (G \ {vy, vmx}) ∪ {vkvm, xy} is a realiza-

tion of π and contains J
b
l,m on v1, . . . , vl+m with V(Kb

l ) = {v1, . . . , vl} and

(K
b
m) = {vl+1, . . . , vl+m} such that

eG′({v1, . . . , vl}, {vl+1, . . . , vl+m}) > M,

which contradicts the choice of G. Thus B is b-complete. We consider the
following two cases.
Case 1. Let A = ∅. Then 2bl+ bm− 2 ≤ dk = dG(vk) < bl+ bm− 1+ b|B|,
and so |B| ≥ bl. Since each vertex in NG\v1,...,vl(vm) is adjacent to each vertex
in B by b edges and |NG\{v1,...,vl}(vm)| ≥ 2bl+bm− 2 = bl+bm− 1. It can be
easily seen that the b induced subgraph of NG\{v1,...,vl}(vm)∪{vm} in G contains

J
b
l,m as a subgraph. Thus π is potentially A

b
l,m- graphic.

Case 2. Let A 	= ∅. Let a ∈ A. If there are x, y ∈ NG\{v1,...,vl}(vm) such
that eG(x, y) < b then G′ = (G\{vmx,vmy,vka}) ∪ {vkvm, avm, xy} is a realiza-

tion of σ and contains J
b
l,m on v1, . . . , vl+m with V(Kb

l ) = {v1, . . . , vl} and
(K

r
m) = {vl+1, . . . , vl+m} such that eG′({v1, . . . , vl}, {vl+1, . . . , vl+m}) > M which

contradicts the choice of G. Thus NG\{v1,...,vl}(vm) is b-complete. Since

|NG\{v1,...,vl}(vm)| ≥ bl+ bm− 1 and eG(vm, z) = b

for any z ∈ NG\{v1,··· ,vl}(vm), it is easy to see that the induced b-subgraph of

NG\{v1,...,vl}(vm)∪{vm} in G is b-complete, and so contains J
b
l,m as a b-subgraph.

Thus σ is potentially A
b
l,m-graphic. �

6 New results for split sequences

Let n ≥ l + m and let σ = (s1, . . . , sn) be a nonincreasing sequence of non-
negative integers with sl ≥ b(l +m) − 1 and sl+m ≥ bl. We define sequences
σ1, . . . , σl as follows. We first construct the sequence

σ1 = (s2 − b, . . . , sl − b, sl+1 − b, . . . , sl+m − b, s1l+m+1, . . . , s
1
n)

from σ by reducing 1 the largest term that has not already been reduced b

times, and then reordering the last n − l −m terms to be nonincreasing. For
2 ≤ i ≤ b, we construct

σi = (si+1 − ib, . . . , sl − ib, sl+1 − br, . . . , sl+m − ib, sil+m+1, . . . , s
i
n)
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from

σi−1 =(si − (i− 1)b, . . . , sl − (i− 1)b, sl+1 − (i− 1)b, . . . ,

sl+m − (i− 1)b, si−1
l+m+1, . . . , s

i−1
n )

by deleting si − (i − 1)b, reducing the first si − (i − 1)b remaining terms of
si−1 by one that has not already been reduced b times, and then reordering
the last n− l−m terms to be nonincreasing.

We start with the following lemma.

Lemma 33 A nonincreasing integer sequence σ = (s1, . . . , sn) is potentially
Ab

l,m-graphic if and only if it is potentially Jbl,m-graphic.

Proof. We only need to prove that if σ = (s1, . . . , sn) is potentially Jbl,m-
graphic, then it is potentially Ab

l,m-graphic. We may choose a realization G

of σ with vertex set V(G) = {v1, . . . , vn} such that dG(vi) = si for 1 ≤ i ≤
n, the induced b-subgraph G[{v1, . . . , vl+m}] of {v1, . . . , vl+m} in G contains
Jbl,m as its b-subgraph and |V(Kb

l ) ∩ {v1, . . . , vl}| is maximum. Denote H =
G[{v1, . . . , vl+m}]. If |V(Kb

l ) ∩ {v1, . . . , dl}| = l, that is, V(Kb
l ) = {v1, . . . , vl},

then σ is potentially Ab
l,m-graphic. Assume that |V(Kb

l ) ∩ {v1, . . . , vl}| < l.
Then there exists vi ∈ {v1, . . . , vl} \ V(Kb

l ) and a vj ∈ V(Kb
l ) \ {v1, . . . , vl}.

Let A = NH(vj) \ ({vi} ∪ NH(vi)) and B = NG(vi) \ ({vj} ∪ NG(vj)). Since
dG(vi) ≥ dG(vj). We have |B| ≥ |A|. Let us choose any subset C ⊆ B such that
|C| = |A|. Now form a new realization G′ of s by a sequence of b-exchanges
the b-edges of the star centralized at vj with end vertices in A with the non
b-edges of the star centralized at vj with end vertices in C, and by a sequence
of b-exchange the b-edges of the star centralized at vi with end vertices in C

with the non b-edges of the star centralized at vi with end vertices in A. It is
easy to see that G′ contains Jbl,m on {v1, . . . vl+m} so that |V(Kb

l ) ∩ {v1, . . . , vl}|

is larger than that of G, which contradicts to the choice of G. �
In the next result, we use the result of Fulkerson et al. [24] and prove a

necessary and sufficient condition for a b-graphic sequence s to be potentially
Jbl,m-graphic.

Theorem 34 Let n ≥ l + m and σ = (s1, . . . , sn) be a nonincreasing even
sequence of nonnegative integers, where sl ≥ b(l + m − 1) and sl+m ≥ lb.
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Then σ is potentially Jbl,m-graphic if and only if

p∑
i=1

(si − b(l+m− 1)) +

l+p′∑
i=b+1

(si − bl) +

l+m+q∑
i=l+m+1

si ≤

r(p+ p′ + q)(p+ p′ + q− 1) − rp(p− 1) − 2bpp′

+

r∑
i=p+1

min{bq, si − b(l+m− 1)}

+

l+m∑
i=l+p′+1

min{b(p′ + q), si − bl}+

n∑
i=l+m+q+1

min{b(p+ p′ + q), si}

for any 1 ≤ l ≤ n, 1 ≤ m ≤ n, for any p, p′ with 0 ≤ p ≤ l, 0 ≤ p′ ≤ m and
0 ≤ q ≤ n− l−m.

Proof. To prove the necessity, by Lemma 33, let G be a graph with vertex
set V(G) = {v1, . . . , vn} such that dG(vi) = si for 1 ≤ i ≤ n and G contains

Jbl,m on v1, . . . , vl+m with V(Kb
l ) = {v1, . . . , vl} and V(K

b
m) = {vl+1, . . . , vl+m}.

The removal of the b edges induced by {v1, . . . , vl} and the b-edges between
{v1, . . . , vl} and {vl+1, . . . , vl+m} results in a graph G′ in which all degrees in
{v1, . . . , vl} are reduced by b(l + m − 1) and all degrees in {vl+1, . . . , vl+m}

are reduced by lb. For 0 ≤ p ≤ l, 0 ≤ p′ ≤ m and 0 ≤ q ≤ n − l − m,
denote P = {vi|1 ≤ i ≤ p}, P′ = {vi|l + 1 leqi ≤ l + p′}, R = {vi|p + 1 ≤ i ≤
l}, R′ = {vi|l + p′ + 1 ≤ i ≤ l + m}, Q = {vi|l + m + 1 ≤ i ≤ q + l + m} and
S = {vi|q + l + m + 1 ≤ i ≤ n}. The degree sum in the b-subgraph induced
by P ∪ P′ ∪Q is at most b(p + p′ + q)(p + p′ + q − 1) − bp(p − 1) − 2bpp′.
Therefore,

m =

p∑
i=1

(si − b(l+m− 1)) +

b+p′∑
i=r+1

(si − bl) +

l+m+q∑
i=l+m+1

si

− b(p+ p′ + q)(p+ p′ + q− 1) − bp(p− 1) − 2bpp′

is the minimum number of edges of G′ with exactly one end vertex in P∪P′∪Q.
On the other hand, the maximum number of edges of G′ with exactly one end
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vertex in R ∪ R′ ∪ S is

M =

b∑
i=p+1

min{bq, si − b(l+m− 1)}+

l+m∑
i=b+p′+1

min{b(p′ + q), si − bl}

+

n∑
i=l+m+q+1

min{b(p+ p′ + q), si}

We observe that in the graph G′, m ≤ M is true. This proves the necessity.
To prove the sufficiency, we shall use the following well-known result of

Fulkerson et al. [24]. Let H be a b-graph on the vertex set V(H) = {v1, . . . , vn}.
There exists a b-subgraph G ⊆ H such that every vertex vi has degree si, if
and only if

n∑
i=1

si is even, (14)

and for every A,B ⊆ V(H) such that A ∩ B = s, we have
∑
vi∈A

si ≤
∑

vi∈A,vj∈V(H)\B

eH(vi, vj) +
∑
vi∈B

si. (15)

We now continue to proceed with the proof of sufficiency. Let n ≥ l + m

and σ = (s1, . . . , sn) be a nonicreasing sequence of nonnegative integers, where

sl ≥ l + m − 1, sl+m ≥ l and
n∑
i=1

si is even. Let s′ = (s′1, . . . , s
′
n), where

s′i = si − l−m+ 1 for 1 ≤ i ≤ l, s′i = si − b for l+ 1 ≤ i ≤ l+m and s′i = si
for l +m + 1 ≤ i ≤ n. Let H be the graph obtained from Kb

n with vertex set
V(Kb

n) = {v1, . . . , vn} by deleting all edges of the complete b-subgraph induced
by {v1, . . . , vl} and all edges between {v1, . . . , vl} and {v1+1, . . . , vl+m}. It is easy
to see that s is potentially Ab

l,m-graphic if and only if H has a subgraph G with
the degree sequence s′ such that every vertex vi has degree s′i. Observe that
between two disjoint odd cycles of H there is an edge. Therefore, H satisfies
the odd-cycle condition and we apply (14) and (15).
Let K = {v1, . . . , vl}, K

′ = {vl+1, . . . , vl+m} and A,B ⊆ V(H) such that A∩B =
s. Let A1 = A∩K,A′

1 = A∩K′, A2 = A\ (K∪K′), B1 = B∩K,B′
1 = B∩K, B2 =

B\ (K∪K′) and set p = |A1|, p
′ = |A′

1|, q = |A2|, b1 = |B1|, b
′
1 = |B′

1|, b2 = |B2|.
For convenience, we denote

L(p, p′, q) =
p∑

i=1

(si − b(l+m− 1)) +

r+p′∑
i=r+1

(si − bl) +

r+s+q∑
i=r+s+1

si, (16)
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R(p, p′, q) = b(p+ p′ + q)(p+ p′ + q− 1) − bp(p− 1) − 2bpp′

+

b∑
i=p+1

min{bq, si − b(l+m− 1)}+

l+m∑
i=r+p′+1

min{b(p′ + q), si − bl}

+

n∑
i=l+m+q+1

min{b(p+ p′ + q), si},

L′(A,B) =
∑
vi∈A

s′i =
∑
vi∈A1

{si − b(l+m− 1)}+
∑
vi∈A′

1

{si − bl}+
∑
vi∈A2

si,

R′(A,B) =
∑

vi∈A,vj∈V(H)\B

eH(vi, vj) +
∑
vi∈B

s′i

=
∑

vi∈A,vj∈V(H)\B

eH(vi, vj) +
∑
vi∈B1

(si − b(l+m− 1)) +
∑
vi∈B′

1

(si − lb) +
∑
vi∈B2

si.

Clearly, L′(A,B) ≤ L(p, p′, q). Further
∑

vi∈A,vj∈V(H)\B

eH(vi, vj) is the number

of counting the edges of H between A and V(H)\ (A∪B) and double counting
the edges induced by A. Thus we get

∑
vi∈A,vj∈V(H)\B

eH(vi, vj)

= r(p+ p′ + q)(p+ p′ + q− 1) − bp(p− 1) − 2bpp′ + qb(l− p− b1)

+ b(p′ + q)(m− p′ − b′
1) + b(p+ p′ + q)(n− l−m− q− b2)

= b(p+ p′ + q)(p+ p′ + q− 1) − bp(p− 1) − 2bpp′ +
l−b1∑
i=p+1

q

+

l+m−b′1∑
i=l+p′+1

(p′ + q) +

n−b2∑
i=l+m+q+1

(p+ p′ + q).
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Therefore,

R′(A,B) =
∑

vi∈A,vj∈V(H)\B

eH(vi, vj) +
∑
vi∈B1

(si − b(l+m− 1))

+
∑
vi∈B′

1

(si − lb) +
∑
vi∈B2

si

≥ b(p+ p′ + q)(p+ p′ + q− 1) − bp(p− 1) − 2bpp′ +
l−b1∑
i=p+1

q

+

l+m−b′1∑
i=l+p′+1

(p′ + q) +

n−b2∑
i=l+m+q+1+1

(p+ p′ + q)

+

l∑
i=l−b1+1

(si − b(l+m− 1)) +

l+m∑
i=l+m−b′1+1

(si − br) +

n∑
i=n−b2+1

si

≥ r(p+ p′ + q)(p+ p′ + q− 1) − bp(p− 1) − 2bpp′

+

l∑
i=p+1

min{bq, si − b(l+m− 1)}+

l+m∑
i=l+p′+1

min{b(p′ + q), si − bl}

+

n∑
i=l+m+q+1

min{r(p+ p′ + q), si}

= R(p, p′, q).

It follows from L(p, p′, q) ≤ R(p, p′, q) that L′(A,B) ≤ R′(A,B). By (14) and
(15) H is a b-subgraph G with the degree sequence s′ such that every vertex
vi has degree s′i. Hence s is potentially Ab

l,m-graphic. Thus the sufficiency is
proved. �
It is easy to enumerate the Jl,m-split graphs on n vertices.

Theorem 35 If l ≥ 0, m ≥ 1, l+m ≥ 1, and b ≥ 1, then

1. there are λ(b, l,m) =
(
l+m
l

)
labeled Jbl,m and they are isomorphic;

2. there are β(b, l,m) = l+m nonisomorphic Jbl,m.

Proof.

1. Since Jl,m has l+m vertices, therefore there are
(
l+m
l

)
ways to choose the

vertices of Kl. If we consider two different labeled Jl,m jsplit graphs, then



274 B. A. Chat, S. Pirzada, A. Iványi

the vertices of the clique parts correspond to each other, and the inde-
pendent vertices of these graphs also correspond to each other, therefore
these graphs are isomorphic.

2. Formally Jb0,l+m, J
b
1,l+m−1, . . . , Jb0,l+m are l+m+ 1 different possibilities,

but the last two split graphs are isomorphic, therefore β(l,m) = l+m.

�
We can remark, that if m ≥ 1, then Jl,m is also a Jl+1,m−1 split graph.

7 Known algorithms for graphic sequences

In this section at first we present the classical Havel-Hakimi (HH) algorithm,
then its testing version (HHL), which even in the worts case in O(n) time
decides whether an integer sequence is (0, 1, n)-graphic. Then we describe al-
gorithm Havel-Hakimi-pqlm-Split which in O(n) time decides the similar

problem for potentially J
(p,q)
l,m -graphic sequences, further a Havel-Hakimi type

algorithm for recognition of (a, b, n).

7.1 Havel-Hakimi algorithm (HH)

If n = 1, then there exists one (0, 1, n)-graphic sequence: (0). If n ≥ 2, then
Havel-Hakimi theorem (Theorem 9) gives a necessary and sufficient condition.
Input. n: the length of the sequence s (n ≥ 2);

σ = (s1, . . . , sn): the investigated n-regular sequence.
Output. L: logical variable (L = 0 signalizes, that σ is not graphic, while

L = 1 means, that σ is (0, 1, n)-graphic).
Working variable. i: cycle variables.

Havel-Hakimi(n, σ)

01 L = 0 // line 01–07: test of the elements of s
02 for i = 1 to n− 1

03 if ssi+i == 0 // lines 03–04: s is not graphic
04 return L

05 for j = i+ 1 to si + i

06 sj = sj − 1

07 sort (si+1, . . . , sn) in decreasing order
08 L = 1 // lines 08–09: s is graphic
09 return L



Recognition of split-graphic sequences 275

7.2 Havel-Hakimi-Testing-Linear algorithm (HHTL)

The original Havel-Hakimi algorithm in worst case requires quadratic time to
test the (0, 1, n)-regular sequences. Using the concepts weight point, reserve
and cutting point we reduced the worst running time to O(n).
The definition of the weight point wi belonging to si was introduced in

[48] in connection with Erdős-Gallai-Linear and it is as follows. wi is the
largest k (1 ≤ k ≤ n) having the property sk ≥ i. But if s1 < i, then wi = 0.

EGL exploits the property wi ensuring that if i ≤ wi, then the key expression
min j, sk in the Erdős-Gallai theorem equals to i, otherwise equals to sk.

Here we extend the definition to be applicable also in the proof of the linear-
ity of Chungphaisan-Erdős-Gallai. Now let wi the largest k (1 ≤ k ≤ n)
having the property sk ≥ bi. But if s1 < bi, then let wi = 0. In the case b = 1

the new definition results the old one.
In HHL the weight point wi determines the increment of the tail capacity

when we switch to the investigation of the next element of σ.
The remainder ri belonging to si is defined as the unused part of the actual

tail capacity and can be computed by the formulas

ri = w1 − 1− s1

and

ri = wi − ri−1 − si for 1 ≤ i ≤ n− 1.

The cutting point yi belonging to si is max(i,wi).
The programs of this paper are written using the pseudocode conventions

descibed in [16].
Input. n: number of vertices (n ≥ 1);

σ = (s1, . . . , sn): the investigated n-graphic sequence.
Output. L: logical variable.
Work variables. i: cycle variable;

r = (r1, . . . , rn): ri the reserve belonging to si;
w = (w1, . . . , wn): wi the weight point belonging to si;
H = (H1, . . . , Hn): Hi is the sum of the first i elements of s.

Havel-Hakimi-Testing-Linear(n, s)

01 L = 0 // lines 01: set the probable value
02 if s1 == 0 // lines 02–04: test of the sequence consisting of only zeros
03 L = 1

04 return L
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05 if ss1+1 == 0 // lines 05–06: test of ss1 in constant time
06 return L

07 H1 = s1 // line 07: initialization of H
08 for i = 2 to n // lines 08–09: further Hi’s
09 Hi = Hi−1 + si
10 if Hn is odd // lines 10–11: test of the parity
11 return L

12 w1 = n // lines 12–15: computation of the first weight point and reserve
13 while sw1

< 1

14 w1 = w1 − 1

15 r1 = w1 − 1− s1 // lines 15–24: testing of σ
16 sn+1 = 0

17 for i = 2 to n− 1

18 if si ≤ i or si+1 = 0

19 L = 1

20 return L

21 wi = wi−1

22 while swi
< i and wi > 0

23 wi = wi − 1

24 if si > wi − 1+ ri−1 // line 24: Is σ graphic?
25 return L // line 25: σ is not graphic
26 ri = wi + ri−1 − si
27 L = 1 // lines 27–28: σ is graphic
28 return L

Theorem 36 The running time of Havel-Hakimi-testing-Linear is in
best case Θ(1), and in worst case is Θ(n).

Proof. If the condition in line 2 holds, then the running time is Θ(1). If not,
then we reduce the actual w at most n times and the remaining operations
require O(1) operations for all reductions. �

7.3 Erdős-Gallai-Chungphaisan-Linear algorithm (EGChL)

The following algorithm tests the potential degree sequences of (0, b, n)-graphs.
It is based on Theorem 13.
Input. n: number of vertices (n ≥ 1);

σ = (s1, . . . , sn): a (0, b, n)-regular sequence;
b: the maximal permitted number of arcs between two vertices.



Recognition of split-graphic sequences 277

Output. 1 or 0: 1, if s is (0, b, n)-graphic and 0 otherwise.
Work variable. i: cycle variable;

r = (r1, . . . , rn): ri is the reserve belonging to si;
w = (w1, . . . , wn): wi is the weightpoint belonging to si.

Erdős-Gallai-Chungphaisan-Linear(n, σ, b)

01 H1 = s1 // line 01: initialization of H1

02 for i = 2 to n− 1 // line 02–03: computation of the elements of H
03 Hi = Hi−1 + si
04 if Hn is odd // line 04–05: test of the parity
05 return 0

06 w = n // lines 06: initialization of the first weight point
07 for i = 1 to n− 1 // lines 07–12: test of σ
08 while sw < ib and w > 0

09 w = w− 1

10 y = max(i,w)
11 if Hi > bi(y− 1) +Hn −Hy

12 return 0

13 return 1 // line 13: acceptance of σ

Theorem 37 The running time of Erdős-Gallai-Chungphaisan-Linear
is Θ(n) in all cases.

Proof. Lines 01–05 require Θ(n) time. Since the value of w is strictly decreas-
ing, lines 06–13 require O(n) time, therefore the running time is Θ(n) in all
cases. �
Let us consider two examples. Let b = 3 and σ ′ = (13, 10, 5, 5, 4, 1). H6 = 38

is even. If i = 1, then wi = y = 5 and the condition in line 11 is not satisfied
(13 ≤ 3 · 1 · (5 − 1)). If i = 2, then wi = y = 2 and the condition in line 11
holds (23 > 3 · 2 · (2− 1)) + 5+ 5+ 4+ 1, therefore σ is not (0, 3, 6)-graphic.
Let b remain 3, but change σ to σ ′ = (13, 10, 5, 5, 4, 3). The first difference

comparing with the previous example comes when i = 2. Now 23 ≤ 3 · 2 · (2−
1)) + 5 + 5 + 4 + 3, and the condition in line 11 holds for i = 3, 4 and 5 too,
therefore σ ′ is (0, 3, 6)-graphic.
Using Corollary 15 it is easy to test an (a, b, n)-regular sequence σ whether

it is (a, b, n)-graphic. We use EGChL with input sequence σ ′ = (s1 − a(n −
1), . . . , sn − a(n− 1)).
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8 Known algorithms for split sequences

In this section we describe the linear time algorithm proposed for the recog-
nition and reconstruction of potentially psplit and jsplit sequences.

8.1 Hammer-Simeone-PSplit algorithm (HSPS)

The following algorithms was proposed in 1981 by Hammer and Simeone [34].
Ist base is Theorem 26.
Let G be a graph with degree sequence d = (d1, . . . , dn).
Input. n: number of elements of δ;

δ = (d1, . . . , dn): a graphic sequence.
Output. 1 or 0: 1, if d is potentially psplit sequence.
Work variable. i, k: cycle variables;

Σ1, Σ2: actual sums of the degrees.

Hammer-Simeone-Linear(n, δ)
01 k = 0 // line 01–02: initialization of k and S

02 Σ1 = 0

03 while dk+1 ≥ k− 1 and k < n // line 03–07: computation of m
04 m = k+ 1

05 Σ1 = Σ1 + dk

06 k = k+ 1

07 Σ2 = m(m− 1)
08 for i = m+ 1 to n // lines 08–09: computation of Σ2

09 Σ2 = Σ2 + di

10 if Σ1 	= Σ2 // lines 10–11: G is not psplit graph
11 return 0

12 return G i’is psplit, maximal clique size is m // line 12: G is psplit graph

Theorem 38 Let G a graph with degree sequence δ. Algorithm Hammer-
Simeone-Linear decides, if G is a psplit graph and computes the maximal
clique size in Θ(n) time.

Proof. Lines 01–02 require O(1) time, lines 03–09 Θ(n) time and lines 10–12
O(1) time. �

8.2 Further linear algorithms for psplit sequences

In 1980 Golumbic [26], in 2003 Feder et al. [20], in 2007 Heggernes and Kratsch
[37] proposed linear time algorithm for the recognition of psplit graphs.
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8.3 Havel-Hakimi-Testing-JSplit algorithm (HHJST)

In 2012 Yin [87] described HHJST, a Havel-Hakimi type linear algorithm for
the recognition of potentially jsplit sequences.

9 New algorithms

In this section we present two simple algorithms, which decide whether a se-
quence of nonnegative integers is Ab

l -graphic or J
b
l,m-graphic, and if the answer

is yes, then they compute the maximal suitable l too.
These algorithms require in worst case only O(n) time even for (a, b, n)-

regular input, and are quicker for (a, b, n)-graphic input., since then the sort-
ing can be omitted.
We remark, that earlier only for pseudo-split graphs was published a linear

time testing algoritm [58].

9.1 Algorithm Ab-l-Max

For given sequence σ = (s1, . . . , sn) of nonnegative integers and given nonneg-
ative integer b algorithm A-b-l-Max computes the maximal l for which the
sequence s is Ab

l -graphic.
Input. n ≥ 1: the length of the sequence s;

σ = (s1, . . . , sn): a sequence of nonnegative integers;
b: the maximal permitted number of arcs between two different vertices.
Output. l: the maximal value for which d is Ab

l -graphic.
Work variable. i: cycle variable.

A-b-l-Max(n, σ, b)

01 Counting-Sort(n, σ) // line 01: sorting of σ
02 l = 1 // line 02: initialization of l
03 while sl+1 ≤ bl and l < n // line 03–04: computation of l
04 l = l+ 1

05 return l ’is the maximal value’ // line 05: return of the maximal l

Theorem 39 Let b, l and n be positive integers. Algorithm A-b-l-Max com-
putes the maximal l for which σ = (s1, . . . , sn) is Ab

l -graphic in Θ(n) time.

Proof. Let G be a b-graph and s ′ = (s ′1, . . . , s
′
n) be the nonincreasingly sorted

sequence consisting from the elements of s. Kb
l contains l vertices whose degrees

are equal to b(l−1). Therefore to find the maximal size Kb
l which is a subgraph
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of G it is sufficient to find the maximal j satisfying s ′j ≥ b(j−1). In lines 01–04
A-b-l-Max computes this maximal l.
Lines 01 of A-b-l-Max requires Θ(n) time, lines 02 and 05 O(1) time, and

lines 03–04 require O(n) time, so the best and worst running times of this
algorithm are both Θ(n). �
As an example consider the sequence σ = (6 6 1 6) and b = 2. Then

σ ′ = (6 6 6 1) and Ab-l-Max returns with l = 3. Indeed G contains K3 as
a subgraph but it does not contain K4 as a subgraph. Since the sum of the
elements of s is odd, according to theorem of Erdős and Gallai [17] s is not
graphic, that is an Ab

l -graphic sequences are not always graphic.

9.2 Algorithm J-b-l-Max

For given sequence σ = (s1, . . . , sn) of nonnegative integers and given nonneg-
ative integer b algorithm S-b-l-Max computes the maximal l for which the
sequence σ is Sbl,n−l-graphic.

If Kb
l and Kb

m are vertex disjoint and G is the join of Kb
l and Km, then in G

the degrees of the vertices of Kl are equal to b(l − 1 +m), while the degrees
of the vertices of Km are equal to bm. This observation is the base of the
following algorithm S-b-l-Max.
Input. n: the length of the degree sequence s;

σ = (s1, . . . , sn): a sequence of nonnegative integers;
b: the maximal permitted number of edges between two different vertices.
Output. l: the maximal value for which σ is Sbl,n−l-graphic or the message ’σ

is not (b, l, n− l)-graphic’.
Work variable. i: cycle variable.

J-b-l-Max(n, σ, b)

01 if s1/b is not integer // line 01–02: constant time test
02 return ’σ is not (b, l, n− l)-graphic’ // line 02: σ is

not (b, l, n− l)-graphic
03 Counting-Sort(n, σ) // line 03: sorting of σ
04 l = 1 // line 04: initialization of l
05 while sl+1 == s1 and l < n // line 05–06: computation of l
06 l = l+ 1

07 if sl+1 	= bl // line 07–08: σ is not (b, l, n− l)-graphic
08 ’s is not (b, l, n− l)-graphic’
09 return l ’is the maximal value’
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Theorem 40 Algorithm J-b-l-Max computes the maximal l for which σ =
(s1, . . . , sn) is Sb( l, n− l)-graphic in Θ(n) time.

Proof. Let b, l, m and n be positive integers. Let G be a b-graph and
σ = (s ′1, . . . , s

′
n) be the nonincreasingly sorted sequence consisting from the

elements of s ′.
The next part of the proof is similar to the corresponding part of Theorem

39.
Line 01 of J-b-l-Max requires Θ(n) time and lines 02-05 require O(n) time,

so the best running time is Θ(1) and the worst running time is Θ(n). �
We remark that if the input of J-b-l-Max is sorted, then we can omit lines

03 and 04, and using logarithmic search we can reduce the worst case running
time to Θ(logn).
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Rolando Eötvös Nom., Sectio Comp., 37 (2012) 195–214. ⇒ 256, 259, 260,
262
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[50] A. E. Kézdy, J. Lehel, Degree sequences of graphs with prescribed clique size.
In: Y. Alavi et. al. (eds.) Combinatorics, Graph Theory, and Algorithms, vol. 2.,
Michigan, New Issues Press, Kalamazoo, 1999, 535–544. ⇒260

[51] D. J. Kleitman, D. L. Wang, Algorithm for constructing graphs and digraphs
with given valences and factors, Discrete Math., 6 (1973) 79–88. ⇒ 254, 257,
258

[52] D. Kratsch, R. M. McConnell, K. Mehlhorn, J. P. Spinrad, Certifying algorithms
for recognizing interval graphs and permutation graphs, SIAM J. Comput., 36,
(2) (2006) 326–353. ⇒266

[53] D. Kratsch, J. Lehel, H. Müller, Toughness, hamiltonicity and split graphs, Dis-
crete Math., 150 (1996) 231–245. ⇒266

[54] M. D. Lamar, Split digraphs, Discrete Math., 312, (7) (2012) 1314–1325. ⇒266
[55] V. B. Le, H. N. de Ridder, Probe split graphs, Discrete Math. Theor. Comput.

Sci., 9(1), (2007) 207–238. ⇒255
[56] J. S. Li, Z. X. Song, An extremal problem on the potentially pk-graphic sequence,

Discrete Math., 212 (2000) 223–231. ⇒264
[57] J. S. Li, Z. X. Song, R. Luo, The Erdős-Jacobson-Lehel conjecture on potentially
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