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Abstract.
In this paper an application of the well-known matrix method to an

extension of the classical logic to many-valued logic is discussed: we con-
sider an n-valued propositional logic as a propositional logic language
with a logical matrix over n truth-values. The algebra of the logical ma-
trix has operations expanding the operations of the classical propositional
logic. Therefore we look over the �Lukasiewicz, Post, Heyting and Rosser
style expansions of the operations negation, conjunction, disjunction and
with a special emphasis on implication.

In the frame of consequence operation, some notions of semantic con-
sequence are examined. Then we continue with the decision problem and
the logical calculi. We show that the cause of difficulties with the notions
of semantic consequence is the weakness of the reviewed expansions of
negation and implication. Finally, we introduce an approach to finding
implications that preserve both the modus ponens and the deduction
theorem with respect to our definitions of consequence.
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1 Introduction

The construction of propositional logics can follow several methodological
ways. The algebraic method is fundamental and also prior to any others. One
such an algebraic tool for constructing a logic is the logical matrix method.
We begin with a brief survey of related notions and notations. After defining
the notion of consequence operation, we show that the semantic consequence
for the classical propositional logic generates a consequence operation. Later,
we outline the conventional axiomatic treatment of logic for a given logic lan-
guage. Here, we prove that the usual derivation notion is also a consequence
operation.
After this, we discuss the n-valued propositional logics (n > 2). It is desir-

able to obtain an algebraic structure close to a Boolean algebra by expansion
of the classical logical matrix to n values. Here, we define two notions of se-
mantic consequence, and prove that both are consequence operations. Because
the usual expansion of conjunction is the minimum unanimously, and the ex-
pansion of disjunction is the maximum in the same way, we deal only with the
�Lukasiewicz, Post, Heyting and Rosser style expansions of implication.
Finally, we look for a suitable implication for a general consequence notion

such that both the modus ponens and the deduction theorem remain valid.

2 Logical matrices

Let U be any nonempty set. A mapping o : Um → U, defined on the Cartesian
product of m copies of U, with values in U, is called an m-argument (or an
m-ary) operation in U (for m = 0, 1, . . .). By an algebra we mean a pair
〈U, (o1, o2, . . . , ok)〉 (k ≥ 1), where U is a (nonempty) set, called the universe
of the algebra, and each oj is an mj-argument operation over U. A tuple
(m1,m2, . . . ,mk) associated to the operations is called the signature of the
algebra.
We consider an arbitrary logic language L = 〈V, (c1, c2, . . . , ck) , F〉, where

V is the set of propositional variables; c1, c2, . . . , ck are logical connectives; F
is the set of formulas generated by the variables and the connectives in the
standard way. At the same time, the set F of the formulas can also be regarded
as the universe of an algebra with concatenation operations induced by the
connectives. If we can connect mj formulas with the connective cj, the induced
operation has mj arguments, and the signature of the algebra freely generated
by V is (m1,m2, . . . ,mk). This algebra is a logic language algebra.
A logic system is semantically determined, if we have an interpretation no-
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tion in the sense that every formula has some truth-value with respect to each
such interpretation. A basic assumption in classical logics is the principle of
compositionality: the truth-value of a compound formula is a function of the
truth-values of its immediate subformulas (every formula represents a function
into the set of truth-values). Hence the most essential semantical decision is
the determination of the operations over the truth-value set which character-
izes the connectives. Later, the algebraic structure of the truth-value set will
play an important role.

Definition 1 [5] By a logical matrix M for a logic language algebra L with a
signature (m1,m2, . . . ,mk) we mean a triple

〈U, (o1, o2, . . . , ok) , U
∗〉 ,

where 〈U, (o1, o2, . . . , ok)〉 is an algebra with the signature (m1,m2, . . . ,mk),
and U∗ is a nonempty subset of U. U is the set of truth-values, the elements
of U∗ are called designated truth-values.

After this, we define the semantics as a correspondence between the set of
connectives and operations using the signature. This is followed by an inter-
pretation I : V → U. The interpretation I can uniquely be extended to a
homomorphism (called a valuation of formulas) from the set of formulas F to
the universe U:

(a) |v|I = I(v) for v ∈ V ;

(b) |cj(α1, . . . , αmj
)|I = oj(|α1|I, . . . , |αmj

|I) for every mj-ary connective cj
and for all α1, . . . , αmj

∈ F.

In every interpretation, a truth-value is assigned to a formula, depending
on the truth-values assigned to the variables occurring in the formula. Thus, a
formula expresses a truth-function Un → U (an n-variable operation over U).
If we want to handle every potential truth-function with the logic language,
then the set of operations in the logical matrix should be functionally com-
plete. We say that a set of operations is functionally complete, when every
truth-function Un → U can be expressed by a formula using only the logical
connectives corresponding to these operations.
Now, a notion of partial interpretation Ip : V ′ → U (V ′ ⊆ V) is convenient.

If V ′ = V , the partial interpretation Ip is a (total) interpretation. And, if
the domain of Ip contains all the variables occurring in a set X of formulas,
then Ip is total with respect to X. Sometimes later, it is simpler to handle an
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(partial) interpretation Ip as a relation Ip ⊆ V ×U, where for all pair (v1, u1)
and (v2, u2) in Ip, if u1 �= u2, then v1 �= v2. In this notation, we can formalize
an extension of the partial interpetation Ip to the variable v /∈ Dom(Ip) with
Ip ∪ {(v, u)}, where u ∈ U.
In order that a logic language and its matrix can become a logic system,

the consequence notion and the decision problem are inevitable. In [7], Tarski
developed an abstract theory of logical systems. He introduced a finitary clo-
sure operation on the sets of formulas, called consequence operation. Let P(F)
denote the power set of F.

Definition 2 The consequence operation Cn : P(F) → P(F) in L is an opera-
tion which satisfies the following conditions for any X, Y ⊆ F and α,β ∈ F :

(1) X ⊆ Cn(X) ⊆ F;

(2) if X ⊆ Cn(Y) then Cn(X) ⊆ Cn(Y);

(3) if α ∈ Cn(X) then there exists a finite set Y such that Y ⊆ X and
α ∈ Cn(Y).

Note that Cn(Cn(X)) ⊆ Cn(X) holds for every consequence operation, because
Cn(X) ⊆ Cn(X) and (2).
Let α be a formula and let X be a set of formulas. The decision problem is

to decide whether α ∈ Cn(X).
To sum it up, by a propositional logic we mean a quadruple

〈L,M, In, Pr〉 ,

where L is a logic language algebra, M is a logical matrix for L, In is the set
of interpretations of L, Pr is a consequence operation.

Example 3 A classical two-valued propositional logic (CPL) is a quadruple

〈
L,M, In, Pr ′

〉
,

where

(a) L is a language algebra 〈V, (¬,∧,∨) , F〉 with signature (1, 2, 2).

(b) M is a logical matrix 〈{0, 1} , (¬ ′,∧ ′,∨ ′) , {1}〉, where the values 0 and 1

are truth-values, 1 stands for true, 0 stands for false. The operation ∧ ′

is the classical conjunction (minimum), ∨ ′ is the classical disjunction
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(maximum), and ¬ ′ is the classical negation. This operation set is func-
tionally complete. (We remark, if we use the definition x ⊃ ′ y � ¬ ′x∨ ′y
in M, the set {¬ ′,⊃ ′} is also functionally complete.)

The structure 〈
{0, 1} ,

{
¬ ′,∧ ′,∨ ′} , 0, 1〉

yields a Boolean algebra. The set {0, 1} is the universe of the Boolean
algebra, the operations ∧ ′ and ∨ ′ are lattice operations, the unary oper-
ation ¬ ′ is the complementation, and 1 is the unit, 0 is the zero element.

(c) In = {I | I : V → {0, 1} is an interpretation of L}.

(d) Pr ′ is the usual semantic consequence: α ∈ Pr ′(X) if and only if |α|I = 1,
whenever |β|I = 1 for every formula β in X.

Next, we verify that Pr ′ is a consequence operation.

Proposition 4 Pr ′ satisfies the conditions (1)-(3) in Definition 2.

Proof.

(1) is obvious.

(2) Let InX be the set of interpretations, where |β|I = 1 for every formula β

in X. If elements of X are consequences of Y, then InY ⊆ InX. Whereas
InX ⊆ InPr ′(X), thus InY ⊆ InPr ′(X).

(3) If α ∈ Pr ′(X), then InX ∩ In¬α = ∅. Because of compactness theorem in
CPL, if InX ∩ In¬α = ∅, then there exists a finite set Y such that Y ⊆ X

and InY ∩ In¬α = ∅ also. Thus, Y is a finite subset of X and α ∈ Pr ′(Y).
�

3 Axiomatic treatment of logics

Another method to construct logics is the axiomatic (syntax-based) way. Let
L be a logic language with the set F of formulas.

Definition 5 A finite subset A of formulas is called an axiom system.

Definition 6 A rule over F is a nonempty relation

r ⊆ {(α1, . . . , αm, α) | α1, . . . , αm, α ∈ F} .
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Definition 7 Let A be an axiom system, R a set of rules and X any set of
formulas. A formula α is derived from X if there is a finite sequence of formulas
α1, . . . , αk such that

(1) αk = α, and

(2) for each i (1 ≤ i ≤ k), either αi ∈ X ∪A, or there exist indices i1, . . . , il
smaller than i such that (αi1 , . . . , αil , αi) ∈ r for some rule r ∈ R.

Proposition 8 Pr∗ : X → {α | α is derived from X} satisfies conditions (1)-
(3) in Definition 2.

Proof.

(1) is obvious.

(3) can be seen easily. If α ∈ Pr∗(X), the derivation of α is a finite sequence
of formulas. Let Y be the set of formulas of X occuring in this derivation.
Clearly, α can be derived from Y, as well.

(2) If α can be derived from X, because of (3), there is a finite Z ⊆ X such
that α can be derived from Z. But every element of Z can be derived
from Y, i.e. from some finite subset of Y. If we concatenate the derivations
of the elements of Z from Y and furthermore, we add the derivation of
α from Z to it, then the result is a derivation of α from Y. Herewith,
condition (2) holds. �

Informally, a propositional logic is axiomatically given by

〈L,A, R, Pr∗〉 ,

if its language algebra L is specified, an axiom system A is fixed, a finite set
R of derivation rules is specified and Pr∗ is the consequence operation.
An axiomatically given propositional logic (calculus) 〈L,A, R, Pr∗〉 is said to

be (strongly) adequate for a propositional logic 〈L,M, In, Pr〉 if their conse-
quence operations are the same.

Example 9 By a classical propositional calculus we mean a quadruple

〈L∗, A, R, Pr∗〉 ,

where
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(a) L∗ is the free language algebra 〈V, (¬,⊃) , F〉 with signature (1, 2);

(b) the axiom system A consists of the axioms

{α ⊃ (β ⊃ α), (α ⊃ (β ⊃ γ)) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ)),

(¬α ⊃ β) ⊃ ((¬α ⊃ ¬β) ⊃ α) } ;

(c) the set R contains the single derivation rule

α,α ⊃ β

β
;

(d) and Pr∗ : X → {α | α is derived from X} is the consequence operation.

The classical propositional calculus 〈L∗, A, R, Pr∗〉 is adequate for the classical
propositional logic 〈L∗,M∗, In, Pr ′〉, where M∗ is a logical matrix for L∗.

4 Propositional many-valued logics

By the literature [1], [2] and [3], a non-classical logic may be an extended logic
and/or a deviant logic. ”Extended logics expand classical logic by additional
logical constructs. For example, in modal logic modal operators are added to
classical logic to express modal notions. In contrast, deviant logics are rivals
to classical logic that give up some classical principles. In many-valued logics,
we allow for many truth-values instead of two truth-values (we give up the
principle of bivalence)”. This deviation leads to the extension of the operations
of the classical two-valued logic. An operation is extended if, whenever the
arguments are classical truth-values, the result has the same truth-value as
it does in classical logic. ”In this sense, classical logic can be thought of as a
special case of many-valued logic.”
Let Un be a set of truth-values {0, 1, 2, . . . , n− 1} (n ≥ 2). Formally, we can

define a propositional many-valued logic (MVPL) as a quadruple

〈L,M, In, Prn〉 ,
where

(a) L = 〈V,Con, F〉 is a language algebra with a signature σ.

(b) M = 〈Un,Op,U∗
n〉 is a logical matrix for L, where 〈Un,Op〉 is an algebra

over Un with the signature σ, as well. Moreover, let S ∈ Un. Then
U∗

n = {S+ 1, . . . , n− 1} is the set of the designated truth-values, and
0, 1, . . . , S are called non-designated ones.
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(c) In = {I | I : V → Un is an interpretation of L}.

(d) Prn : P(F) → P(F) should be a consequence operation.

Now, we look for a consequence operation.
Let L = 〈V,Con, F〉 be a language algebra and let M = 〈Un,Op,U∗

n〉 be a
logical matrix for the language L.

Definition 10 A formula α is a weak semantic consequence of a set X of
formulas, denoted as

X |=S α,

if for any interpretation in which the truth-value of every formula β ∈ X is
designated, the truth-value of α is also designated. If X is the empty set, we
have no constraint for the interpretations. Thus, α is said to be an S-tautology
(∅ |=S α) if the truth-value of α is designated for every interpretation.

We can give a more rigorous notion of the consequence relation if we also
take the extent of truth-values of formulas into consideration.

Definition 11 A formula α is a strong semantic consequence of a set X of
formulas, denoted as

X |=S∗ α,

if for any interpretation in which the truth-value of every formula β ∈ X is
designated, the truth-value of α is also designated with at least the same truth-
value as the minimum of the truth-values of formulas in X in the underlying
interpretation.

We need some further notions and a lemma to discuss simply the character-
istic of the consequence relation.

Definition 12 Let a partial interpretation Ip be a total interpretation with
respect to the set X∪ {α} of formulas. X is appropriate for α in Ip if the truth-
value of α is not less than the minimum of the truth-values of formulas in X,
whenever this minimum is designated.

Definition 13 X is finitely bad for α with respect to a partial interpretation
Ip if for all finite subsets Y of X there exists an extension of Ip in which Y is
not appropriate for α.
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Lemma 14 If X is finitely bad for α with respect to a partial interpretation Ip

and the variable v has no value in Ip yet, then there is some j ∈ Un such that
X is also finitely bad for α with respect to the partial interpretation Ip∪ {(v, j)}.

Proof. Otherwise, X is not finitely bad for α with respect to any partial
interpretation Ip ∪ {(v, i)} (i ∈ Un). So for all i, a finite subset Yi of X would
exist such that Yi would be appropriate for α in all of the total extensions of
Ip∪ {(v, i)}. Thus, ∪n−1

i=0 Yi is a finite set and appropriate for α in all of the total
extensions of Ip. It means that X is not finitely bad for α with respect to a
partial interpretation Ip. It is a contradiction. �

Proposition 15 PrnS : X → {α | X |=S α} and PrnS∗ : X → {α | X |=S∗ α} are
consequence operations.

Proof.

(1) is obvious.

(2) For every interpretation I ′, where q = minα∈X |α|I ′ > S, |γ|I ′ ≥ q holds
for any γ ∈ PrnS (X). Now, let I be an interpretation, where |β|I > S for
every formula β in Y, and let p be minβ∈Y |β|I. According to condition
X ⊆ PrnS (Y), we get |α|I ≥ p > S for every α ∈ X. Thus, I is an inter-
pretation, where |γ|I ≥ p holds for all γ ∈ PrnS (X). It means, we have
PrnS (X) ⊆ PrnS (Y).

(3) Now, let α be a strong consequence of X. Then α is also a weak conse-
quence of X. Let us define a special kind of negation:

¬x �
{

0 if x ∈ U∗
n ,

(n− 1) otherwise

Moreover, let InX contain all the interpretations in which every formula
in X has a designated truth-value.

It is clear that X |=S α if and only if InX ∩ In¬α = ∅. Because of the
compactness theorem in MVPL (see in [4]), if InX∩ In¬α = ∅, then there
exists a finite set Y0 such that Y0 ⊆ X and InY0 ∩ In¬α = ∅.
Thus, Y0 is a finite subset of X and Y0 |=S α. It means, that for any inter-
pretation in which the truth-value of every formula in Y0 is designated,
the truth-value of α is also designated. At the same time, the truth-value
of α may be less than the minimum of the truth-values of formulas in Y0
in several (however finite number of) interpretations.



154 K. Pásztor Varga, G. Alagi, M. Várterész

Now, let the partial interpretation Ip be total with respect to Y0 ∪ {α}

such that Y0 is not appropriate for α in Ip. We prove that there is a
finite subset Y of X such that Y0 ∪ Y is appropriate for α in all of the
total extensions of Ip.

Let v1, v2, . . . be a list of variables not occuring in Ip. Assume that the
opposite of what we are trying to prove is true: X is finitely bad for α

with respect to Ip.

In view of Lemma 14, for all k there is some jk ∈ Un such that X is
also finitely bad for α with respect to Ipk = Ipk−1 ∪ {(vk, jk)}. In the
total interpretation ∪∞

k=1Ipk, there is an index k for all γ ∈ X such
that Ipk is total with respect to γ. Since X is finitely bad for α with
respect to Ipk, |γ|Ipk > |α|Ipk . It means that X is not appropriate for α

in the interpretation ∪∞

k=1Ipk, so α is not a strong consequence of X, a
contradiction.

Our indirect assumption is false, so there is a finite subset Y of X such
that Y0 ∪ Y is appropriate for α in all extensions of Ip.

To sum it up, if we have some interpretations, in which the truth-value
of α is less than the minimum of the truth-values of formulas in Y0,
when it is designated, then we have no more than finitely many such
interpretations. For every such interpretation, there exists a finite subset
Y of X such that Y0 ∪ Y is appropriate for α in all extensions of the
interpretation. Adding the union of finite number of the finite subsets to
Y0 we get a finite set and in every interpretation, if the minimum of the
truth-values of formulas in this set is designated, the minimum is not
greater than the truth-value of α. �

5 Problems with n-valued operations

In the classical logic, the consequence notion leads to the decision problem
through the deduction theorem. The deduction theorem requires the classical
syllogism, modus ponens.
In a many-valued logic with the weak consequence relation, the modus po-

nens is valid if we have an operation ⊃ with α ⊃ β,α |=S β, i.e. if α ⊃ β and
α have designated values, then β has a designated value, too.
The �Lukasiewicz implication is defined by

x1 ⊃L x2 �
{

n− 1 if x1 ≤ x2,

(n− 1) − x1 + x2 if x1 > x2,
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or by Table 1. Designated values are marked by an asterisk.

⊃L 0 1 · · · S S + 1∗ · · · n − 3∗ n − 2∗ n − 1∗

0 n − 1 n − 1 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

1 n − 2 n − 1 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

2 n − 3 n − 2 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

... · · · · · ·
S − 1 n − S n − S + 1 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

S n − S − 1 n − S · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

S + 1∗ n − S − 2 n − S − 1 · · · n − 2 n − 1 · · · n − 1 n − 1 n − 1

... · · · · · ·
n − 3∗ 2 3 · · · S + 2 S + 3 · · · n − 1 n − 1 n − 1

n − 2∗ 1 2 · · · S + 1 S + 2 · · · n − 2 n − 1 n − 1

n − 1∗ 0 1 · · · S S + 1 · · · n − 3 n − 2 n − 1

Table 1: �Lukasiewicz implication

We can see that if S < n−2, then S+1 ⊃L S and S+1 are designated, but S is
not. The modus ponens is not valid in such many-valued logics and moreover,
it is not valid when the consequence relation is the second one.
The Post implication is defined by

x1 ⊃P x2 �

⎧⎨
⎩

n− 1 if x1 ≤ x2,

x2 if x1 > x2, x1 > S,

(n− 1) − x1 + x2 if x1 > x2, x1 ≤ S,

or by Table 2.
The modus ponens is valid in the case of Post implication:

Proposition 16

α ⊃P β, α |=S∗ β.

Proof. If |α ⊃P β| > S and |α| > S in an interpretation, then either |α| > |β|

or |α| ≤ |β|. In the first case, S < |α ⊃P β| = |β| and min (|α|, |α ⊃P β|) = |β|.
In the second case, |α ⊃P β| = n− 1, so min (|α|, |α ⊃P β|) = |α| ≤ |β|. �
Now, we must verify whether the deduction theorem is valid. The deduction

theorem would state that X,α |=S β if and only if X |=S α ⊃P β. It is easy
to realize, this theorem is not valid: if X,α |=S β, X |=S α ⊃P β does not
necessarily follow.
Actually, let n − 1 ≤ 2S and γ, α |=S β. There is no constraint for the

truth-value of β in the interpretations where α is not designated. So |γ| =
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⊃P 0 1 · · · S S + 1∗ · · · n − 3∗ n − 2∗ n − 1∗

0 n − 1 n − 1 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

1 n − 2 n − 1 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

2 n − 3 n − 2 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1
... · · · · · ·

S − 1 n − S n − S + 1 · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

S n − S − 1 n − S · · · n − 1 n − 1 · · · n − 1 n − 1 n − 1

S + 1∗ 0 1 · · · S n − 1 · · · n − 1 n − 1 n − 1
... · · · · · ·

n − 3∗ 0 1 · · · S S + 1 · · · n − 1 n − 1 n − 1

n − 2∗ 0 1 · · · S S + 1 · · · n − 3 n − 1 n − 1

n − 1∗ 0 1 · · · S S + 1 · · · n − 3 n − 2 n − 1

Table 2: Post implication

n − 1, |α| = S and |β| = 0 might hold in an interpretation. In this case γ is
designated, but |α ⊃P β| = (n − 1) − S ≤ S is not. Thus, γ |=S α ⊃P β is not
valid.

⊃H 0 1 · · · S S+ 1∗ · · · n− 3∗ n− 2∗ n− 1∗

0 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

1 0 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

2 0 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
... · · · · · ·

S− 1 0 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

S 0 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

S+ 1∗ 0 1 · · · S n− 1 · · · n− 1 n− 1 n− 1
... · · · · · ·

n− 3∗ 0 1 · · · S S+ 1 · · · n− 1 n− 1 n− 1

n− 2∗ 0 1 · · · S S+ 1 · · · n− 3 n− 1 n− 1

n− 1∗ 0 1 · · · S S+ 1 · · · n− 3 n− 2 n− 1

Table 3: Heyting implication

The Heyting implication is often used in a many-valued logic: x1 ⊃H x2 is
the greatest element in Un such that x1 ∧ (x1 ⊃H x2) ≤ x2, that is for every
x1, x2 ∈ Un,

x1 ⊃H x2 �
{

n− 1 if x1 ≤ x2,

x2 if x1 > x2,
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or see Table 3.

Proposition 17

α ⊃H β, α |=S∗ β.

Proof. If |α ⊃H β| > S and |α| > S hold in an interpretation, then by the
definition of the Heyting implication

(1) if |α| > |β|, |α ⊃H β| = |β|, thus |β| > S and min (|α ⊃H β|, |α|) = |β|, and

(2) if |α| ≤ |β|, thus |β| > S and, because |α ⊃H β| = n − 1, thus
min (|α ⊃H β|, |α|) = |α| ≤ |β|.

�
It is easy to see, the deduction theorem is not valid: if X,α |=S β, it does

not necessarily follow that X |=S α ⊃H β.
Actually, let γ, α |=S β. There is no constraint for the truth-value of β

in the interpretations where α is not designated. So it can happen that |γ| =
n−1, |α| = S and |β| = 0 hold in an interpretation. In this case γ is designated,
but |α ⊃H β| = 0 is not. So, γ |=S α ⊃H β is not valid.

⊃R 0 1 · · · S S+ 1∗ · · · n− 3∗ n− 2∗ n− 1∗

0 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

1 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

2 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
... · · · · · ·

S− 1 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

S n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

S+ 1∗ 0 1 · · · S S+ 1 · · · n− 3 n− 2 n− 1
... · · · · · ·

n− 3∗ 0 1 · · · S S+ 1 · · · n− 3 n− 2 n− 1

n− 2∗ 0 1 · · · S S+ 1 · · · n− 3 n− 2 n− 1

n− 1∗ 0 1 · · · S S+ 1 · · · n− 3 n− 2 n− 1

Table 4: Rosser implication

In [6], another implication has been used by Rosser:

x1 ⊃R x2 �
{

n− 1 if x1 ≤ S,

x2 if x1 > S.
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Table 4 shows the truth-table of this implication. In this paper we name this
implication after Rosser.

Proposition 18

α ⊃R β, α |=S∗ β.

Proof. If |α ⊃R β| > S and |α| > S hold in an interpretation, then by
the definition of the Rosser implication |α ⊃R β| = |β|, thus |β| > S and
min (|α ⊃R β|, |α|) ≤ |β|. �

Proposition 19 If X,α |=S β, then X |=S α ⊃R β.

Proof. Suppose X,α |=S β. In every interpretation where every formula from
X is designated, either α is also deignated or not. In the first case, according
to the condition, β is designated, and because |α ⊃R β| = |β|, α ⊃R β is
designated, too. In the second case, according to the definition of the Rosser
implication, we have |α ⊃R β| = n − 1. This is a designated value. Therefore,
X |= α ⊃R β. �
We can not prove that if γ, α |=S∗ β, then γ |=S∗ α ⊃R β. If |α| = |β| = S+ 1

and |γ| = n− 1 in an interpretation, then |α ⊃R β| = |β| = S+ 1, thus α ⊃R β

is designated, but if S+ 1 < n− 1, then |γ| > |α ⊃R β|.

Proposition 20 If X |=S∗ α ⊃R β, then X,α |=S∗ β.

Proof. Let I be an interpretation in which every formula from X and α are
designated. According to the condition, α ⊃R β is designated with truth-value
at least minγ∈X {|γ|}. If α is designated, |β| = |α ⊃R β|, thus β is also designated
with truth-value at least minγ∈X {|γ|} ≥ minγ∈X {|γ|, |α|}. �
Finally, let f : U × U → U such that f(x1, x2) ≤ S for all x1, x2 ∈ U, when

x1 > S and x2 ≤ S. Then the implication defined below admits the modus
ponens and the deduction theorem:

x1 ⊃f
∗ x2 �

⎧⎨
⎩

n− 1 if x1 ≤ S or x1 ≤ x2,

x2 if x1 > x2 > S,

f(x1, x2) otherwise.

Proposition 21

α ⊃f
∗ β,α |=S∗ β.
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⊃f
∗ 0 1 · · · S S+ 1∗ · · · n− 3∗ n− 2∗ n− 1∗

0 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

1 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

2 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1
... · · · · · ·

S− 1 n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

S n− 1 n− 1 · · · n− 1 n− 1 · · · n− 1 n− 1 n− 1

S+ 1∗ 0 1 · · · S n− 1 · · · n− 1 n− 1 n− 1
... · · · · · ·

n− 3∗ 0 1 · · · S S+ 1 · · · n− 1 n− 1 n− 1

n− 2∗ 0 1 · · · S S+ 1 · · · n− 3 n− 1 n− 1

n− 1∗ 0 1 · · · S S+ 1 · · · n− 3 n− 2 n− 1

Table 5: The implication with f(x1, x2) = x2

Proof. If |α ⊃f∗ β| > S and |α| > S in an interpretation, then by the definition
of the new implication either |α ⊃f∗ β| = n − 1, or |α ⊃f∗ β| = |β|. In the first
case |β| ≥ |α| > S and min (|α ⊃f∗ β|, |α|) ≤ |β|. In the second case |α| > |β| > S

and min (|α ⊃f∗ β|, |α|) = |β|. �

Proposition 22 If X,α |=S∗ β, then X |=S∗ α ⊃f∗ β.

Proof. Suppose X,α |=S β. In every interpretation where every formula from
X is designated, either α is also deignated or not. In the first case, according
to the condition, β is designated, and

(1) either S < |α| ≤ |β| and |α ⊃f∗ β| = n− 1, so minγ∈X {|γ|} ≤ |α ⊃f∗ β|;

(2) or |α| > |β| > S and |α ⊃f∗ β| = |β|, thus α ⊃f∗ β is also designated
moreover, minγ∈X {|γ|} ≤ |β| = |α ⊃f∗ β| because minγ∈X {|γ|, |α|} ≤ |β| <

|α|.

In the second case, |α ⊃f∗ β| = n − 1, which is a designated value. Therefore,
X |=S∗ α ⊃f∗ β. �

Proposition 23 If X |=S∗ α ⊃f∗ β, then X,α |=S∗ β.

Proof. Let I be an interpretation in which every formula from X and α are
designated. According to the condition, α ⊃f∗ β is designated with truth-value
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at least minγ∈X {|γ|}. Because α is designated, if |α| ≤ |β|, then |β| is designated
with truth-value at least minγ∈X {|γ|, |α|}. In the case |α| > |β|, |α ⊃f∗ β| = |β|,
thus β is designated with truth-value at least

min
γ∈X

{|γ|} ≥ min
γ∈X

{|γ|, |α|},

as well. �
Finally, all what was proved about the examined implications at this section

we summarized in the following table:

⊃L ⊃P ⊃H ⊃R ⊃f
∗

modus ponens - + + + +
deduction theorem with |=S - - - + +
deduction theorem with |=S∗ - - - - +

6 Suitable implication for a given consequence

It is desirable that both the modus ponens and the deduction theorem hold
with respect to the underlying consequence. Now, we look for a suitable im-
plication for a generally given consequence notion such that both the modus
ponens and the deduction theorem are valid.
Now, let ψ : U × U → {0, 1} be an arbitrary classical truth-valued function

with the following properties:

(a) ψ(x, x) = 1 for all x ∈ U,

(b) if ψ(x, y)∧ψ(y, z) = 1, then ψ(x, z) = 1 for all x, y, z ∈ U.

Then, define the consequence as below:

Definition 24 A formula α is a formal semantic consequence of a set X of
formulas, denoted as X |= α, if

∨

γ∈X
ψ(|γ|I, |α|I) = 1 for any interpretation I,

where
∨

γ∈X ψ(|γ|I, |α|I) denotes the supremum of {ψ(|γ|I, |α|I) | γ ∈ X }.
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Proposition 25 Pr : X → {α | X |= α} satisfies conditions (1)-(3) in Defini-
tion 2.

Proof.

(1) Now to prove the condition (1), let α ∈ X. Since in any interpretation
ψ(|α|, |α|) = 1, therefore

∨
γ∈X ψ(|γ|, |α|) = 1, so X |= α. It means that

X ⊆ Pr(X).

(2) Next, let X ⊆ Pr(Y) for some X, Y ⊆ F. We show that Pr(X) ⊆ Pr(Y).

– For any α ∈ Pr(X), since
∨

γ∈X
ψ(|γ|I, |α|I) = 1, so

∨

γ∈Pr(Y)
ψ(|γ|I, |α|I) = 1.

It means Pr(X) ⊆ Pr(Pr(Y)).

– Now, we show that Pr(Pr(Y)) = Pr(Y). Since Pr(Y) ⊆ Pr(Pr(Y))
by the property (1), it is enough to prove, that α ∈ Pr(Y) for all
α ∈ Pr(Pr(Y)).

Obviously Y ⊆ Pr(Y). Let Y ′ denote the set Pr(Y) \ Y and let α ∈
Pr(Pr(Y)). Then

∨

γ∈Pr(Y)
ψ(|γ|I, |α|I) =

∨

γ∈Y ′∪Y
ψ(|γ|I, |α|I) = 1.

If ∨

γ∈Y ′
ψ(|γ|I, |α|I) = 0, then

∨

γ∈Y
ψ(|γ|I, |α|I) = 1.

And if ∨

γ∈Y ′
ψ(|γ|I, |α|I) = 1,

then there exists a γ ′ ∈ Y ′ for which ψ(|γ ′|I, |α|I) = 1. But γ ′ ∈
Pr(Y) also holds, thus

∨

γ∈Y
ψ(|γ|I, |γ

′|I) = 1

must hold, i.e. there exists a γ ′′ ∈ Y for which ψ(|γ ′′|I, |γ ′|I) = 1.
Using the property (b) of ψ we get ψ(|γ ′′|I, |α|I) = 1, that is

∨

γ∈Y
ψ(|γ|I, |α|I) = 1.

Thus in both cases, we get α ∈ Pr(Y).
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– Since X ⊆ Pr(Y), thus Pr(X) ⊆ Pr(Pr(Y)), and thereby Pr(X) ⊆
Pr(Y) must hold.

(3) We prove compactness by reducing the problem to the compactness of
first-order logic with equality. First, let us define the language of our
encoding:

– We have a single binary predicate symbol ψ̂.

– For each many-valued operation o, we have a corresponding func-
tion symbol ô with the same arity.

– For each variable v, we have a corresponding constant cv.

– For each truth-value u, we have an additional constant û.

Given this language, we might fix the interpretation of our symbols by
defining a set Σ of the following axioms:

(i) ∀x(x = û1 ∨ x = û2 ∨ · · ·∨ x = ûn) if U = {u1, u2, . . . , un}

(ii) û �= û ′ for each u, u ′ ∈ U with u �= u ′

(iii) ψ̂(û, û ′) if ψ(u, u ′) = 1 and u, u ′ ∈ U

(iv) ¬ψ̂(û, û ′) if ψ(u, u ′) = 0 and u, u ′ ∈ U

(v) ô(â1, â2, . . . , âk) = û if o is an operator with arity k, a1, a2, . . . ,

ak, u ∈ U, and o(a1, a2, . . . , ak) = u

Since U is finite, Σ is a finite set of first-order formulas as well. It is easy
to see that if Î is a first-order model of Σ, then there is a corresponding
many-valued interpretation I which assigns the same values to variables
as did Î to the corresponding constants.

Let α̂ denote the encoding of a formula α in this language, i.e. the
first-order formula we get from α by substituting each symbol with the
corresponding first-order symbol. By our definitions, if I and Î are cor-
responding many-valued and first-order interpretations, |α|I = u if and
only if |α̂|̂I = û. Thus, for each α, β, we have ψ(|α|I, |β|I) holds if and
only if ψ̂(α̂, β̂) holds in Î.

Now, by our assumptions, X |= α if and only if
∨

γ∈X ψ(|γ|I, |α|I) holds
for all interpretation I. This, on the other hand, holds if and only if the
set Γ = { ¬ψ(|γ|I, |α|I) | γ ∈ X } is not satisfied under any interpretation
I. Consider the first-order set

Γ̂ = Σ ∪ { ¬ ψ̂(γ̂, α̂) | γ ∈ X }
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From our considerations it follows that Γ̂ is unsatisfiable if and only if
the original Γ is unsatisfiable.

Then, by the compactness of first-order logic, we know that there is a
finite Γ̂ ′ ⊆ Γ̂ such that Γ̂ ′ is unsatisfiable. Since Σ is finite, we might
assume Σ ⊆ Γ̂ ′. Now, let X ′ the finite set {γ ∈ X | ¬ ψ̂(γ̂, α̂) ∈ Γ̂ ′ }.

We know that the corresponding set Γ ′ = { ¬ψ(|γ|I, |α|I) | γ ∈ X ′ } is
not satisfied by any I either. Therefore, X ′ |= α must hold where X ′ is a
finite subset of X. �

Proposition 26 Let ⊃ be an implication operation over U. If

ψ(x1, x2)∨ψ(y, x2) = ψ(y, x1 ⊃ x2)

for all x1, x2, y ∈ U, then ⊃ admits the modus ponens and the deduction theo-
rem.

Proof. First, we prove the modus ponens, i.e. we show, that {α,α ⊃ β} |= β

holds for any formulas α,β. For all α,β ∈ F and for all I ∈ In we get

ψ(|α|I, |β|I)∨ψ(|α ⊃ β|I, |β|I).

For all x1, x2 ∈ U, by applying the proposed equality

ψ(x1, x2)∨ψ(x1 ⊃ x2, x2) = ψ(x1 ⊃ x2, x1 ⊃ x2) = 1.

To prove the deduction theorem, we have to show for any α,β, X

X, α |= β if and only if X |= α ⊃ β.

Again, applying our assumptions to both sides, we get for all I ∈ In
∨

γ∈X
ψ(|γ|I, |β|I)∨ψ(|α|I, |β|I) =

∨

γ∈X
(ψ(|γ|I, |β|I)∨ψ(|α|I, |β|I))

if and only if for all I ∈ In
∨

γ∈X
ψ(|γ|I, |α|I ⊃ |β|I).

From our assumption with y = |γ|I, x1 = |α|I, x2 = |β|I, we get

ψ(|γ|I, |β|I)∨ψ(|α|I, |β|I) = ψ(|γ|I, |α|I ⊃ |β|I),

from which the desired equivalence immediately follows. �
In the remaining part of the section we apply this proposition to the earlier

defined semantic consequences.
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Example 27 By Definition 10,

X |=S α if and only if min
γ∈X

{|γ|I} ≤ S∨ S < |α|I for all I ∈ In.

Thus, for this case we get ψ(x, y) = (x ≤ S ∨ S < y). To find a suitable
implication, it is enough to satisfy

(x1 ≤ S∨ S < x2)∨ (y ≤ S∨ S < x2) if and only if (y ≤ S∨ S < x1 ⊃ x2)

for all x1, x2, y ∈ U. Let f, h : U×U → U such that for all x1 > S and x2 ≤ S

f(x1, x2) ≤ S and if x1 ≤ S or x2 > S, then h(x1, x2) > S. Then, as we have
seen above, the implication defined below admits the modus ponens and the
deduction theorem:

x1 ⊃f,h
∗ x2 �

{
h(x1, x2) if x1 ≤ S or x2 > S,

f(x1, x2) otherwise.

Example 28 By Definition 11,

X |=S∗ α if and only if min
γ∈X

{|γ|I} ≤ S∨min
γ∈X

{|γ|I} ≤ |α|I for all I ∈ In.

For this case we get ψ(x, y) = x ≤ S∨ x ≤ y. Thus to find a suitable implica-
tion, it is enough to satisfy

(x1 ≤ S∨ x1 ≤ x2)∨ (y ≤ S∨ y ≤ x2) if and only if (y ≤ x1 ⊃ x2 ∨ y ≤ S)

for all x1, x2, y ∈ U. The possible values for x1 ⊃ x2 might be deduced as
follows:

• x1 ≤ S∨x1 ≤ x2: since the right side must also hold, even for y = n−1,
we get x1 ⊃ x2 = n− 1, which is indeed a good choice.

• x1 ≥ x2 > S: for y = x2 we get x2 ≤ x1 ⊃ x2, and for y = x2 + 1

x1 ⊃ x2 < x2 + 1. Thus only x1 ⊃ x2 = x2 is possible, and it indeed
satisfies the equality in this case.

• x1 > S ≥ x2: for y > S we get x1 ⊃ x2 ≤ S. In this case any value
smaller than S satisfies the equality.

Let f : U×U → U be such that for all x1 > S and x2 ≤ S f(x1, x2) ≤ S. Then,
as we have seen above, the implication defined below admits the modus ponens
and the deduction theorem:

x1 ⊃f
∗ x2 �

⎧⎨
⎩

n− 1 if x1 ≤ S or x1 ≤ x2,

x2 if x1 > x2 > S,

f(x1, x2) otherwise.
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7 Summary

In this paper we demonstrated that both semantic and syntactic consequences
of classical logic generate consequence operators. We proved similar proposi-
tions about the weak and strong semantic consequences in the many-valued
logic. After this, we investigated the Lukasiewicz, Post, Heyting and Rosser
style many-valued implications whether the modus ponens rule and the de-
duction theorem are valid beside of our consequence relations. By the strong
consequence, the deduction theorem is not valid with none of them. How-
ever, the implication family ⊃f∗ defined in our paper found to comply with the
modus ponens and the deduction theorem by the strong consequence as well.
In the last section, we introduced a general formal consequence relation and

showed, that it also leads to a consequence operator. The weak and strong
consequence definitions are realizations of this general consequence notion. It
would be profitable to consider what additional realizations are possible. By
this general consequence, we also gave a suitable implication which admits the
modus ponens and the deduction theorem as well.
The problem of a syntactic treatment of logical consequences in the many-

valued logic could be an exciting topic of future research.
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