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Abstract. In this paper we consider two algorithmic problems of simul-
taneous Diophantine approximations. The first algorithm produces a full
solution set for approximating an irrational number with rationals with
common denominators from a given interval. The second one aims at
finding as many simultaneous solutions as possible in a given time unit.
All the presented algorithms are implemented, tested and the PariGP
version made publicly available.

1 Introduction

1.1 The problem statement

Rational approximation, or alternatively, Diophantine approximation is very
important in many fields of mathematics and computer science. Archimedes
approximated the irrational number π with 22/7. Long before Archimedes, an-
cient astronomers in Egypt, Babylonia, India and China used rational approx-
imations. While the work of John Wallis (1616–1703) and Christiaan Huygens
(1629–1695) established the field of continued fractions, it began to blossom
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when Leonhard Euler (1707–1783), Johann Heinrich Lambert (1728–1777) and
Joseph Louis Lagrange (1736–1813) embraced the topic. In the 1840s, Joseph
Liouville (1809–1882) obtained an important result on general algebraic num-
bers: if α is an irrational algebraic number of degree n > 0 over the rational
numbers, then there exists a constant c(α) > 0 such that

∣∣α−
p

q

∣∣ > c(α)

qn

holds for all integers p and q > 0. This result allowed him to produce the first
proven examples of transcendental numbers. In 1891 Adolf Hurwitz (1859–1919)
proved that for each irrational α infinitely many pairs (p, q) of integers satisfy

∣∣α−
p

q

∣∣ < 1

q2
√
5
,

but there are some irrational numbers β for which at most finitely many pairs
satisfy ∣∣β−

p

q

∣∣ < 1

q2+γ
√
5+ μ

no matter how small the positive increments γ and μ are.
The idea can be generalized to simultaneous approximation. Simultane-

ous diophantine approximation originally means that for given real numbers
α1, α2, . . . , αn find p1, p2, . . . , pn, q ∈ Z such that

∣∣αi −
pi

q

∣∣
is “small” for all i, and q is “not too large”.

For a given real α let us denote the nearest integer distance function by ‖.‖,
that is, ‖α‖ = min{|α − j|, j ∈ Z}. Then, simultaneous approximation can be
interpreted as minimizing

max {‖qα1‖, . . . , ‖qαn‖} .

In 1842 Peter Gustav L. Dirichlet (1805–1859) showed that there exist simulta-
neous Diophantine approximations with absolute error bound q−(1+1/n). To be
more precise, he showed that there are infinitely many approximations satis-
fying

|q · αi − pi| <
1

q1/n
(1)
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for all 1 ≤ i ≤ n. Unfortunately, no polynomial algorithm is known for the
simultaneous Diophantine approximation problem. However, due to the L3 al-
gorithm of Lenstra, Lenstra and Lovász, if α1, α2, . . . , αn are irrationals and
0 < ε < 1 then there is a polynomial time algorithm to compute integers
p1, p2, . . . , pn, q ∈ Z such that

1 ≤ q ≤ 2n(n+1)/4ε−n and |q · αi − pi| < ε

for all 1 ≤ i ≤ n (see [10]).
Lagarias [7, 8] presented many results concerning the best simultaneous ap-

proximations. Szekeres and T. Sós [12] analyzed the signatures of the best
approximation vectors. Kim et al. [4] discussed rational approximations to
pairs of irrational numbers which are linearly independent over the rationals
and applications to the theory of dynamical systems. Armknecht et al. [1]
used the inhomogeneous simultaneous approximation problem for designing
cryptographic schemes. Lagarias [9] discussed the computational complexity of
Diophantine approximation problems, which, depending on the specification,
varies from polynomial-time to NP-complete. Frank and Tardos [2] developed
a general method in combinatorial optimization using simultaneous Diophan-
tine approximations which could transform some polynomial time algorithms
into strongly polynomial.

In this paper we focus on two algorithmic problems. Consider the set of
irrationals Υ = {α1, α2, . . . , αn}. Let ε > 0 be real and 1 ≤ a ≤ b be natural
numbers. Furthermore, let us define the set

Ω(Υ, ε, a, b) = {k ∈ N : a ≤ k ≤ b, ‖kαi‖ < ε for all αi ∈ Υ} . (2)

For given Υ, ε and a, b

1. determine all the elements of Ω(Υ, ε, a, b),

2. determine as many elements of Ω(Υ, ε, a, b) as possible in a given time
unit

efficiently. We refer to the first problem as the “all-elements simultaneous Dio-
phantine approximation problem”. In case of |Υ| = n ≥ 1 we call it an n-
dimensional simultaneous approximation. The second problem is referred to as
the “approximating as many elements as possible” problem.

Challenges:

1. Determine all elements of

Ω
(
{
√
2}, 10−17, 1020, 1021

)
. (3)
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2. Determine as many elements of

Ω

({
log(p)
log(2)

, p prime , 3 ≤ p ≤ 19

}
, 10−2, 1, 1018

)
(4)

as possible in a given time unit.

1.2 The continued fraction approach

It is well-known that continued fractions are one of the most effective tools
of rational approximation to a real number. Simple continued fractions are
expressions of the form

a0 +
1

a1 +
1

a2 + · · ·
where ai are integer numbers with a1, a2, . . . > 0. It is called finite if it termi-
nates, and infinite otherwise. These continued fractions are usually represented
in bracket form [a0, a1, . . . , am, . . .], i.e.

C0 = [a0] = a0, C1 = [a0, a1] = a0+
1

a1
, C2 = [a0, a1, a2] = a0+

1

a1 +
1

a2

, . . .

where Cm are called convergents. Clearly, the convergents Cm represent some
rational numbers pm/qm. An infinite continued fraction [a0, a1, a2, . . .] is called
convergent if its sequence of convergents Cm converges in the usual sense, i.e.
the limit

α = lim
m→∞

Cm = lim
m→∞

[a0, a1, . . . , am]

exists. In this case we say that the continued fraction represents the real number
α. The simple continued fraction expansion of α ∈ R is infinite if and only if α
is irrational. The convergents Cm are the best rational approximations in the
following sense:

Lemma 1 No better rational approximation exists to the irrational number α

with smaller denominator than the convergents Cm = pm/qm.

Example 2 The simple continued fraction approximation for
√
2 is [1, 2, 2, . . .],

the sequence of the convergents is

1,
3

2
,
7

5
,
17

12
,
41

29
,
99

70
,
239

169
,
577

408
,
1393

985
,
3363

2378
,
8119

5741
, . . .
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Among all fractions with denominator at most 29, the fraction 41/29 is the
closest to

√
2, among all fractions with denominator at most 70, the fraction

99/70 is closest to
√
2, and so on.

Every convergent is a best rational approximation, but these are not all of the
best rational approximations. Fractions of the form

pm−1 + jpm

qm−1 + jqm
(1 ≤ j ≤ am+2 − 1),

are called intermediate convergents or semi-convergents. To get every rational
approximation between two consecutive pm/qm and pm+1/qm+1, we have to
calculate the intermediate convergents.

Example 2 (cont.) The missing intermediate convergents of Example 2 are

4

3
,
10

7
,
24

17
,
58

41
,
140

99
,
338

239
,
816

577
,
1970

1393
,
4756

3363
, . . .

The approximations |α − p/q| above are also known as “best rational approx-
imations of the first kind”. However, sometimes we are interested in the ap-
proximations |α · q− p|. This is called the approximation of a second kind.

Lemma 3 [3] A rational number p/q, which is not an integer, is a convergent
of a real number α if and only if it is a best approximation of the second kind
of α.

In 1997 Clark Kimberling proved the following result regarding intermediate
convergents [5]:

Lemma 4 The best lower (upper) approximates to a positive irrational number
α are the even-indexed (odd-indexed) intermediate convergents.

Example 2 (cont.) In order to generate many integers q that satisfy

‖q ·
√
2‖ < 10−5 (5)

one can apply the theory of continued fractions, especially convergents. If qm

is the first integer that satisfies ‖qm · √2‖ < 10−5 in the continued fraction
expansion of

√
2, then all convergents with denominator larger than qm will

satisfy equation (5).
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Example 5 Consider Challenge 1 stated in (3). There are only 3 convergents
of

√
2 where 1020 < qm < 1021. They are

233806732499933208099

165326326037771920630
,

564459384575477049359

399133058537705128729
,

1362725501650887306817

963592443113182178088
.

With intermediate convergents we get 2 more solutions. Hence, with the theory
of continued fractions we are able to find only 5 appropriate integers. One may
ask how many elements are in the set Ω in (3)?

Hermann Weyl (1855–1955) and Waclaw Sierpiński (1882–1969) proved in 1910
that if α ∈ R \ Q then α, 2α, 3α, . . . (mod 1) is uniformly distributed on the
unit interval. From this theorem it immediately follows that there are approx-
imately 2(b−a)ε appropriate integers in the [a, b] interval. In Challenge 1 we
expect 2(1021 − 1020) · 10−17 = 18000 (±1) integers. This is by several orders
of magnitude more than what we were able to obtain by continued fractions.

1.3 The Lenstra–Lenstra–Lovász approach

We have seen in the previous section that Challenge 1 is unsolvable with the
theory of continued fractions. Challenge 2 is a 7-dimensional simultaneous
approximation problem and is even more beyond the potentials of continued
fractions. Although there is not known polynomial-time algorithm that is able
to solve the Dirichlet type simultaneous Diophantine approximation problem,
there exists an algorithm that can be useful for similar problems. The Lenstra–
Lenstra–Lovász basis reduction algorithm (L3) is a polynomial-time algorithm
that finds a reduced basis in a lattice [10]. The algorithm can be applied to
solve simultaneous Diophantine approximation with an extra condition.

Lemma 6 There exists a polynomial-time algorithm for the given irrationals
α1, α2, . . . , αn and 0 < ε < 1 that can compute the integers p1, . . . , pn and q

such that ∣∣αi −
pi

q

∣∣ < ε

q
(6)

and
0 < q ≤ βn(n+1)/4ε−n

hold for all 1 ≤ i ≤ n, where β is an appropriate reduction parameter.

The extra condition is the bound 0 < q ≤ βn(n+1)/4ε−n.
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In one-dimension the L3 algorithm provides exactly the continued fraction
approach discussed in the previous section, hence L3 is not an effective tool
for answering Challenge 1. And what about the multidimensional case like
Challenge 2?

Let α1, α2, . . . , αn be irrational numbers and let us approximate them with
rationals admitting an ε > 0 error. Let X = βn(n+1)/4ε−n and let the matrix A

be the following:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0

α1X X 0 . . . 0

α2X 0 X . . . 0
...

...

αnX 0 0 . . . X

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Applying the L3 algorithm for A, the first column of the resulting matrix
contains the vector [q, p1, p2, p3, . . . , pn]

T which satisfies (6).
Let us see how the L3 algorithm works in dimension 7. Let αi = log(pi+1)

log(2)
where pi denotes the i-th prime for 1 ≤ i ≤ 7, and let ε = 0.01. We are looking
for an integer q ≤ 214 · 1007 that satisfies ‖q ·αi‖ < ε for all i. Applying the L3

algorithm we got q = 1325886000944418. It is easy to verify that ‖qαi‖ < 0.01

holds for all 1 ≤ i ≤ 7.
The L3 algorithm can also be applied in higher dimensions, however, there are

some cases where the algorithm can not be used efficiently. The real drawback
of the method for our purposes is that it is inappropriate for finding all or
many different solutions q in an arbitrary interval. We note that sometimes
one can find a few more solutions with a different choice of β (but not much
more).

It can be concluded that the apparatus of the continued fractions and the L3

algorithm is not appropriate for solving Challenge 1 and Challenge 2 problems.
In this paper we present new methods that can be used to solve these kinds
of problems efficiently. All the algorithms presented in this paper were imple-
mented and tested in PARI/GP 2.5.3 with an extension of GNU MP 5.0.1. The
experimenting environment was an Intel R© Core i5-2450M with Sandy Bridge
architecture. The code can be downloaded from the project homepage1.

1http://www.riemann-siegel.com/
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2 Approximation in the one-dimensional case

2.1 “All-elements” approximation

In this section we present how to calculate all the elements of Ω(Υ, ε, a, b)
where Υ = {α}.

For a given Ω let k : {1, 2, . . . , |Ω|} → Ω monotonically increasing, so ki
denotes the ith integer in Ω. Let us define the set

ΔΩ = {kn+1 − kn : 1 ≤ n ≤ |Ω|− 1}.

The set ΔΩ contains all possible step-sizes between two consecutive ki’s.

Theorem 7 |ΔΩ| ≤ 3.

Proof. The proof has two parts. In the first step we construct all the possible
three elements of ΔΩ and in the second step we show that there is no more.
For the given irrational α and an arbitrary m ∈ N let

〈m〉 =
{
‖αm‖ if αm− ‖αm‖ ∈ N ,

−‖αm‖ if αm+ ‖αm‖ ∈ N .

Let us furthermore define the following open intervals:

A = (−2ε,−ε), B = (−ε, 0), C = (0, ε), D = (ε, 2ε) . (7)

Let m1 be the smallest positive integer that satisfies 〈m1〉 ∈ C ∪ D, let
m2 be the the smallest positive integer that satisfies 〈m2〉 ∈ A ∪ B and let
m3 = m1 +m2.

The first part of the proof is to show that there is always at least one integer
(m1,m2 or m3) that adding to an arbitrary ki ∈ Ω always produces a new
integer kj ∈ Ω. Clearly, 〈ki〉 ∈ B ∪ C for all ki. Let us see the following cases:

〈ki〉 ∈ B :
If 〈m1〉 ∈ C, 〈m2〉 ∈ A ∪ B then 〈ki +m1〉 ∈ B ∪ C.

If 〈m1〉 ∈ D, 〈m2〉 ∈ A and 〈m1+m2〉 ∈ C then 〈ki+(m1+m2)〉 ∈ B∪C.

If 〈m1〉 ∈ D, 〈m2〉 ∈ A and 〈m1+m2〉 ∈ B then 〈ki+(m1+m2)〉 ∈ A∪B.
If 〈ki + (m1 +m2)〉 ∈ A then 〈ki + (m1 +m2) −m2〉 ∈ B ∪ C.

If 〈m1〉 ∈ D, 〈m2〉 ∈ B and 〈m1+m2〉 ∈ C then 〈ki+(m1+m2)〉 ∈ B∪C.

If 〈m1〉 ∈ D, 〈m2〉 ∈ B and 〈m1+m2〉 ∈ D then 〈ki+(m1+m2)〉 ∈ C∪D.
If 〈ki + (m1 +m2)〉 ∈ D then 〈ki + (m1 +m2) −m1〉 ∈ B ∪ C.
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〈ki〉 ∈ C :
If 〈m1〉 ∈ C ∪D, 〈m2〉 ∈ B then 〈ki +m2〉 ∈ B ∪ C.

If 〈m1〉 ∈ C, 〈m2〉 ∈ A and 〈m1+m2〉 ∈ B then 〈ki+(m1+m2)〉 ∈ B∪C.

If 〈m1〉 ∈ C, 〈m2〉 ∈ A and 〈m1+m2〉 ∈ A then 〈ki+(m1+m2)〉 ∈ A∪B.
If 〈ki + (m1 +m2)〉 ∈ A then 〈ki + (m1 +m2) −m2〉 ∈ B ∪ C.

If 〈m1〉 ∈ D, 〈m2〉 ∈ A and 〈m1+m2〉 ∈ B then 〈ki+(m1+m2)〉 ∈ B∪C.

If 〈m1〉 ∈ D, 〈m2〉 ∈ A and 〈m1+m2〉 ∈ C then 〈ki+(m1+m2)〉 ∈ C∪D.
If 〈ki + (m1 +m2)〉 ∈ D then 〈ki + (m1 +m2) −m1〉 ∈ B ∪ C.

Let now X = ΔΩ \ {m1,m2,m3}. We claim that X = ∅. Suppose otherwise,
and let j be the smallest index with m = kj+1 − kj ∈ X. Clearly, 〈m〉 ∈
A∪B∪C∪D. We can observe as well that for all m ∈ N, ki ∈ Ω, 〈ki+m〉 ∈ B∪C
implies 〈m〉 ∈ A ∪ B ∪ C ∪D. Then it is easy to see that

• j > 1, and ki’s are integer linear combinations of m1 and m2 for all i ≤ j,

• m1,m2 < m < m1 +m2,

• 〈m〉 ∈ A ∪D.

If 〈m〉 ∈ A then 〈m−m2〉 ∈ B ∪ C, which contradicts the mimimality of j. In
the same way, if 〈m〉 ∈ D then 〈m − m1〉 ∈ B ∪ C, which is a contradiction
again. Hence, such an m does not exist. The proof is complete. �
Finding the integers m1 and m2 can be done very effectively with the the-
ory of intermediate convergents. It was already discussed that intermediate
convergents of an irrational α always produce the best upper and lower ap-
proximations to α, so m1 and m2 must be intermediate convergents.

Example 5 (cont.) Applying the FindMMM algorithm (Algorithm 1) we
have the values
m1 = 59341817924539925,
m2 = 24580185800219268,
m3 = 83922003724759193.
After the precalculation of m1 and m2 it is very easy to compute every ki
between 1020 and 1021. First we have to find an intermediate convergent between
1020 and 1021. It can be done in polynomial time with the theory of continued
fractions (e.g: 233806732499933208099). After that we can add, subtract m1,
m2 or m3 until we reach the bounds of the interval. The Weyl equidistribution
theorem predicts 18000 integers that solve (3). Applying Challenge 1 Solver
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algorithm (Algorithm 2) we found exactly 18 000 integers. The precalculation
and the computation of all ki values took only 31 ms.

Algorithm 1 FindMMM
Description:
The algorithm is based on Theorem 7. The algorithm finds the smallest m1, m2

and m3 integers such that 0 < 〈m1〉 < 2ε, −2ε < 〈m2〉 < 0. The output of the
algorithm is ΔΩ = {m1,m2,m1 +m2}. The main while loop in this algorithm
(from line 5 to 15) goes through all intermediate convergents to find m1 and
m2. The theory of intermediate convergents ensures that m1,m2 ∈ qi where
qi is the ith intermediate convergent. When m1 and m2 are found the while
loop terminates and the algorithm returns m1,m2 and m1 +m2 in ascending
order.
Precondition: α ∈ R \Q, α > ε > 0.

1: procedure FindMMM(α, ε)
2: i ← 0

3: m1 ← 0

4: m2 ← 0

5: while m1 = 0 or m2 = 0 do
6: i ← i+ 1

7: qi ← ith intermediate convergents of α
8: k ← Frac(qi · α) � Fractional part of qi · α
9: if m1 = 0 and k < 2ε then

10: m1 ← qi

11: end if
12: if m2 = 0 and k > 1− 2ε then
13: m2 ← qi

14: end if
15: end while
16: Return(min(m1,m2),max(m1,m2),m1 +m2)
17: end procedure
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Algorithm 2 Challenge 1 Solver
Description:
The algorithm solves Challenge 1 (see (3)). Line 5 calls the FindMMM algorithm to
determine ΔΩ. With the theory of continued fractions line 6 finds an integer k ∈ Ω. In
the first while loop (lines 9−18) the appropriate mi is subtracted from k to generate
a new integer ki ∈ Ω. The process is repeated until the lower bound A of the interval
is reached. In the second while loop (lines 20− 29) the appropriate mi is added to k
generating ki ∈ Ω. The process is repeated until the upper bound of the interval B is
reached. This method produces all the 18 000 integers that satisfy Challenge 1.
1: x ← √

2
2: ε ← 10−17

3: A ← 1020

4: B ← 1021

5: v ← FindMMM(x, ε)
6: k ← Find qx in the interval [A,B] where Frac(qx · x) < ε
7: ktemp ← k
8: print(k)
9: while k > A do

10: for i = 1 → 3 do
11: ok ← Frac((k− v[i]) · x)
12: if (ok < ε) or (ok > 1− ε) then k ← k− v[i]
13: if k > A then print(k)
14: end if
15: break � Leave the for loop
16: end if
17: end for
18: end while
19: k ← ktemp
20: while k < B do
21: for i = 1 → 3 do
22: ok ← Frac((k+ v[i]) · x)
23: if (ok < ε) or (ok > 1− ε) then k ← k+ v[i]
24: if k < B then print(k)
25: end if
26: break � Leave the for loop
27: end if
28: end for
29: end while
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2.2 “Many elements” approximation

In some cases it is not necessary to find all the ki elements of Ω, rather it is
enough to find as much as possible within a given time unit. Then, the following
procedure works:

Find the smallest integer x that satisfies 0 < 〈x〉 < ε and find the smallest
integer y that satisfies −ε < 〈y〉 < 0. Using the notations (7) it is easy to see
that if 〈ki〉 ∈ B and 〈x〉 ∈ C then 〈ki+x〉 ∈ B∪C. In the same way, if 〈ki〉 ∈ C

and 〈y〉 ∈ B then 〈ki + y〉 ∈ B ∪ C. Only with these two integers it is always
possible to produce a subset of Ω.

Example 5 (cont.) If we want to determine just “many” elements of Ω, the
previous method generates 12945 integers within 15 ms.

3 Approximations for the multi-dimensional case

3.1 “Many elements” approximation

Calculating all-elements of Ω seems to be hard in higher dimensions. However,
we can generalize our one dimensional method to find “many” q ∈ Ω integers
recursively. The algorithm is based on the following lemma:

Lemma 8 Let the irrationals α1, α2, . . . , αn and the real ε > 0 be given. Then
there is a set Γn with 2n elements with the following property: if q ∈ Ω then
q+ γ ∈ Ω for some γ ∈ Γn.

Proof. Let q ∈ Ω be given. Let us define an n-dimensional binary vector b

associated with q in the following way:

bi =

{
1 if qαi − ‖qαi‖ ∈ N ,

0 if qαi + ‖qαi‖ ∈ N . (8)

Let Γn be the set for which

1. γ ∈ Γn implies ‖qαi‖ < ε for all 1 ≤ i ≤ n,

2. all the associated binary representations by (8) are different.

Then, for a given q ∈ Ω there exists a γ ∈ Γn such that q+ γ ∈ Ω, e.g. when
their associated binary representations are (1’s binary) complements. Clearly,
|Γn| = 2n. The proof is finished. �
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356205059916 3487229338057 3565485794412 3921690854328 4576624903864
5800642344603 7056176493393 7134432949748 7490638009664 9054007777845
10977867347721 11591199235356 11889764427290 12324225943561 15811455281618
16900850847425 17257055907341 18046611831809 18152923635291 18647375728749
18725632185104 19081837245020 19380402436954 19814863953225 20686645377416
20960788735295 21721870790627 22050020503416 22945888231366 23302093291282
23957027340818 25181044781557 25537249841473 25822432016319 27522513135230
27878718195146 28790615274715 29102735635885 29703499532825 31938492285330
32712306129043 35925048224463 38160204774654 39113548572900 39113712370586
40202944138707 41949469020031 42383930536302 42438100688898 44262882026577
44423200184969 44619087086493 44917652278427 47693582148371 51437938314147
51794143374063 52092708565997 56669333469861 58494114807540 59583346575661
60430542368111 62415805661868 62714370853802 63070575913718 65007167271975
65305732463909 65383988920264 66992266768046 67564975317859 68559097897151
68871218258321 75394965654965 76540726639349 76718061327901 76975188155620
79615221701227 79971426761143 81850378251418 82152413158738 84031364649013
84387569708929 87953055503341 88607825755191 88686082211546 91522002658677
91562625996499 92173311549603 95131573151835 95443693513005 96098463764855
98618802489892 98697058946247 100932215496438 103273520052425 104419444834495
105152471542700 107689663000211 112821979923728 119085139131729 121320131884234
140045764069338 140401969129254 143970916284590 147101940562731 151379836476975
153024924062435 156512153400492 161661323056483 164002791410156 170838495370284
175415120274148 179814246691774 183383193847110 189974502767900 204205735548863
208621878496649 208998700144938 261026707423816 266621541210731 269101092800260
269457297860176 299828135635546 305300628267360 320949406326919 331272339625104
382947603204990 408250989141648 616256074389738

Table 1: The result of the precalculation for solving Challenge 2

Remark 9 Computing the appropriate γ ∈ Γn for a given q ∈ Ω is not nec-
essarily unique.

Corollary 10 Remember the first dimension case: For all m ∈ N, q ∈ Ω,
〈q+m〉 ∈ B ∪ C implies that 〈m〉 ∈ A ∪ B ∪ C ∪D. We can generalize this to
higher dimensions. Let q ∈ Ω and m ∈ N be given. Then q +m ∈ Ω implies
‖m · αi‖ ∈ A ∪ B ∪ C ∪D for all 1 ≤ i ≤ n.

Unfortunately, the precalculation of the 2n integers is in general computation-
ally expensive. However, there are several tricks based upon Lemma 8 that can
be applied to make the generation more efficient.

Example 5 (cont.) In Challenge 2 the precalculation of the 27 = 128 inte-
gers took approximately 6.14 sec on our architecture. Table 1 shows the result.
Applying the Challenge 2 Solver we were able to produce 120852 integers in
Ω within 26.8 sec.
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Algorithm 3 Challange 2 Solver
Description:
The algorithm answers Challenge 2 (see (4)). Line 5 calls the Precalc al-
gorithm in order to determine the 2n integers. The while loop generates a
new integer in Ω using the precalculated ones. The method produces 120 852

integers that satisfy Challenge 2.
1: n ← 7

2: X ← log(p)
log(2) , p prime , 3 ≤ p ≤ 19

3: ε ← 0.01

4: B ← 1018

5: v ← Precalc(n, ε, X, 212)
6: k ← 0

7: while k < B do
8: for i = 1 → length(v) do
9: t ← true

10: for j = 1 → n do
11: ok ← Frac((k+ v[i]) · X[j])
12: if (ok > ε) and (ok < 1− ε) then
13: t ← false
14: break � Leave the for loop
15: end if
16: end for
17: if t = true then
18: k ← k+ v[i]
19: if k < B then
20: Print(k)
21: end if
22: break
23: end if
24: end for
25: end while
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Algorithm 4 Reduce
Description: The algorithm reduces the generation time of Γn in the Precalc
algorithm with adding new elements to K. In this algorithm K is a list of
integers and X is a set of irrationals such that ‖K[i] · X[j]‖ < ε for all i and for
all j < n. The main part of the algorithm is the for loop (lines 4 − 9). Each
element of K is subtracted (added) from (to) every element of K and the new
integer ki that satisfies ‖ki · X[j]‖ < ε for all j < n are appended to K.
Precondition: K: set of integers,n ∈ N, ε > 0, X: set of irrationals
1: procedure Reduce(K,n, ε, X)
2: Sort(K) � Sorting, every element ouccurs only once
3: M ← dynamic array()
4: for i = 1 → length(K) do
5: for j = 1 → length(K) do
6: Append(M, abs(K[i] − K[j])) � append abs(K[i] − K[j]) to M

7: Append(M, abs(K[i] + K[j]))
8: end for
9: end for

10: Sort(M)
11: for i = 1 → length(M) do
12: t ← true
13: for j = 1 → n do
14: t ← t and (Frac(M[i] ·X[j]) < 2ε or Frac(M[i] ·X[j]) > 1−2ε)
15: end for
16: if t = false then
17: Delete(M[i]) � Delete the ith element of M
18: end if
19: end for
20: Append(K,M) � Append array M to K

21: Sort(K)
22: if K[1] = 0 then
23: Delete(K[1]) � Delete the zero value from K

24: end if
25: Return(K)
26: end procedure
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Algorithm 5 Precalc
Description: The algorithm is based on Lemma 8. It generates Γn, a subset of
ΔΩ. In dimension n the set Γn contains exactly 2n elements. Initially (line 2), the
FindMMM algorithm is used. In higher dimensions (2, 3, . . . up to m) the algorithm
produces many integers from ΔΩ by which Γn can be generated. M is a matrix with
i rows. The ith row contains the binary representation of i. (Note: the size of M is
changing depending on the dimension.) To produce as many integers as possible the
Reduce algorithm is used (see lines 10, 11). If β goes to infinity then ΔΩ should
contain allmost all possible step-sizes, not just some. To solve Challenge 2, we set
β = 212. With this choice of β the algorithm is able to generate the appropriate Γn
up to 10 dimensions. For higher dimensions bigger β is needed.
1: procedure Precalc(m, ε, X, β)
2: T ← FindMMM(X[1], ε) � T is a dynamic array
3: for n = 2 → m do
4: T2 ← dynamic array()
5: N ← 0, T3 ← 0 � N, T3 are arrays with 2n elements, every element is 0
6: M ← 2n × n matrix, the ith row contains the binary representation of i
7: k ← 0, tmp ← 0, l ← 0, number ← 0
8: while true do
9: if l = 2n and number > β then

10: Reduce(T2, n, ε, X)
11: Reduce(T2, n, ε, X)
12: T ← T2
13: break � Leave the while loop
14: end if
15: for i = 1 → length(T) do
16: t ← true
17: for j = 1 → n− 1 do
18: ok ← Frac((k+ T [i]) · X[j])
19: if ok > ε and ok < 1− ε then
20: t ← false
21: break � Leave the for loop
22: end if
23: if t = true then
24: k ← k+ T [i]
25: break � Leave the for loop
26: end if
27: end for
28: end for
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Algorithm 6 Precalc (contd.)
29: number ← number+ 1
30: t ← true
31: for j = 1 → n do
32: t ← t and (Frac(k · X[j]) < ε or Frac(k · X[j]) > 1− ε)
33: end for
34: if t = false then
35: next
36: end if
37: t ← false
38: for i = 1 → length(T2) do
39: if T2[i] = k− tmp then
40: t ← true
41: end if
42: end for
43: if t = false then
44: Append(T2, k− tmp) � append k− tmp to the array T2
45: end if
46: tmp ← k
47: for i = 1 → 2n do
48: t ← true
49: for j = 1 → n do
50: if M[i, j] = 0 then
51: t ← t and (Frac(k · X[j]) < ε)
52: else
53: t ← t and (Frac(k · X[j]) > 1− ε)
54: end if
55: end for
56: if t and N[i] = 0 then
57: N[i] ← 1
58: l ← l+ 1
59: T3[l] ← k
60: if l = 2n and n = m then
61: break(2) � Leave while loop
62: end if
63: end if
64: end for
65: end while
66: end for
67: Return(T3)
68: end procedure
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4 Practical use of our methods

The real power of the presented methods is the ability to use them in a dis-
tributed way.

There are several fields of mathematics where the techniques shown in this
paper can be applied. We used our methods in order to find high peak values
of the Riemann-zeta function effectively. It is computationaly hard to find real
t values where |ζ(1/2 + it)| is high (see [11]). In 2004 Tadej Kotnik observed
that large values of |ζ(1/2+ it)| are expected when t = 2kπ

log 2 , where k
log(pi)
log(2) are

close to an integer for all primes pi > 2 [6]. The methods shown in this paper
can be used to find thousands of candidates within a few minutes where high
values of |ζ(1/2 + it)| are expected. We plan to continue our research in this
direction.
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