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Óbuda University, Budapest, Hungary

University Research, Innovation and Service Center
email: lnagy.priv@gmail.com

David ICLĂNZAN
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Abstract. According to WHO estimates, 400 million people suffer from
diabetes, and this number is likely to double by year 2030. Unfortu-
nately, diabetes can have severe complications like glaucoma or retinopa-
thy, which both can cause blindness. The main goal of our research is to
provide an automated procedure that can detect retinopathy-related le-
sions of the retina from fundus images. This paper focuses on the segmen-
tation of so-called white lesions of the retina that include hard and soft
exudates. The established procedure consists of three main phases. The
preprocessing step compensates the various luminosity patterns found in
retinal images, using background and foreground pixel extraction and a
data normalization operator similar to Z-transform. This is followed by a
modified SLIC algorithm that provides homogeneous superpixels in the
image. The final step is an ANN-based classification of pixels using fifteen
features extracted from the neighborhood of the pixels taken from the
equalized images and from the properties of the superpixel where the pixel
belongs. The proposed methodology was tested using high-resolution fun-
dus images originating from the IDRiD database. Pixelwise accuracy is
characterized by a 54% Dice score in average, but the presence of exu-
dates is detected with 94% precision.

1 Introduction

Retinopathy is a severe complication of diabetes, which can lead to partial
or total loss of sight. Several million people are affected by retinopathy of
various grades [14]. Retinopathy can be diagnosed via analysing the image
of the retina, which is usually acquired with a fundus camera. In the clinical
practice of developing countries, fundus images are recorded in certain regional
hospitals, but they are sent to a central hospital for evaluation by a qualified
human expert. In order to build a screening for mass population, it would
be necessary to purchase more fundus cameras and train lots of humans to
become qualified experts. While the first condition can be fulfilled by raising
funds, the second condition regarding human experts is a more difficult one.
This is why there is a strong need for well trained computer systems that
can reliably separate obvious negative cases from suspected positive ones, and
draw the attention of the human experts to the latter. This way it is possible
to create screening systems without needing lots of more human experts.

Retinopathy can cause various lesions on the retina. Some examples are
shown in Fig. 1. Microaneurysms and hemorrhages are collectively called red
lesions, while hard and soft exudates together are referred to as white lesions.
Although retinopathy is usually manifested with all these lesion types, just
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Figure 1: Retinal fundus image, indicating the anatomical parts relevant from
the point of view of this study, and showing examples for the four types of the
lesions. The original image was taken from the IDRid database [18].

as in the case shown in Fig. 1, the most studies from the literature focus on
the detection or segmentation of only the red or the white lesions. To comply
with this trend, we chose to dedicate the current study to the white lesion
segmentation problem.

The computerized analysis of fundus images has been investigated for over
two decades, and this process does not seem to slow down at all. The “Diabetic
Retinopathy: Segmentation and Grading Challenge” [18] organized jointly
with the IEEE International Symposium on Biomedical Imaging (ISBI 2018),
with its high resolution retinal fundus image database, even seems to have an
intensifying effect upon this research branch.

There are a few review articles in the field (e.g. [9, 16]), which give us a
concise insight into the exudate detection problem. The methodology includes
solutions based on: global and adaptive thresholding [19, 10], region grow-
ing [15], clustering in color space [7], morphological operations [17, 23], edge
detection and mixture modeling [4, 5, 3], active contours and Näıve Bayes
classifier [8], various supervised classifiers in competition [21], support vector
machine [20, 6], perceptron network combined with graph-cut algorithm [13],
circular Hough transform combined with CNN networks [2], and CNN with
deep learning [11, 12].
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This paper proposes a multi-step procedure for the exudate detection and
segmentation problem, consisting of image intensity compensation, superpixel
extraction, and supervised classification of pixels using a perceptron network,
based on 15 features extracted from the neighborhood of the pixels and the su-
perpixels they belong to. The proposed method will be evaluated using images
from the IDRiD dataset [18].

The rest of this paper is structured as follows: Section 2 gives details on the
proposed methodology. Section 3 exhibits and discusses the achieved results.
Finally, Section 4 concludes the investigation.

2 Materials and methods

2.1 Data sets

This study relies on a subset of the Indian Diabetic Retinopathy Image Dataset
(IDRiD) [18]. IDRiD contains 50 annotated positive images with soft and/or
hard exudates, for which the optic disc mask is also available. Further 89
negative images were involved in the study, for these images we have produced
optic disc masks. All these images were acquired using a Kowa VX-10 alpha
digital fundus camera. Each positive image is accompanied by two masks that
indicate the position of hard and soft exudates separately. We considered that
the images in IDRiD have too high resolution (4288×2848 pixels) and too few
components kept during JPEG encoding, so we resampled all retinal images
and masks to 1072× 712 pixels before proceeding to any processing step.

2.2 Data processing

The multi-step procedure proposed in this paper translates the image seg-
mentation task into a classification problem, and provides a machine learning
solution based on artificial neural networks (ANN) to complete the job. The
classification takes place at the level of pixels. So each pixel is provided a
feature vector, which includes properties of the neighborhood of the pixels,
and properties of the superpixel it belongs to. This way the procedure needs
to have the following steps (see Fig. 2): intensity compensation, superpixel
generation, feature extraction, ANN training, ANN testing (prediction with
ANN), and statistical evaluation.
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Figure 2: Block diagram of the proposed method.

2.3 Intensity compensation

A full processing of fundus images should be able to distinguish all anatomical
structures and all lesions from the background. The ideal would be to have a
constant background color. Unfortunately, the reality is usually very far from
the ideal case. Some parts of most recorded fundus images appear darker than
the others. This is why it is necessary to design a compensation scheme that
would not affect the anatomical parts [22].

Our intensity compensation method is inspired from the work of Sánchez
et al. [19]. First, we estimate which are the background pixel, and then we
apply intensity correction based on the local statistics, average and standard
deviation (STD) of intensities. Since the anatomical parts have significantly
different color compared to their immediate neighborhood (background) and
their edges are usually sharp, they are likely to be detected via thresholding.
We performed a blur filter with mask sizes 39 × 39 pixels, and compared
the blurred image from the original one. Wherever the absolute luminosity
difference exceeds the half of the global intensity STD, those areas are declared
anatomical parts. All other pixels are considered background pixels and they
participate in the compensation process. At least 80% of the pixels belong to
the background in most fundus images.
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To produce a compensation of intensities based on background pixels, it is
necessary to extract the local average and STD of intensities for every back-
ground pixels. Since this would be a very time consuming process, we adapted
the recipe given in [19], and turned to an approximation scheme. The whole
fundus image was divided into 4× 4 = 16 equal rectangles, which in our case
contained 268×178 pixels each. The average and STD intensity of background
pixels situated in each rectangle (µi and σi, i = 1 . . . 16) was then computed.
Finally, the approximated average and STD intensity for each pixel (not only
background ones) was interpolated from the values obtained in the four (or
less in the proximity of margins) such rectangles, using as weighting coefficient
the −1 power of the physical distance between the pixel and the center of the
rectangle. This way the difference and STD values of neighbor pixels were
found quite similar, which conforms to our previous expectation that the bias
field varies smoothly along the original image.

The compensation of any pixel situated at coordinates (x, y) is finally per-
formed with the formula:

Ĩ(x, y) =
I(x, y) − µ̂neigh(x, y)

σneigh(x, y)
+ µglobal , (1)

with

σneigh(x, y) =
σ̂neigh(x, y)
1
16

∑16
i=1 σi

, (2)

where µ̂neigh(x, y) and σ̂neigh(x, y) represent the interpolated average and STD
intensity at pixel (x, y), and µglobal is the desired average intensity of the
compensated images, which can be a freely chosen value.

2.4 Superpixel generation

The images with compensated intensity obtained in the previous section were
fed to a procedure that identified homogeneous spots or superpixels in them.
The procedure was based on the so-called simple linear iterative clustering
(SLIC) [1] algorithm. The original SLIC uses the k-means algorithm to clus-
ter pixels using a composite distance function that includes components of
physical distance and color difference. To assure the high speed of superpixel
creation, when pixels are assigned to the closest cluster, only those cluster
propotypes are tested which are situated within a short distance from the
given pixel, as distant ones have no chance to be the closest according to the
composite difference criterion.
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SLIC offers the chance for the user to set the approximate size of clusters.
As cluster centers are initially sampled on a regular grid Q pixels apart, the
approximate number of pixels belonging to each cluster will be Q2. In our im-
plementation, the value of Q was set to 9, and the composite distance between
two pixels at coordinates (x1, y1) and (x2, y2), having gray intensities g1 and
g2, respectively, was considered as

d =

√
(x1 − x2)2 + (y1 − y2)2 +

1

5
(g1 − g2)2 . (3)

With these settings, SLIC provided approximately 6300 superpixels in each
image. As a further step, all such superpixels or clusters were analyzed from
the point of view of their intensity distribution. Those clusters in which the
standard deviation exceeded a predefined threshold value θ were further sep-
arated into two clusters using the k-means algorithm. In this case only the
pixel intensities were considered and not their position within the cluster. The
value of the threshold θ was chosen such a way, that 5 − 10% of the clusters
would be further separated into two parts. The value was chosen as θ = 7.7

units on the 0 . . . 255 gray scale. Finally, the number of superpixels or clusters
was close to 7000 in each image.

2.5 Feature generation

Pixels of the retina images were going to be classified using a supervised ma-
chine learning approach. A feature vector was extracted for each pixel of the
50 retina images, with the following composition:

• 1–3: pixel intensity in red, green, and blue channels;

• 4–9: minimum, maximum, and average of green channel intensities ex-
tracted from 5× 5 and 11× 11 sized neighborhood of the pixel;

• 10: distance of the pixel from the closest point of the optic disc;

• 11: size of the superpixels where the pixel belongs;

• 12–15: average value in green channel, and the 10, 50, and 90 percentile
values of green channel intensity within the superpixel where the pixel
belongs.

These fifteen features characterize each pixel of the retina images. In the
next section we will attempt to distinguish exudates pixels from normal ones
using an artificial neural network based approach.
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2.6 ANN training and testing

An artificial neural network (ANN) was trained to separate exudates from
other pixels of the retina images. The perceptron network employed for this
problem consisted of four layers. The input layer has a dedicated neuron for
each of the fifteen features listed in the previous subsection, the two hidden
layers consists of seven neurons each, while there is a single neuron in the
output layer.

To train the neural network, the “leave one out” technique was employed,
namely we trained an ANN for each of the 50 retina images, using randomly
selected pixels of the other 49 images as training data and their labeling as
expected values. Train data for each network consisted of 4900 negative pixels,
600 hard exudate pixels and 500 soft exudate pixels.

The ANN deployed for hard and soft exudate detection was the one imple-
mented in OpenCV ver. 3.1.0.

2.7 Evaluation criteria

Section 3 will provide a statistical evaluation of the obtained results. Pixel-
wise evaluation is performed based on the number of true positives (TP), false
negatives (FN), false positives (FP) and true negatives (TN), and the following
accuracy indicators will be computed:

• Sensitivity or true positive rate (TPR), defined as TPR = TP
TP+FN ;

• Specificity or true negative rate (TNR), defined as TNR = TN
TN+FP ;

• Dice score (DS), defined as DS = 2×TP
2×TP+FN+FP .

These statistical indicators will be analyzed separately in images with various
amounts of exudate pixels.

3 Results and discussion

All 50 retina images with positive (exudate) pixels, and all 89 negative im-
ages underwent the above described processing steps. Figure 3 presents the
intermediary results obtained for one of the images, starting from the original
color image and its green channel, the region of interest consisting from the
whole retinal part of the image with the optic disc removed, the estimated set
of background pixels, the intensity compensated image and the superpixels
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Intermediary results of the exudate detection procedure: (a) original
color image; (b) the green channel of the original image; (c) region of interest:
the whole retina image without the area of the optic disc; (d) the background
pixels detected by the intensity compensation method; (e) the intensity com-
pensated image; (f) the superpixels found by the modified SLIC algorithm.
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(a)

(b)

(c)

Figure 4: Three of the input retina images and the detected exudates: magenta
and cyan represent detected hard and soft exudates, respectively; red and
green indicate undetected hard and soft exudates, respectively; false positives
are shown in blue.
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Figure 5: Segmentation quality indicators obtained for individual retina im-
ages, plotted against the actual number of exudate pixels in the image accord-
ing to the ground truth.

identified in it. The feature vector was extracted for all pixels of all images
involved in this study.

For each image with exudate pixels, a dedicated ANN was trained to obtain
the segmentation, as described in Section 2.6. For the negative images, a sin-
gle ANN was trained using pixels from all 50 images that contain positives.
Detailed results of the segmentation are presented in the following.

Figure 4 presents the segmentation outcome for three images with positives.
The left column shows the original color images, while the right column in-
dicates the found and missed structures. The red, green and blue channels of
the color image are used according to the following logic:

• red channel is set to maximum intensity wherever there is a hard exudate
pixel according to the ground truth;

• green channel is set to maximum intensity wherever there is a soft exu-
date pixel according to the ground truth;

• blue channel is set to maximum intensity wherever the ANN estimates
that there is an exudate pixel;

• all other pixels in all color channels are set to zero intensity.
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Accuracy Cases with exudate pixel count Average of
indicators ≥ 30000 ≥ 10000 ≥ 3000 ≥ 1000 all cases

Dice Score 76.83% 63.67% 57.85% 56.35% 53.75%
Sensitivity 80.99% 70.96% 65.43% 64.26% 62.42%
Specificity 97.09% 97.94% 98.52% 98.75% 98.99%

Table 1: Average values of the accuracy indicators for various subsets of the
input images, defined in accordance to the actual number of exudate pixels in
the images.

This notation means that correct decisions are denoted by magenta (identified
hard exudates), cyan (identified soft exudates), and black (true negatives),
while red (missed hard exudates), green (missed soft exudates), and blue (false
positives) indicate wrong decisions. Larger spots of hard exudates are usually
found, while smaller ones are more likely to be missed.

Figure 5 shows the main statistical quality indicator values obtained for
individual retina images plotted against the number of actual exudate pixels
present in the images. This figure shows that Dice Score and Sensitivity is
generally higher in the segmentation outcome of images with larger number
of exudate pixels. The variation os Specificity is apparently reversed.

Table 1 indicates the average values of main statistical quality indicators
obtained in various subsets of the images that contain positive pixels. Subsets
restrict the whole set of positive images to those, which contain at least a
certain threshold number of positive pixels, the threshold varying from 1000

to 30000. As it is expected, images with more positive pixels are processed with
better accuracy, at least from the point of view of Dice Score and Sensitivity.

If we consider the pixels of the whole set of positive images with their
segmentation outcome, and compute the overall accuracy indicators for this
whole set, we obtain DS = 60.52%, TPR = 68.98%, and TNR = 99.01%.

For the negative images it only makes sense to extract the Specificity value,
which showed and average of 98.63%. For further development, it would be
necessary to propose an additional processing step to suppress the false posi-
tives.
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4 Conclusion

This paper proposed an image segmentation procedure to identify the presence
of hard and soft exudates in retinal fundus images. The proposed method was
tested on 50 positive and 89 negative cases taken from the IDRiD database.
The sensitivity values above 1/3, which we consider enough to detect the
presence of exudates, was found in 94% of the positive cases, making the
proposed method a good candidate for integration into a future screening
application.
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