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Abstract: In this paper, the earlier formulation of the eight-node hexahedral SFR8 

element is extended in order to analyze material nonlinearities. This element stems from 

the so-called Space Fiber Rotation (SFR) concept which considers virtual rotations of a 

nodal fiber within the element that enhances the displacement vector approximation. 

The resulting mathematical model of the proposed SFR8 element and the classical 

associative plasticity model are implemented into a Fortran calculation code to account 

for small strain elastoplastic problems. The performance of this element is assessed by 

means of a set of nonlinear benchmark problems in which the development of the 

plastic zone has been investigated. The accuracy of the obtained results is principally 

evaluated with some reference solutions. 

Keywords: 3D finite elements, hexahedral elements, Space Fiber Rotation, 

elastoplasticity. 

1. Introduction  

Modeling physical phenomena leads in many cases to nonlinear problems. In 

structural engineering, elastoplastic analysis is important for a wide range of 

industrial processes and many applications might be a source of material 

nonlinearities. For instance, in automobile and aerospace industries, crash-

worthiness is a major area of interest. Another example is metal forming 

processes, where tests in the design of new products are required to evaluate 

their performance. More recently, drop impact test of some mobile devices such 

as mobile phones, personal digital assistants and laptops which involve plastic 

deformation have been an object of research [1]. As these tests are high priced, 
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nonlinear finite element analysis has emerged as a viable alternative in 

addressing these kinds of problems. As a matter of fact, the finite element 

method is considered the most adopted procedure for solving elastoplastic 

problems [2]. Since the first published papers addressing elastoplastic problems 

using finite element method in the mid-1960s [3-6], the debate about accuracy 

and efficiency of finite elements in nonlinear structural analysis has gained 

fresh prominence. As a result, many shell, solid, as well as solid-shell element 

formulations have been developed and extended to nonlinear problems 

involving elastoplastic analysis. Surveys such as that conducted by Yang et al. 

[7] compiles the important literature on shell finite elements in both linear and 

nonlinear regimes. It includes several techniques to improve classical shell 

element efficiency as they suffer from some undesirable responses such as 

locking phenomenon and zero energy modes. However, the classical shell 

element formulations carry with them various limitations especially when 

information across the thickness is required as in hydroforming process and 

draw-bending tests [8]. 

To solve this problem, several shell formulations have been proposed to take 

the thickness stretch into consideration (see [9-11] to cite only a few). Despite 

these pioneering achievements, solid-shell elements have emerged as a powerful 

platform for modeling elastoplastic problems [12-15] as they provide many 

advantages with respect to shell elements such as the natural treatment of 

double-sided contact and the straightforward connection with solid elements. 

On the other hand, many solid elements have been also developed to address a 

large set of linear and nonlinear problems [16-18] as they offer easier 

formulation, in comparison with shell elements, based on three dimensional 

constitutive laws. May et al. [19], investigated the elastoplastic behavior of 

beams under pure and warping torsion using a 20-noded isoparametric brick 

element. In order to overcome some well-known deficiencies of the classical 

first-order element, including volumetric locking, Roehl and Ramm [20] 

developed two enhanced elements denoted by HEXA8-E3 and HEXA8-E6 

based on the enhanced assumed strain concept to account for large elastoplastic 

analysis of solids and shells. In the same context, Liu et al. [21] suggested four-

point quadrature hexahedral element in which the shear locking was avoided by 

means of generalized strain vector written in a local corotational system. To 

improve the elastoplastic analysis of irregular meshes, Cao et al. [22] proposed 

a brick element where a penalty term is introduced into the Hu-Washizu 

functional to enforce stresses to satisfy the equilibrium equations. Also, Wang 

and Wagoner [8] developed the so-called WW3D solid element, a mixed eight-

node hexahedral element, for sheet forming analysis where the strain 

components corresponding to locking modes are eliminated. Recently, Artioli et 

al. [23] proposed a linear hexahedral element based on the assumed strain 
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technique. This element has its origins in the Nodally Integrated Continuum 

Element (NICE) formulation [24] and it was successfully implemented to solve 

plasticity problems. 

This study aims at investigating a recently published 3D solid element 

performance, named SFR8, in small strain nonlinear elastoplastic problems. The 

element's formulation is based on the so-called Space Fiber Rotation (SFR) 

approach firstly proposed by Ayad [25]. This approach considers 3D rotations 

of a virtual fiber within the finite element that improves the displacement vector 

approximation. Hence, the SFR concept adds rotational DOFs along with the 

classical displacement ones. Ayad et al. [26] adopted the SFR concept to 

formulate two eight-node hexahedral elements SFR8 and SFR8I. The response 

of these two elements in the linear static regime was examined through a series 

of benchmarks where the findings show a better accuracy than the classical first 

order hexahedral element and close to the quadratic 20-node hexahedral 

element. In the same vein, the SFR concept was adopted in the works of Meftah 

et al. [27, 28] to develop a six-node wedge element SFR6 and a multilayered 

hexahedral element SFR8M. In recent developments on the SFR elements, the 

SFR8 and the SFR8I elements were implemented into the commercial code 

ABAQUS by means of the UEL interface to address nonlinear geometric 

problems [29]. The accuracy of the proposed elements and especially the 

nonconforming element SFR8I was shown to be close to that of the ABAQUS 

quadratic element C3D20. 

The remaining part of the paper proceeds as follows. In the following 

section, the general formulation of the eight-node hexahedral element SFR8 is 

presented. Then, the constitutive model for small strain elastoplasticity is 

described briefly. The third section is concerned with the nonlinear finite 

element procedure. Finally, and before highlighting the concluding remarks, the 

performance of the proposed SFR8 element is assessed through a variety of 

nonlinear elastoplastic problems. 

2. Kinematics of the SFR concept 

This section details the formulation of the SFR8 hexahedral finite element. 

As shown in Fig. 1, this formulation is based on the so-called Space Fiber 

concept which considers a virtual nodal fiber within the element (fiber 𝑖𝑞̅). This 

fiber rotation, defined by the rotation vector 𝜃𝑖̅, develops additional 

displacements that enhance the classical approximation of the displacement 

vector. Accordingly, the final displacement field takes the following form:  

 𝑈 𝑞
= ∑ [𝑁𝑖𝑑𝑖 + 𝑓(𝜃𝑖, 𝑖𝑞)]8

𝑖=1  (1) 
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where 𝑓(𝜃𝑖 , 𝑖𝑞) is the additional displacement vector, 𝑑𝑖 = {𝑈𝑖𝑉𝑖𝑊𝑖}
𝑇is the 

vector of nodal displacements, and 𝑁𝑖 are the classical shape functions 

associated with the eight-node brick element given by:  

       iiiiN  111
8

1
,,   with 1,,1    (2) 

The additional displacement vector  iqf i ,  is written as:  

    iqNiqf iii   ,  (3) 
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X, Y, and Z are the global coordinates of q given by the following 

expressions  
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where iii ZYX ,,  are the global coordinates of node i. 

 

Figure 1: The SFR approach; (a) 3D rotation of the virtual fiber iq inducing an 

additional displacement, (b) the eight-node hexahedral element SFR8 and  

its nodal variables. 
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By performing the cross product iqi  , we obtain the following 

approximation of the displacement vector (the Einstein summation convention 

on 𝑖 is used): 
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The approximation (6) can be expressed in a matrix form: 
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where  
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and    TZiYiXiiiin iWVUd 8,1    (9) 

is the global displacement vector of the SFR8 element. 

3. Constitutive equation for rate independent elastoplasticity 

After initial yielding, the total strain is made up additively of an 

elastic component e  and a plastic component p  so that:  

 𝜀𝑖𝑗 = (𝜀𝑖𝑗)
𝑒

+ (𝜀𝑖𝑗)
𝑝
. (10) 

The elastic part of strain field is linked to stress field though the relation:  

 𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙
𝑒 (𝜀𝑘𝑙 − 𝜀𝑘𝑙

𝑒  ), (11) 

where 𝐷𝑖𝑗𝑘𝑙
𝑒  is the tensor of elastic constants which for an isotropic material may 

be formulated as: 

 










 jkiljlikklij

e
ijkl GD 





21

2
, (12) 



 An Eight-Node Hexahedral Finite Element with Rotational DOFs for Elastoplastic Appl. 59 

 

in which G  is the shear modulus;   is Poisson’s ration and ij  represents the 

Kronecker delta. 

In this paper, the elastoplastic constitutive model based on the von Mises 

associated yield criterion is adopted. Therefore, the following yield function is 

considered.  

 𝑓 = 𝜎𝑒 − 𝜎𝑦(𝜀𝑝) ≤ 0, (13) 

where 𝜎𝑒 is the von Mises effective stress and 𝜎𝑦 is the yield stress which can 

be described by a nonlinear function of the equivalent plastic strain 𝜀𝑝. 

The plastic part of strain 𝜀𝑖𝑗
𝑝

 is only defined by its increment 𝑑𝜀𝑖𝑗
𝑝

 which, by 

using the normality flow rule, is given by:  

 𝑑𝜀𝑖𝑗
𝑝

= 𝜆̅
𝜕𝑓

𝜕𝜎𝑖𝑗
= 𝜆̅𝑃, (14) 

where 𝜆̅ is a scalar function called the plastic multiplier, which determines the 

magnitude of plastic flow and 𝑃 represents the direction of plastic strain rate. 

Differentiation of (11) with respect to virtual time and combination of the 

result with Eq.14 and using the consistency condition 𝑑𝑓 = 0, the plastic 

multiplier 𝜆̅ can be elaborated as: 

 𝜆̅ =
(𝜕𝑓 𝜕𝜎𝑖𝑗⁄ )𝐷𝑖𝑗𝑘𝑙

𝑒 𝑑𝜀𝑖𝑗

(𝜕𝑓 𝜕𝜎𝑟𝑠⁄ )𝐷𝑟𝑠𝑡𝑢
𝑒 (𝜕𝑓 𝜕𝜎𝑡𝑢⁄ )+𝐻𝑦

, (15) 

where 𝐻𝑦  is the hardening moduli involved in the evolution laws describing the 

isotropic hardening. 

By substituting the expression of the plastic multiplier 𝜆̅ into Eq. 11, the 

elastoplastic tangent modulus is derived as: 

 𝐷𝑖𝑗𝑘𝑙
𝑒𝑝

= 𝐷𝑖𝑗𝑘𝑙
𝑒 − 𝛾

𝐷𝑖𝑗𝑚𝑛
𝑒 (𝜕𝑓 𝜕𝜎𝑚𝑛⁄ )(𝜕𝑓 𝜕𝜎𝑝𝑞⁄ )𝐷𝑝𝑞𝑘𝑙

𝑒

(𝜕𝑓 𝜕𝜎𝑟𝑠⁄ )𝐷𝑟𝑠𝑡𝑢
𝑒 (𝜕𝑓 𝜕𝜎𝑡𝑢⁄ )+𝐻𝑦

, (16) 

where 𝛾 = 0 for elastic loading/unloading, and 1  for strict loading. 

Finally, the complete elastoplastic stress strain relation can be expressed:  

 𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙
𝑒𝑝  

𝜀𝑘𝑙. (17) 

4. Numerical implementation 

In order to solve the above nonlinear system, a two-step algorithm based on 

the state update procedure is adopted [30, 31]. The steps of the algorithm are:  

1. Perform a predictor step in which we assume that the step (𝑡𝑛, 𝑡𝑛+1) is 

elastic. Accordingly: 
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 𝜀𝑛+1
𝑡𝑟𝑎𝑖𝑙 = 𝜀𝑛

𝑒 + 𝛥𝜀 (18) 

The corresponding trial stress is given by:  

 𝜎𝑛+1
𝑡𝑟𝑎𝑖𝑙 = 𝐷(𝜀𝑛+1 − 𝜀𝑛

𝑝
) (19) 

2. Evaluation of the yield function  

If 𝑓(𝜎𝑛+1
𝑡𝑟𝑖𝑎𝑙 , 𝐻𝑦) ≤ 0, the stress lies within the yield surface and the trial 

state represents the actual final state of the material. Accordingly:  

 (•)𝑛+1 = (•)𝑛+1
𝑡𝑟𝑖𝑎𝑙  (20) 

If 𝑓(𝜎𝑛+1
𝑡𝑟𝑖𝑎𝑙 , 𝐻𝑦) ≥ 0, the elastic trial state is not plastically admissible and 

the consistency condition is violated. Therefore, a plastic corrector step 

(or return mapping algorithm) is required.  

An outline of the numerical procedure is provided in Fig. 2.  

 

Figure 2: Flowchart of the numerical procedure. 
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5. Numerical examples 

The proposed SFR8 element is implemented into HYPLAS software, a 

FORTRAN Finite Element code developed by de Souza Neto et al. [2] to 

account for hyperelastic and elastoplastic analysis. The performance of the 

SFR8 element, for elastoplastic problems, is evaluated with known benchmarks. 

The obtained results are compared with the ABAQUS Hybrid element C3D8H, 

the second-order ABAQUS hexahedral element C3D20, the NICE-H8 element 

developed by Artioli [23] and the standard hexahedral element H8. 

5.1 Stretched perforated rectangular plate 

In this example, a rectangular perforated plate subjected to longitudinal 

stretching is considered. This problem is frequently used as a benchmark to 

assess the precision and the effectiveness of the plasticity model as well as the 

adopted numerical technique. Material properties, geometric dimensions, 

boundary conditions and the finite element mesh of this example are all 

summarized in Fig. 3. 

 

Figure 3: Stretched perforated plate: Geometry, FEM mesh and material properties. 
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Figure 4: Stretched perforated plate: Reaction-displacement diagram. 

A total displacement of 10 𝑚𝑚 is applied on the upper edge of the plate. 

The final load is reached by performing 30 equal steps where the material is 

considered elastic perfectly plastic and the von Mises model is adopted. Fig.4 

shows the load deflection curve where the total reaction force at the bottom 

surface of the plate is plotted against the applied displacement. The results 

obtained by the SFR8 element are compared with some reference elements from 

the literature. The good agreement between the SFR8 element and the reference 

solutions is noticeable.  

The evolution of the plastic strain is illustrated in Fig.5. Note that the first 

yielding is observed at the intersection of the Y-Symmetry plan and the edge of 

the hole where the plastic region extends in an oblique front along the entire 

cross section of the stretched plate. 

 

        𝒖 = 𝟎. 𝟎𝟕 𝒎𝒎     𝒖 = 𝟎. 𝟎𝟗 𝒎𝒎       𝒖 = 𝟎. 𝟏 𝒎𝒎 

Figure 5: Stretched perforated plate: Equivalent plastic strain at different stages of the 

prescribed displacement. 
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5.2 Thick walled cylinder subjected to internal pressure 

The second numerical example is illustrated in Fig. 6. This problem 

consists of an infinitely long, thick cylinder subjected to a gradually 

increasing internal pressure. This benchmark test has been studied by 

several authors [23, 32]. 

 

Figure 6: Thick cylinder: Geometry, Material properties and FE mesh. 

Considering an elastic perfectly plastic material, the cylinder is assumed to 

have the properties shown in Fig. 6. Like the first example, only one quarter of 

the cylinder is considered where the boundary condition is assumed according 

to a plane strain condition assumed along the axis of the thick cylinder. The 

load is applied according to an incremental scheme of 10 equal steps. 

 

Figure 7: Thick walled cylinder: Pressure-displacement curve. 
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                  Increment 8     Increment 9     Increment 10 

Figure 8: Thick walled cylinder: Evolution of the plastic deformation. 

The pressure-displacement curve at point B is depicted in Fig. 7 (𝐺 

represents the shear modulus). The results obtained by the SFR8 element are 

compared with those given by ABAQUS as well as with the analytical solution 

taken from Nayak et al. [32]. It can be seen that the SFR8 element shows a good 

agreement with C3D8H, NICE-H8 element and the reference solution [32]. The 

evolution of the equivalent plastic strain is also illustrated in Fig.7. The plastic 

deformation starts at the inner surface and extends along the radius where it 

reaches a maximum of 𝜀𝑃𝑚𝑎𝑥
𝑆𝐹𝑅8 

= 0.0024. When compared to ABAQUS results 
(𝜀𝑃𝑚𝑎𝑥

𝐶3𝐷8𝐻  = 0.002429), the results are almost the same. 

6. Conclusion 

This work was designed to evaluate the performance of the SFR8 hexahedral 

element for small strain elastoplasticity analysis. The element formulation relies 

on the consideration of virtual rotations of a nodal fiber within the element that 

improves the displacement vector approximation. The adopted constitutive 

model is the classical associative von Mises plasticity model where the Newton-

Raphson scheme has been implemented for solving the nonlinear numerical 

system. The element shows reliability and robustness when compared with 

some reference elements from the literature. 
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