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Abstract. In the last decade, the rate of the industrial usage of fixed-wing and blended 
wing aircraft has increased. A 1–2-km2 area can be surveyed by such a drone within 30 to 60 
minutes, without any special infrastructure, and this can be repeated at any time. This 
provides an opportunity to conduct automatized surveys and time series data testing, which 
can be used as a basis to decide specific processes. The state and the development of the 
plants can be monitored as well as the spread of pests and the efficiency of the procedures 
that protect against them. During the surveys, thousands of images are taken of the area, 
which can be converted to a georeferenced large-sized map within 20 to 40 hours, including 
post-production and a resolution varying from 0.01 to 0.1 cm/pixel. The paper provides a 
solution to the industrial post-production of these high-quantity data, in which a deep 
learning-based automated process using Matlab is presented, including a comparison of the 
results to the GIS data. 
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1. Introduction 

In the construction industry and in agriculture, the demand for drone-based 
aerial mapping supplementing classical surveying technology and partly replacing it 
has increased in recent years. The drone family of larger companies, such as Parrot 
/ Sensefly eBee or the Trimble UX5 fixed-wing drone aircraft, provide an easily 
available alternative to man-led, still expensively operated aerial mapping using 
large aircrafts. 
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Of course, the prepared systems also have an open-source alternative, such as 
the ArduPilot drone controller, which we, too, have been using for years. The 
technological basis of every solution is identical. On-board intelligence is provided 
by a microcontroller-led on-board unit, which is supplied with the sensors necessary 
for flying such as GPS and a barometric air velocity and height measurement device. 
Using a modem, the telemetry connects to the land server unit, to the GCS, which is 
generally the software running in a Windows or Linux environment. The most 
popular software package for ArduPilot is the Mission Planner software package. 
The robot controller is built into an aircraft selected specifically for the work. 

Flying wing aircraft with 1–2-m wingspan proved to be particularly suitable for 
conducting such type of tasks as they are practically composed of only one swept-
back wing and of a tiny body. 

The operation, in other words, the take-off and landing is conducted from the 
side of the area to be surveyed, mostly from a road of the width of only one car, 
without any solid surface. As the basic component of these aircrafts is EPO foam 
(which, if necessary, is strengthened with a composite material), it can easily endure 
harder landings with damage. Physical damage can generally be repaired easily and 
fast between two flights. If a more serious damage occurs, it can be remedied easily 
by replacing the part with a spare one. 

Generally, the sensor managing the remote control is placed inside the body of 
the aircraft in an area protected from weather. When taking RGB images, this is 
possibly a converted compact camera with a 16 to 28 megapixel resolution. When 
conducting multispectral measurements, this can also be a NIR or an imager 
operating within the main area, such as the FLIR DUO R or the TETRACAM ADC 
Micro, used in such cases by us. 

Depending on the utilized imager and the field resolution to be achieved, flight 
altitude is chosen. In the case of an RGB orthophoto output agricultural survey, we 
used a Canon S100 camera whose resolution is 12 megapixel, its sensor size is 1/1.7” 
and 2.3 fps, and it is capable of capturing a full-resolution still image. We provided 
the camera with CHDK firmware, to which we created a unique script. As a result, 
when reaching the desired flight altitude, the machine selects a short shutter speed 
and takes intensely bright, sharp images until landing. Our chosen flight altitude for 
3 cm/pixel field resolution was 150 m. 

In this way, there will be a 60% to 70% longitudinal and latitudinal overlap, 
which is excellent for photogrammetry. During the flight, GCPs are also surveyed, 
which is done by hand-held GPS results within 5 to 10 m by applying DGPS results 
in < 1 m accuracy. It is important to mention that when surveyed locally, the accuracy 
of the images georeferenced using a regular GPS device turns out to be around 1 m 
too, only that they have a 5- to 10-m offset error compared to reality. This means 
that the area data measured at the output become practically identical to those having 
georeferenced by DGPS. 
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The output contains thousands of images, which can be converted into a 
georeferenced orthophoto within 20 to 40 hours using a PC with high-end GPGPU. 

Generally, 30 to 60 minutes are needed to survey a 1- to 2-km2 area, including 
the survey of GCPs, and in this way it can be repeated weekly. Based on the time 
series analyses, the exact time and reason for the development of certain diseases 
during the growth of the plant can be determined, just like the size of the damage 
and its process. 

During our examination, we surveyed a given agricultural area several times. 
We detected the exact level and location of the damage, which were used as bases 
for protection measures. Our analysis was partly manual and partly automatized. In 
the following sections, we will introduce a deep-learning-based new examination 
technology, which can be used to accelerate processing and to make it easier at the 
same time. 

2. Materials and methods 

A. Deep learning 

An artificial neural network is a type of mathematical model which is based on 
biological observations. Its main application area is machine learning, whose aim is 
to set up a system for these networks and to become capable of learning. Considering 
its structure, a neural network is a graph-based model and its basic elements are 
neurons which communicate with one another. 

The model of the neuron used today is based on Hebbian learning, which 
describes that learning is not a passive process, but it is the composition of the 
physiological processes occurring in the biological network. 

An artificial neuron is the elemental computing unit of the neural network; it is 
a much more simplified model of the biological neuron. Generally, we build layers 
of artificial neurons, and in this way neural network calculations can be described by 
matrix operations. The type of the layer is determined by what operation it conducts, 
while, on the other hand, network architecture is determined by the type, the number, 
and the order of the applied subsequent layers [1]. 

The layers managing typical tasks can also be the following: 
1. Fully connected: creates the combination of the input and the stored weight 

matrix (1): 
  𝐻 = 𝑋𝑊 + 𝑏, (1) 
where x stands for input matrix, w for weight matrix, and b is an optional 
weight vector for translation. 

2. Recurrent: it recovers its own output per input (2): 
  𝐻𝑡 = 𝑋𝑊𝑥 + 𝑏𝑥 +𝐻𝑡−1𝑊ℎ + 𝑏ℎ, (2) 
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where X is input matrix, Wx and bx are the weights belonging to it, Ht-1 is 
the previous output, and Wh and bh are the weights belonging to it. 

3. Convolutional: there is no full connection – the neurons only receive a part 
of the input. It conducts cross-correlation using the weight matrix of the 
neurons on the input matrix (3):  
  𝐻 = 𝑋 ∗𝑊 + 𝑏, (3) 
where * marks the cross-correlation. 

Neural networks are composed of three logical units: 
1. Input layer: it forwards input data towards other parts of the network. The 

number of neurons is determined by the size and shape of the input data. 
2. Hidden layers: also called inner layers whose task is to transform input 

information. 
3. Output layer: the output function and the number of output neurons are 

determined by the nature of the given problem. 

By increasing computational capacity, more complex architectures appear, 
which contain more and more layers and junctions. By increasing the depth of neural 
networks, the ability for abstraction increases, and the layers on different depth levels 
become capable of managing more and more complex tasks. Deep learning is 
essentially a term for a highly complex neural network which is capable of providing 
the expected output to complex inputs [2], [3]. 

CNNs can be utilized well for analysing top-down photos. Top-down photos 
can be satellite photos or aerial photos too. The former ones are only available for 
research purposes in a resolution which does not make it possible to draw 
conclusions of any kind regarding the given area [4]. One characteristic of aerial 
photos is that they are usually taken for a well-defined purpose at identical heights, 
using identical camera settings. The purpose can be to analyse a specific agricultural 
land, to track down areas [5] contaminated by weeds, or to search for any other kind 
of changes. 

The search for lesions is usually conducted involving persons having 
professional qualifications and experience, and it demands time-consuming manual 
work besides significant costs. On the contrary, CNN networks provide a new 
opportunity for analysing images, as it can be managed using CNNs too. 

For CNN-based analyses, unmanned aerial vehicles (UAV) are ideal to produce 
the necessary images because, besides low costs, they are capable of taking 
photographs of a relatively large area, and the quality of the produced images is ideal 
for further utilization, as shown in [6], [7], [8], and [9]. 

In order to analyse the image material collected in this manner, search samples 
must be defined. These samples can originate from the actual or from a previous 
survey – it is more important that a large number of training samples be available. 
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For CNNs, training samples can be quickly managed, and from that point on CNNs 
can be used to analyse survey images. Naturally, in this case too, the assistance of 
the expert of the area is many times indispensable; however, this is necessary for a 
much shorter amount of time, only until defining training samples. 

Considering its field of use, it is an exceptionally diverse area where CNN-
based image analysis can be used with a result and where a conclusion can be drawn 
regarding the actual area based on any aspect. In this way, it is even suitable for 
searching for fungal infections in agricultural lands or even before starting 
cultivation to classify seeds [10], [11]. In cultures representing an exceptionally high 
value, it is capable of revealing the deficiencies of the vegetation and even of 
quantifying it. In this way, for example, a significant profit increase can be achieved 
in tobacco production areas [12]. 

By using CNNs, a search can be conducted in areas under cultivation, and even 
animals present in their environment can be searched for. Thus, the approximation 
of the population growth of pests and their classification become possible [13]. 

B. Game damage 

The exact establishing of the damage in large-sized agricultural areas, even of 
several km2, is an extremely difficult task from the side of the land. The state of the 
land is mostly approximated based on local sampling by experts, but this is not at all 
an accurate process. In case of damage, the larger the interest of the owner, the bigger 
the interest of the insurance company is to establish a smaller value. Accurate data 
can be provided by aerial photography and not only momentary but temporally 
changeable rates can also be monitored. 

C. Gopher nest detection on wheat field 

In the summer of 2015, gophers caused damage to a field of wheat which has 
been surveyed several times. They were able to completely destroy a 1 to 5 m2 area 
of the young plant around the nest. Using the classical GIS method, we calculated 
and localized the number of nests and their position. The reference manual 
measurement was made in ArcGIS, as seen in Fig. 1. 

Using the exact position of gopher nests, rodenticide is possible to be applied 
since only local – nest-wise – application is allowed (Par. 2(1) of the Ministry of 
Agriculture and Rural Development 43/2010. (23 April) on plant protection orders 
protective measures taken against gophers by farmers and other land users). 
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Figure 1. Reference measurement on wheat field – gopher nests marked with arrows 

The survey was done on April 24th, 2015, and the full nest count was 56. By 
repeating the survey one month later, we experienced that the protection measures 
had been successful (Fig. 2). The number of nests has not increased; moreover, the 
damage has not escalated either. During our previous analysis, we conducted nest 
detection using a method based on image processing [14], but after some initial 
successes we found out that the procedure can be used successfully only in the given 
test case. 

Subsequently, we turned towards a procedure which is neural-network-based. 
Based on a given number of well-chosen training samples, it is capable of detecting 
feature areas (nests) even outside the test area. Deep learning in a classical sense is 
based on a large number of training samples, which, after the network has learned 
them – in other words, stored the relevant information using its neurons from the 
hidden layers –, it is capable of classifying images which are newly entered and still 
unknown as inputs. 

In our case, the goal is to use CNN in such a manner that we choose a given 
type of irregularity in the high-resolution images, which in the given case have been 
taken at different times, and then we detect it. However, we do not provide a large 
number of samples to the network as usual ([15], [16], [17]), but we choose a small 
number of positive and negative training samples randomly. In practice, this means 
10 to 20 samples per class. One of the classes is the searched sample, the other 2 to 
3 classes are agriculturally different features but have similar attributes in the RGB 
domain, analysed from an informatics point of view. 

If the irregularity that is searched for is a gopher nest, then a training sample 
against it is, for example, a furrow track, an unsown furrow, and a gully. Examined 
in the RGB domain, these all constitute similar classes, but when examining their 
structure and contour they constitute different and clearly identifiable classes. 
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Figure 2. Gopher nest after prevention 

D. R-CNN Gopher nest detector 

Region-Based Convolutional Networks (R-CNN) use a small number of 
random samples. According to our theory, the operator only has to enter a few, 
clearly detectable training samples on the searched feature in the large-sized 
orthophoto, or rather the same number of similar features which are not from the 
same class as the searched pattern (Fig. 3). 
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The CNN is composed of 11 layers. The size of the input layer is 32 x 32 pixels 
by applying the RGB colour channel. Several convolutional layers will be in the 
intermediate layers, whose width and height determines the filter size the training 
procedure uses while scanning the images. In our case, we applied 32 filters per 
layer, which means that the same number of neurons connect to the only identical 
part of the input. This parameter determines the number of feature maps. 

This layer is always followed by a Batch Normalization layer, which 
normalizes the activations and gradients propagating through a network, making 
network training an easier optimization problem. Applying the layer, the neural 
network can be made faster. 

The next layer is a non-linear activation function, more precisely the Rectified 
Linear Unit (ReLU). A ReLU layer performs a threshold operation to each element 
of the input, where any value less than zero is set to zero (4). 

 

   (4) 
The network also contains a Max Pooling Layer, whose task is a down-

sampling operation that reduces the spatial size of the feature map and removes 
redundant spatial information. The result of the reduction is that the number of filters 
can be increased; in this way, we can create a deeper network without the increase 
of the necessary computing power. 

The Fully Connected Layer, as its name suggests too, is a layer whose neurons 
are in connection with all the neurons of the previous layer. It can combine the 
simpler features already learned by the previous layer, and it is capable of producing 
an even more complex conclusion for the sake of classifying the images. 

The last two layers are the Softmax and the Classification Layer. Their task is 
to normalize the network output and, based on the probabilities of the network, to 
provide the class which belongs most to the image at the output. 
 
The whole R-CNN with 11 x 1 layer array with layers: 
 

1. Image Input, 32 x 32 x 3 images with “zerocenter” normalization; 
2. Convolution, 32 filter, 3 x 3 convolutions with stride [1 1] and padding  

[1 1 1 1]; 
3. Batch normalization; 
4. ReLU; 
5. Convolution, 32 filter,  3 x 3 convolutions with stride [1 1] and padding  

[1 1 1 1]; 
6. Batch normalization; 
7. ReLU; 



28 D. Stojcsics et al. 

 

8. Max pooling, 3 x 3 max pooling with stride [2 2] and padding [0 0 0 0]; 
9. Fully connected, 128 fully connected layer; 
10. ReLU 
11. Fully connected, 4 fully connected layer; 
12. Softmax; 
13. Classification output, crossentropyex. 

 

 

Figure 3. Training samples – upper line: gopher nest, bottom line: not gopher nest 

3. Conclusions 

Tests have been conducted examining the training time and the classification 
of the R-CNN. 
 
Test PC: 

• Operating system: Windows 7 SP1 64bit, 
• Processor: Intel i7-3820 @3.60 GHz, 
• Number of physical cores: 4, 
• Number of logical processors: 8, 
• Memory: 32GB DDR3, 
• GPU: NVidia GeForce GTX TITAN Black 3GB. 

 

Generally speaking, because of the low number of training samples, the 
training, using CUDA GPGPU acceleration [18], is expressly rapid: it is finished 
within 5 minutes (depending on the size of the regions selected for training 
purposes). In comparison, detection is much slower. 

In case of full resolution orthophotos, which consist of 27,000 × 17,000 pixels 
[19], the processing time generally fluctuates around 30 minutes per image. The R-
CNN was successfully trained in the mentioned way, in a way that during its run it 
is capable of detecting gopher nests with above 80% accuracy. Due to counter-
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training samples, we managed to reduce the number of false detections to zero  
(Fig. 4). 

Generally speaking, although the created method was originally designed for a 
large number of training samples, in this case, it was still applicable. During our 
work, we analysed the construction of R-CNNs, and we created the layer order that 
seemed to be the most ideal for our task, including its parameters. 
 

 

Figure 4. Detected gopher nests, no false detections 

During the test, we processed large-sized georeferenced orthophotos and 
proved the validity of the procedure. The next task is to increase the reliability of the 
created method, or rather to increase match accuracy (above 95%). 
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