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New aspects in polygroup theory

Andromeda Cristina Sonea

Abstract

The aim of this paper is to compute the commutativity degree in
polygroup’s theory, more exactly for the polygroup PG and for exten-
sion of polygroups by polygroups, obtaining boundaries for them. Also,
we have analyzed the nilpotencitiy of A[B], meaning the extension of
polygroups A and B.

1 Introduction

The polygroups theory represents a particular class from the hypergroup the-
ory. This theory is detailed in the book of Davvaz, ”Polygroup Theory and
Related Systems” see [4]. We choose this class because it is similar to group
theory and we founded a few similarities but and differences between these
two theories.

Definition 1. A polygroup is a system ϕ =< P, ·, e,−1>, where e ∈ P , −1 is
a unitary operation on P and ” · ” : P × P → P∗(P ) . In the following, the
next axioms hold for all x, y, z ∈ P :

i) (x · y) · z = x · (y · z);

ii) e · x = x · e = x;

iii) x ∈ y · z, implies y ∈ x · z−1 and z ∈ y−1 · x.
Key Words: polygroup, commutativity degree, extension of polygroups by polygroups,

nilpotencity.
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Also, from the above axioms, it is obtaine:

e ∈ x · x−1 ∩ x−1 · x; e−1 = e,(
x−1

)−1
= x, (x · y)

−1
= y−1 · x−1.

2 Commutativity degree in polygroup theory

The aim of this section is to compute the commutativity degree for polygroup
PG and to find a connection between the results from group theory and from
polygroup theory. This notion, was studied by Azam Hokmabadi, Fahimeh
Mohammadzadeh and Elaheh Mohammadzade, see [7] presented in the 6th

International Group Theory Conference, 2014. In this paper, the definition of
commutativity degree has a similar form, but we don’t using the heart of a
polygroup.

Definition 2. Let < P, ·, e,−1> be a polygroup. The commutativity degree of
polygroup P , notice by d(P ) has the next form:

d(P ) =
|{(a, b) ∈ P 2| a · b = b · a}|

|P |2
.

Remark 3. The set {(a, b) ∈ P 2| a · b = b · a} is notice by c(P ).

Example 4. Let P = {e, a, b, c} and let < P, ·, e,−1> be a non-commutative
polygroup, where ” · ” is define thus

· e a b c
e e a b c
a a a P c
b b {e, a, b} b {b, c}
c c {a, c} c P

In this case, the commutativity degree of polygroup P , is

d(P ) =
10

16
=

5

8
.

Proposition 5. Let < P1, ·, e1,−1> and < P2, ∗, e2,−1> be two polygroups.
P1 × P2 equipped with the usual direct hyperproduct

” ◦ ” : (P1 × P2)× (P1 × P2)→ P1 × P2,

(x1, y1) ◦ (x2, y2) = {(x, y) | x ∈ x1 · x2, y ∈ y1 ∗ y2}

becomes a polygroup.
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Proposition 6. Let < P1, ·, e1,−1> and < P2, ∗, e2,−1> be two polygroups.
The next relation holds

d (P1 × P2) = d(P1)d(P2).

Proof. The amount

|{ (x1, y1)× (x2, y2) ∈ (P1 × P2)
2 | (x1, y1) ◦ (x2, y2) = (x2, y2) ◦ (x1, y1) }|
|P1 × P2|2

.

(1)
represents the commutativity degree of P1 × P2. So, the expression

(x1, y1) ◦ (x2, y2) = (x2, y2) ◦ (x1, y1) (2)

is equivalent with

{(x, y) ∈ P1 × P2|x ∈ x1 · x2 = x2 · x1, y ∈ y1 ∗ y2 = y2 ∗ y1}
= {x ∈ P1| x ∈ x1 · x2 = x2 · x1}{y ∈ P2| y ∈ y1 ∗ y2 = y2 ∗ y1}
= c (P1) c (P2) .

P1 × P2 = {(x, y) |x ∈ P1, y ∈ P2} = {x, x ∈ P1}{y, y ∈ P2},
follows that

|P1 × P2| = |P1||P2|.
Therefore,

d(P1 × P2) =
|c (P1 × P2) |
|P1 × P2|2

=
|c (P1) ||c (P2) |
|P1 × P2|2

.

In conclusion,

d(P1 × P2) =
|c (P1) |
|P1|2

|c (P2) |
|P2|2

= d(P1)d(P2),

Example 7. Let sets P1 = {0, 1}, P2 = {e, a, b, c} and let < P1, ·, e,−1>,
< P2, ∗, e′,−1> be two polygroups, where ” · ” şi ” ∗ ” are define thus:

· 0 1
0 0 1
1 1 0

and
∗ e a b c
e e a b c
a a a P2 c
b b {e, a, b} b {b, c}
c c {a, c} c P2
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We notice
αj
i = (xi, yj) , i ∈ {1, 2}, j ∈ {1, 2, 3},

where xi and yj , represents of component i from P1 and yj represents of com-
ponent j from P2. The product polygroup P1 × P2 has the next form.

◦ α1
1 α2

1 α3
1 α4

1

α1
1 α1

1 α2
1 α3

1 α4
1

α2
1 α2

1 α2
1

{
αi
1,

i=1, 4

}
α4
1

α3
1 α3

1

{
αi
1,

i = 1, 3

}
α3
1 {α3

1, α
4
1}

α4
1 α4

1 {α2
1, α

4
1} α4

1

{
αi
1,

i=1, 4

}
α1
2 α1

2 α2
2 α3

2 α4
2

α2
2 α2

2 α2
2

{
αi
2,

i=1, 4

}
α4
2

α3
2 α3

2

{
αi
2,

i=1, 3

}
α3
2 {α3

2, α
4
2}

α4
2 α4

2 {α2
2, α

4
2} α4

2

{
αi
2,

i=1, 4

}
and

◦ α1
2 α2

2 α3
2 α4

2

α1
1 α1

2 α2
2 α3

2 α4
2

α2
1 α2

2 α2
2

{
αi
2, i=1, 4

}
α4
2

α3
1 α3

2

{
αi
2, i=1, 3

}
α3
2 {α3

2, α
4
2}

α4
1 α4

2 {α2
2, α

4
2} α4

2

{
αi
2, i=1, 4

}
α1
2 α1

1 α2
1 α3

1 α4
1

α2
2 α2

1 α2
1

{
αi
1, i=1, 4

}
α4
1

α3
2 α3

1

{
αi
1, i=1, 3

}
α3
1 {α3

1, α
4
1}

α4
2 α4

1 {α2
1, α

4
1} α4

1

{
αi
1, i=1, 4

}
The commutativity degree is

d(P1 × P2) =
40

64
=

5

8
· 1 = d(P1) · d(P2).

Let (G, ·) be a group and PG = G ∪ {a}, where a /∈ G. It is define on PG,
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the hyperoperation ” ◦ ” as follows

(1) : a ◦ a = e;

(2) : e ◦ x = x ◦ e = x,∀x ∈ PG;

(3) : a ◦ x = x ◦ a = x, ∀x ∈ PG\{e, a};
(4) : x ◦ y = x · y,∀ (x, y) ∈ G2, y 6= x−1;

(5) : x ◦ x−1 = {e, a}, ∀x ∈ PG\{e, a}.

Proposition 8. If G is a group, then < PG, ◦, e,−1> is a polygroup.

Corolar 9. Let (G, ·) be a group. The polygroup PG is nilpotent, if and only
if G is a nilpotent group.

Proposition 10. If (G, ·) is a finit group, with |G| = n, n ∈ N∗, then

d (PG) =
n2d(G) + 2n+ 1

(n+ 1)
2 . (3)

Proof. We define, the commutativity degree of polygroup PG as follows

d(PG) =

∣∣{(x, y) ∈ P 2
G| x ◦ y = y ◦ x}

∣∣
|PG|2

. (4)

Let

A1 = {(x, y) ∈ G2, y 6= x−1}, A2 = {(x, y) ∈ G2, y = x−1},
A3 = {(a, y) , y ∈ G}, A4 = {(x, a) , x ∈ G, y = a}, A5 = {(a, a)}.

We observe that

PG × PG = A1 ∪A2 ∪A3 ∪A4 ∪A5, (5)

with
Ai ∩Aj = ∅, ∀ i 6= j. (6)

According to (5) and (6), the above expression, could be written thus

∣∣{(x, y) ∈ P 2
G| x ◦ y = y ◦ x}

∣∣ =

5∑
i=1

|{(x, y) ∈ Ai| x ◦ y = y ◦ x|

= n2d(G) + n+ n+ 1 = n2d(G) + 2n+ 1.

So,

d (PG) =
n2d(G) + 2n+ 1

(n+ 1)
2 .
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Example 11. If G = D3, then PG = G∪a, a /∈ D3. The commutativity degree
of G, is d(G) = 1

2 .

◦ e ρ ρ2 σ ρσ ρ2σ a
e e ρ ρ2 σ ρσ ρ2σ a
ρ ρ ρ2 {e, a} ρσ ρ2σ σ ρ
ρ2 ρ2 {e, a} ρ ρ2σ σ ρσ ρ2

σ σ ρ2σ ρσ {e, a} ρ2 ρ σ
ρσ ρσ σ ρ2σ ρ {e, a} ρ2 ρ
ρ2σ ρ2σ ρσ σ ρ2 ρ {e, a} ρ2σ
a a ρ ρ2 σ ρσ ρ2σ e

d(PG) =
31

49
=

62 · 12 + 2 · 6 + 1

72
.

Remark 12. 1. d (PG) ≥ d(G), for all group G;
2. If G is an abelian group, then PG is a commutative polygroup.
3. According to the above example, it is observed that there is a non com-

mutative polygroup PG with commutativity degree more than 5
8 , what in group

theory does not happend.

In what follows, we determine a bounded for polygroup PG, which depends
to d(G) .

Proposition 13. If G is a group with |G| = n, then

d(G) ≤ d(PG) ≤ d(G) + 3

4
.

Proof. Let G be a group, with |G| = n. The first inequality is obvious, from
Remark 12 and for second inequality, we make some elementary calculus and
we obtain

(d(G)− 1)(3n2 − 2n− 1) ≤ 0,∀n ≥ 1.

It is true, because d(G) ∈ (0, 1] and 3n2 − 2n− 1 = (n− 1)(3n+ 1) ≥ 0,∀n ≥
1.

Proposition 14. PG is a commutative polygroup if and only if d(PG) > 29
32 .

Proof. If PG is commutative polygroup, follows that d(PG) = 1 > 29
32 .

Inverse, if d(PG) > 29
32 , then

n2d(G) + 2n+ 1

(n+ 1)
2 >

29

32
, equivalent

n2(32d(G)− 29) + 6n+ 3 > 0, for all n ≥ 2.
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If G is abelian group, then d(G) = 1 and inequality is true.
If G is a non abelian group, then d(G) < 5

8 , so

n2(32d(G)− 29) + 6n+ 3 < −9n2 + 6n+ 3 < 0, for all n ≥ 2.

In this situation, the inequality doesn’t holds.
In conclusion, PG is a commutative polygroup if and only if d(PG) >

29
32 .

3 Extension of polygroups by polygroups

The purpose of this section is to determine the commutativity degree of ex-
tension polygroups by polygroups and to find a connection with the commu-
tativity degrees of the two polygroups which form the extension. Let A = <
A, ·, e,−1> and B = < B, ·, e,−1> be two polygroups whose elements have
been renamed so that ı̂ncât A ∩ B = {e}. A new system A[B] called the
extension of A by B is formed in the following way:

A[B] = < M, ∗, e,I >,
where

M = A ∪B, eI = e, xI = x−1, e ∗ x = x ∗ e = x, for all x ∈M ;

and for all x, y ∈M\{e}.

x ∗ y =


x · y if x, y ∈ A
x if x ∈ B, y ∈ A
y if x ∈ A, y ∈ B
x · y if x, y ∈ B, y 6= x−1

x · y ∪A if x, y ∈ B, y = x−1

(7)

In this case, A[B] is a polygroup which is called the extension of A by B.
We consider A = {e, a1, a2, ..., an−1} şi B = {e, b1, b2, ..., bm−1}, where n,

m ∈ N∗. We can represent the operation ” ∗ ” through next table:

∗ e a1 ... an−1 b1 ... bi ... bm−1

e e a1 ... an−1 b1 ... bi ... bm−1

a1 a1 a1a1 ... a1an−1 b1 ... bi ... bm−1

.

.

.
.
.
.

.

.

. ...
.
.
.

.

.

. ...
.
.
. ...

.

.

.
an−1 an−1 an−1a1 ... an−1an−1 b1 ... bi ... bm−1

b1 b1 b1 ... b1 b1b1 ... b1bi ∪ A ... b1bm−1

.

.

.
.
.
.

.

.

. ...
.
.
.

.

.

. ...
.
.
. ...

.

.

.
bi bi bi ... bi bib1 ∪ A ... bibi ... bibm−1

.

.

.
.
.
.

.

.

. ...
.
.
.

.

.

. ...
.
.
. ...

.

.

.
bm−1 bm−1 bm−1 ... bm−1 bm−1b1 ... bm−1bi ... bm−1bm−1
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Without loss generality, we suppose that bi = b−11 . For each element bj , it
is exists unique bk, such that bj = b−1k with i, j, k ∈ 1,m− 1.

The commutativity degree of polygroup A[B] it is define thus:

d(A[B]) =

∣∣{ (x, y) ∈M2| x ∗ y = y ∗ x}
∣∣

|M |2
. (8)

Proposition 15. If A = < A, ·, e,−1> and B = < B, ·, e,−1> are two finite
polygroups, where A = {e, a1, a2, ..., an−1} şi B = {e, b1, b2, ..., bm−1}, with n,
m ∈ N∗, then the commutativity degree of polygroup A[B], is

d(A[B]) =
n2d(A) +m2d(B) + 2 (n− 1) (m− 1)− 1

(n+m− 1)
2 . (9)

Proof. Let sets

A1 = { (x, y) ∈ A2| x ∗ y = y ∗ x};
A2 = { (x, y) ∈ B2| x ∗ y = y ∗ x};
A3 = { (x, y) ∈ A×B| x ∗ y = y ∗ x, x, y 6= e};
A4 = { (x, y) ∈ B ×A| x ∗ y = y ∗ x, x, y 6= e }.

It is easy to observe that

A1 ∩A2 = {(e, e)},
Ai ∩Aj = ∅, ∀ (i, j) 6= (1, 2) , i, j = 1, 4.

and

{ (x, y) ∈M2| x ∗ y = y ∗ x} =

4⋃
i=1

Ai.

In conclusion,

d(A[B]) =
n2d(A) +m2d(B) + 2 (n− 1) (m− 1)− 1

(n+m− 1)
2 . (10)

Example 16. Let P1 = < P1, ·, e,−1> and P2 = < P2, ·, e,−1> be two poly-
groups, where P1 = {e, a, b, c} and P2 = {e, a′, b′} thus :

P1 :

· e a b c
e e a b c
a a a P1 c
b b {e, a, b} b {b, c}
c c {a, c} c P1

; P2 :

· e a′ b′

e e a′ b′

a′ a′ {e, b′} {a′, b′}
b′ b′ {a′, b′} {e, a′}

.
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The extension of polygroup P1 by polygroup P2, P1[P2] = < M, ∗, e,I > it
is represents as follows

∗ e a b c a′ b′

e e a b c a′ b′

a a a P1 c a′ b′

b b {e, a, b} b {b, c} a′ b′

c c {a, c} c P1 a′ b′

a′ a′ a′ a′ a′ {e, b′} ∪ P1 {a′, b′}
b′ b′ b′ b′ b′ {a′, b′} {e, a′} ∪ P1

.

For n = 4, m = 3, d(P1) = 5
8 , d(P2) = 1 it is obatined:

d(P1[P2]) =
42 · 58 + 32 · 1 + 2(4− 1)(3− 1)− 1

(4 + 3− 1)
2 =

5

6
.

We notice that 5
6 >

5
8 , so the result from group theory dosen’t holds in poly-

group theory.

Remark 17. If A şi B are two commutative polygroups, then d(A) =d(B) =1
and

d(A[B]) =
n2 +m2 + 2 (n− 1) (m− 1)− 1

(n+m− 1)
2 = 1.

So, A[B] it is a commutative polygroup.

Remark 18. The polygroup PG = G ∪ {a}, a /∈ G, could be written as a
extension of polygroup A =<G, ·, e,−1> by polygroup B =<B, ·, e,−1>, where

B = {e, a}, a /∈ G and ” · ” from B has the form:
· e a
e e a
a a {e, a}

. Applying

the formula (9) for d(A) =d(G), m = 2 and d(B) =1, we obtain

d(A[B]) =
n2d(G) + 22 + 2 (n− 1)− 1

(n+ 2− 1)
2 =

n2d(G) + 2n+ 1

(n+ 1)
2 = d(PG).

Remark 19.

lim
n→∞

n2d(A) +m2d(B) + 2 (n− 1) (m− 1)− 1

(n+m− 1)
2 = d(A);

lim
m→∞

n2d(A) +m2d(B) + 2 (n− 1) (m− 1)− 1

(n+m− 1)
2 = d(B).

We determine a boundaries for the extension A[B], in the following.
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Proposition 20. min{d(A), d(B)} ≤ d(A[B]) ≤ 1+max{d(A),d(B)}
2 .

Proof. Let us suppose that d(A) ≤ d(B). The other case is treated in a similar
way.

d(A[B]) ≥n
2d(A) +m2d(A) + 2 (n− 1) (m− 1)− 1

(n+m− 1)
2 .

Equivalent with

(1− d(A))(2nm+ 2n+ 2m+ 1) ≥ 0.

Which is true, because d(A) ∈ (0, 1].
The next inequality becomes

d(A[B]) ≤ d(B)(n2 +m2) + 2(n− 1)(m− 1)− 1

(n+m− 1)
2

=

(
n2 +m2

)
(d(B)− 1)

(n+m− 1)
2 + 1.

But, (
n2 +m2

)
(d(B)− 1)

(n+m− 1)
2 + 1 ≤ 1 + d(B)

2
⇔

(d(B)− 1)

(
n2 +m2

(n+m− 1)
2 −

1

2

)
≤ 0,

which is true. In conclusion,

min{d(A), d(B)} ≤ d(A[B]) ≤1 + max{d(A), d(B)}
2

.

4 On nilpotencity of A[B]

In this section, we propose to prove that if A and B are two nilpotent poly-
groups, then the extension of polygropus by polygroups, A[B] is also a nilpo-
tent polygroup. To prove this, we need some notions which appears in the
book of B. Davvaz, [4].

Definition 21. A polygroup < P, ·, e, ,−1> is said to be nilpotent, if ln (P ) ⊆
ωP or equivalent ln (P ) ·ωP = ωP , for some integer n, where l0 (P ) ·ωP = ωP

and

lk+1 (P ) =< {h ∈ P | x · y ∩ h · y · x 6= ∅, such that x ∈ lk (P ) and y ∈ P} > .
(11)
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The smallest integer c such that lc (P ) ·ωP = ωP is called the nilpotencity class
or for simplicity the class of P .

Notice that P = l0 (P ) ⊇ l1 (P ) ⊇ l2 (P ) ⊇ ...that is {lk (P )}k≥0 is a
decreasing sequence which we call it generalized descending central series.

Forwards, we find a connection between the heart of polygroups A , B and
A[B].

Proposition 22. Let A[B] =< M, ∗, e,I > be the extension of polygroups A

by B , where M = A ∪B, A ∩B = {e} . The next relation, hold on

ωA ∪ ωB ⊆ ωA[B]. (12)

Proof. Note that the neutral element e, is the same in all polygroups, A, B
and A[B].

Let be x ∈ ωA, follows that xβ∗e, so there is n ∈ N , a1, a2, ..., an ∈ A such
that

{x, e} ⊆
n∏

i=1

ai. (13)

Using the relation (7), it is observe that x ∗ y = x · y, for all x, y ∈ A. So,
the relation (12) could be written thus:

There is n ∈ N , a1, a2, ..., an ∈ A[B], such that {x, e} ⊆ a1 ∗ a2 ∗ ... ∗ an
which implies x ∈ ωA[B].

Now, if x ∈ ωB, follows that xβ∗e, so there is m ∈ N , b1, b2, ..., bm ∈ B

such that

{x, e} ⊆
n∏

i=1

bi ⊆ b1 ∗ b2 ∗ ... ∗ bn, (14)

if and only if bi 6= b−1j , ∀i, j ∈ 1, n, so follows that x ∈ ωA[B]. If exists i, j such

that bi = b−1j ,
n∏

i=1

bi ⊆ b1 · b2 · ...(bi · bj ∪A) · ... · bn, so x ∈ ωA[B]. In conclusion

ωA ∪ ωB ⊆ ωA[B].

Proposition 23. Let A = < A, ·, e,−1> , B = < B, ·, e,−1> be two polygroup.
If A[B] =< M, ∗, e,I > is the extension of polygroups A by B , where M =
A ∪B, A ∩B = {e} , then

lk (A[B]) = lk (A) ∪ lk (B) . (15)

Proof. We do the proof

lk (A) ∪ lk (B) ⊆ lk (A[B])



On nilpotencity of A[B] 252

by induction on k. For k = 0, A ∪ B ⊆ A ∪ B, it is true. Now, suppose that
a ∈ lk+1 (A), so exists x ∈ lk (A), y ∈ A, such that

x · y ∩ a · y · x 6= ∅.

Using the hypothesis induction, follows that x ∈ lk (A[B]).
So, a ∈ A ⊂ A ∪B, x ∈ lk (A[B]), y ∈ A ∪B and

x ∗ y ∩ a ∗ y ∗ x 6= ∅.

In conclusion, a ∈ lk+1 (A[B]). If, a ∈ lk+1(B), exists x ∈ lk (B), y ∈ B, such
that x ·y∩a ·y ·x 6= ∅. In a similar way, using the hypothesis induction, follows
that x ∈ lk (A[B]). So, we have two cases:

If, y 6= x−1 and y 6= a−1, the condition x · y ∩ a · y · x 6= ∅ becomes

x ∗ y ∩ a ∗ y ∗ x 6= ∅,

where x ∈ lk (A[B]), a ∈ A ∪B, y ∈ A ∪B, follows that a ∈ lk+1 (A[B]).
If y = x−1and y 6= a−1, x ∗ y ∩ a ∗ y ∗ x 6= ∅ is equivalent with

(x · y ∪A) ∩
(
∪

c∈C
a · c

)
6= ∅,

where C = y · x ∪ A, because x · y ∩ a · y · x 6= ∅. So, a ∈ lk+1 (A[B]). The
other cases are treated in a similar way.

Now, like above, using the induction method, we do the proof

lk (A[B]) ⊆ lk (A) ∪ lk (B) .

For k = 0, A ∪ B ⊆ A ∪ B. If a ∈ lk+1 (A[B]), then a ∈ A ∪ B and exists
x ∈ lk (A[B]), y ∈ A ∪B such that

x ∗ y ∩ a ∗ y ∗ x 6= ∅. (16)

Using the hypothesis induction, follows that x ∈ lk (A) or x ∈ lk (B) .
If a ∈ A, we choose x ∈ lk (A) and y ∈ A such that the condition (15)

becomes x · y ∩ a · y · x 6= ∅, results a ∈ lk+1 (A) .
If a ∈ B we choose x ∈ lk (B) and y ∈ B, such that the condition (15)

becomes 
x · y ∩ a · y · x 6= ∅, y 6= a−1 6= x−1

(x · y ∪A) ∩
(
∪

c∈C
a · c

)
6= ∅, y = x−1

x · y ∩
(
∪

d∈D
d · x

)
6= ∅, y = a−1

, (17)

where D = a · y ∪ A. From the relations given by (17), it is obtained that
x · y ∩ a · y · x 6= ∅.
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Proposition 24. If A and B are nilpotent polygroups, then the extension of
polygroups, A[B] is also a nilpotent polygroup.

Proof. A is a nilpotent polygroups, so there exists k1 ∈ N∗ such that lk1
(A) ⊆

ωA. B is a nilpotent polygroups, so there exists k2 ∈ N∗ such that lk2 (B) ⊆
ωB.

lk1
(A) ∪ lk2

(B) ⊆ ωA ∪ ωB ⊆ ωA[B] (18)

Let k = max(k1, k2) and {lk (P )}k≥0 is a decreasing sequence. We have
lk (A) ⊆ lk1

(A) and lk (B) ⊆ lk2
(B). Using the Proposition 23, follows that

lk (A[B]) ⊆ ωA[B].

So, A[B] is a nilpotent polygroup.
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