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Some spectral bounds for the harmonic matrix

Kinkar Ch. Das and Carlos M. da Fonseca

Abstract

The aim of this note is to establish new spectral bounds for the
harmonic matrix.

The Harary matrix of given a connected graph G of order n, say RD(G),
is an n-by-n symmetric matrix, such that

(RD(G))ij =


1
dij

, if i < j,

0 , if i = j,

where dij denotes the distance between the vertices i and j [10, 11]. This
matrix (originally known as reciprocal distance matrix [11]) is particulary
well-known in chemistry. This is mainly motivated by the importance of the
influence of the neighbor atoms when compared with the more distance ones
[5, 9, 1].

If we consider a path of order n, with the vertices labeled in the standard
way, the Harary matrix, say An = (ai, j), will be defined as

ai, j =


1

|i− j|
, if i 6= j,

0 , otherwise,

(0.1)
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which we will call harmonic matrix. The reason to adopt this name is inti-
mately related with the harmonic numbers [13]. The nth harmonic number

Hn =

n∑
k=1

1

k

arises from the truncation of the harmonic series. One of the most interesting
analytical expression for these numbers is

Hn = γ + Ψ(n+ 1) ,

where γ is the Euler-Mascheroni constant and Ψ(·) is the digamma function.
Clearly, we can extend this concept to

H(r)
n =

n∑
k=1

1

kr
,

which we may designate by rth harmonic number, where H
(1)
n = Hn.

The harmonic spectrum of An is

SpecH(An) = {σ1, σ2, . . . , σn},

where σ1 > σ2 > · · · > σn are the eigenvalues of An, arranged in non-
increasing order. Sometimes we use σ (= σ1) to denote the largest eigenvalue
of An. For example, the 5× 5 harmonic matrix is

A5 =


0 1 1/2 1/3 1/4
1 0 1 1/2 1/3

1/2 1 0 1 1/2
1/3 1/2 1 0 1
1/4 1/3 1/2 1 0

 .

The eigenvalues of A5 are:

2.61684, 0.303284, −0.560813, −1.05328, −1.30603 .

Another surprising application of the harmonic matrix is related to the
study of the invertibility of the Foldy-Lax algebraic systems associated to
both homogeneous and nonhomogeneous. The matrix commonly considered
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(cf. e.g. [2, 3, 4]) is

B =



1
C1

Φκ(z1, z2) Φκ(z1, z3) · · · Φκ(z1, zn)

Φκ(z1, z2) 1
C2

Φκ(z2, z3)
. . .

...

Φκ(z1, z3) Φκ(z2, z3) 1
C3

. . . Φκ(zn−2, zn)
...

. . .
. . .

. . . Φκ(zn−1, zn)
Φκ(z1, zn) · · · Φκ(zn−2, zn) Φκ(zn−1, zn) 1

Cn


,

(0.2)
where the fundamental solution, Φ(x, y), of the Helmholtz equation in R3 with
the fixed wave number κ is given by

Φ(x, y) =
eiκ|x−y|

4π|x− y|
, for all x, y ∈ R3,

and Ck’s are coefficients based on surfaces area and impedance. There are
some known sufficient conditions for the invertibility of B, but not necessary
[2, 3, 4]. Inverting B in general seems a hard problem. So, we normally want
find a way to compute the inverse of B as much generality as possible or
eventually find necessary and sufficient conditions for its invertibility. If one
considers the case where the distance between the centers of the consecutive
scatterers is the same, i.e., distributing the scatterers in a uniform array, and
the capacitances of the scatterers are also the same, i.e., the Ck’s are equal,
then B is symmetric Toeplitz matrix, but not circulant. These considerations
lead us, for κ = 0, to the matrices of the form

Anr =



0 1
r

1
2r · · · 1

(n−1)r

1
r 0 1

r

. . .
...

1
2r

1
r 0

. . . 1
2r

...
. . .

. . .
. . . 1

r
1

(n−1)r · · · 1
2r

1
r 0


, (0.3)

Finally, for r = 1 we get the harmonic matrix (0.1).
Our aim is to establish several new results on the spectra of the harmonic

matrices. It would be interesting to analyze in particular what happens in the
case of the more general matrices (0.3).

1 Known bounds

In this section we present several known bounds applied to the harmonic ma-
trix (0.1). The first theorem is a general result.
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Lemma 1.1. [8, Theorem 8.1.22] Let A = (Ai,j) be an n × n irreducible

nonnegative matrix with spectral radius σ and let Ri(A) =
n∑
j=1

ai,j be the ith

row sum of A. Then

min{Ri(A) : 1 6 i 6 n} 6 σ 6 max{Ri(A) : 1 6 i 6 n} . (1.1)

Moreover, if the row sums of A are not all equal, then the both inequalities in
(1.1) are strict.

For A5, we have 2.08333 < σ < 3.
From the bounds produced in [14] we have

σ 6
3n− 4

4

if n is even, and

σ 6
n− 2 +

√
4n2 − 3

4

otherwise. For the case of A5, the bound is 3.21221. From the same reference,
we have

σ 6
3n− 6 +

√
17n2 + 28n+ 4

8
,

if n is even, and

σ 6
3n− 5 +

√
17n2 + 34n− 15

8
,

otherwise. For A5, the bound is 4.2604.
The bounds found by Zhou and Trinajstić in [15] give us√∑n

i=1R
2
i

n
< σ < max

i

n∑
j=1

hij

√
Rj
Ri

.

In the current example we get 2.59754 < σ < 2.77698. Another bound from
these authors is 3− 4

n < σ. Here, we have 2.2 < σ.
The first author in [6] established the bound

σ 6

√
n2 + 4n− 8

2
.

For n = 5, we get σ < 3.04138.
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2 New bounds

We now give an upper bound for the spectral radius of the harmonic matrix
An.

Theorem 2.1. For the harmonic matrix An, we have

σ(An) <


n

100 + 8.356 + 2
n if n is even,

n
100 + 8.366 if n is odd.

Proof. By Lemma 1.1, we have

σ(An) <


2

(
1 +

1

2
+

1

3
+ · · ·+ 2

n− 2

)
+

2

n
if n is even,

2

(
1 +

1

2
+

1

3
+ · · ·+ 2

n− 1

)
if n is odd,

that is

σ(An) <


2Hp−1 +

1

p
if n = 2p,

2Hp if n = 2p+ 1.

(2.1)

One can easily get that

1 +
1

2
+

1

3
+ · · ·+ 1

100
< 5.18738 .

Using the above result, we have

2

(
1 +

1

2
+

1

3
+ · · ·+ 2

n− 1

)
< 2

[(
1 +

1

2
+

1

3
+ · · ·+ 1

100

)
+

1

100
×

(
n− 1

2
− 100

)]

< 2

[
5.188 +

n− 201

200

]

=
n

100
+ 8.366.

Similarly,

2

(
1 +

1

2
+

1

3
+ · · ·+ 2

n− 1

)
+

2

n
<

n

100
+ 8.356 +

2

n
.

This completes the proof.
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We now give a lower bound on σ(An).

Theorem 2.2. Let An be an n× n matrix defined in (0.1). Then

σ(An) >

√√√√ 2

n

n−1∑
i=1

n− i
i2

. (2.2)

Proof. We have

tr(A2
n) = 2

[
n− 1 +

n− 2

22
+
n− 3

32
+ · · ·+ 2

(n− 2)2
+

1

(n− 1)2

]

=2n

(
1 +

1

22
+

1

32
+ · · ·+ 1

(n− 1)2

)
− 2

(
1 +

1

2
+

1

3
+ · · ·+ 1

(n− 1)

)

= 2

n−1∑
i=1

n− i
i2

.

Therefore we have

nσ2(An) > tr (A2
n) = 2

n−1∑
i=1

n− i
i2

,

which gives the required result.

Lemma 2.3. Let An be the harmonic matrix of order n. If Y is a subset of
{2, 3, . . . , n}, then

∑
i∈Y

σ2
i (AN ) 6

2(n− 1)

n

n−1∑
i=1

n− i
i2

.

Proof. We have ∑
i∈Y

σ2
i (An) 6

n∑
i=1

σ2
i (An)− σ2

1(An) . (2.3)

Since
n∑
i=1

σ2
i (An) = tr(A2

n) = 2

n−1∑
i=1

n− i
i2

,

by Theorem 2.2 with (2.3), we get the required result.
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Theorem 2.4. Let An be the harmonic matrix of order n. If σk(An) 6 0, for
2 6 k 6 n, then

|σk(An)| 6

√
2(n− 1)

n (n− k + 1)

√√√√n−1∑
i=1

n− i
i2

.

Proof. Since σ(An) > σ2(An) > · · · > σn(An), one can see easily that

(n−k+1)σ2
k(An) 6

n∑
i=k

σ2
i (An) 6

n∑
i=2

σ2
i (An) 6

2(n− 1)

n

n−1∑
i=1

n− i
i2

, for k > 2.

Hence the theorem follows.

Corollary 2.5. Let An be the harmonic matrix of order n. Then

|σn(An)| 6
√

2(n− 1)

n
·

√√√√n−1∑
i=1

n− i
i2

.

Proof. By Theorem 2.4, we get the required result.

Gregory et al. [7, Theorem 2.1] obtained the spread of the spectrum of the
adjacency matrix of graph G. Using the same technique, we give an upper
bound for σ − σn. We omit its proof.

Theorem 2.6. Let An be the harmonic matrix of order n and precisely k
negative eigenvalues. Then

σ − σn 6

(
1 +

1

k

)
σ +

√√√√2

(
1− 1

k

) n−1∑
i=1

n− i
i2
−
(

1− 1

k2

)
σ2. (2.4)

Notice that all our news bounds are significantly better and useful for larger
orders n.
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