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A note on composition (m,n)-hyperrings

Morteza Norouzi and Irina Cristea

Abstract

Based on the concepts of composition ring and composition hyper-
ring, in this note we introduce the notion of composition structure
for (m,n)-hyperrings and study the connections with composition hy-
perrings. Moreover we show that particular strong endomorphisms of
(m,n)-hyperrings can determine the composition structure of a such
(m,n)-hyperrings. Finally, the three isomorphism theorems are pre-
sented in the case of composition (m,n)-hyperrings, showing that they
are not a pure extension of those for composition hyperrings.

1 Introduction

Today one area of big interest for researchers working on algebraic hyperstruc-
tures is represented by the n-ary hyperstructures, since it has been proved they
have many applications to computer science, coding theory, topology, combina-
torics and quantum physic [9]. They are a generalization of classical algebraic
hyperstructures, with a lot of applications in Euclidean and non Euclidean ge-
ometries, graphs and hypergraphs, binary relations, lattices, automata, cryp-
tography, coding theory, artificial intelligence, probabilities, chemistry and so
on (for more details see [3], [4], [9], [23]).

One type of these n-ary algebraic hyperstructures is represented by (m,n)-
hyperrings, based on the notion of n-ary hypergroups, introduced by Davvaz
and Vougiouklis [11] as a generalization of the concept of hypergroups, defined
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by Marty [17] in 1934, and a generalization of n-ary groups, defined by Dörnte
[12] in 1928. On the other hand, they can be seen as an extension of (m,n)-
rings [5], [6] in the framework of hyperstructure theory. Many applications of
n-ary hypergroups and (m,n)-hyperrings were established and studied in con-
nection with hyperideals [2], fundamental relations [8], [19], or binary relations
[15], [16], [18].

Adler’s paper [9] on composition rings after 50 years has opened a new
line of research in the hyperrings framework. In the first work on this topic,
Cristea and Jančić-Rašović [7] defined and studied the composition hyperrings,
emphasizing their interesting properties in relation with endomorphisms of hy-
perrings. This work can be extended to other two directions: the first one,
the topic of this note, deals with composition (m,n)-hyperrings, while the
second one (subject investigated in [21]) with n-ary composition hyperrings,
i.e. hyperrings endowed with a composition, that is an n-ary hyperopera-
tion. Combining both directions, one can obtained the so called composition
(m,n, k)-hyperrings. They are (m,n)-hyperrings with a k-ary hyperoperation
called composition. This general case was recently considered and investi-
gated by Davvaz et al. [10], but just from the perspective of isomorphism
theorems. Even if the above mentioned article was published after we fin-
ished to write our two manuscripts (the current one and the submitted one
[21]), for a better understanding of the subject, we prefer to divide our work
into two parts: composition (m,n)-hyperrings (studied in the current note),
that are (m,n, 2)-hyperrings, and n-ary composition hyperrings [21], that are
(2, 2, n)-hyperrings, using the notation in [10]. In our opinion, the termi-
nology composition (m,n, k)-hyperrings doesn’t reflect at the first sight the
algebraic structure of the considered hyperrings, in the sense that they are
(m,n)-hyperrings endowed with a k-ary composition hyperoperation.

Motivated by these aspects, in Section 2 we recall some basic concepts
concerning n-ary hyperstructures necessary for our proposes. In Section 3 we
give several examples illustrating our definition and investigate connections
between composition (m,n)-hyperrings and composition hyperrings. Besides,
we show how composition (m,n)-hyperrings can be determined by endomor-
phisms of (m,n)-hyperrings. Finally, for the completeness of the study, Section
4 is dedicated to the presentation of the three isomorphism theorems of com-
position (m,n)-hyperrings, as a particular case of those stated in [10]. Several
integrative lemmas are included. We conclude the paper with some remarks
connecting the papers already written on this argument and with some pro-
posals of future work.
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2 Preliminaries

A mapping f : H × · · · ×H︸ ︷︷ ︸
n

−→ P∗(H) is called an n-ary hyperoperation,

where P∗(H) is the set of all the nonempty subsets of H. An algebraic system
(H, f), where f is an n-ary hyperoperation defined on H, is called an n-
ary hypergroupoid.

The sequence xi, xi+1, . . . , xj will be denoted by xji . For j < i, xji is the
empty set. Using this notation,

f(x1, . . . , xi, yi+1, . . . , yj , zj+1, . . . , zn)

will be written as f(xi1, y
j
i+1, z

n
j+1). In the case when yi+1 = · · · = yj = y the

last expression will be written f(xi1, y
(j−i), znj+1).

If f is an n-ary hyperoperation and t = l(n− 1) + 1, for some l ≥ 0, then
t-ary hyperoperation f

(l)
is given by

f
(l)

(x
l(n−1)+1
1 ) = f

(
f
(
. . . , f

(
f︸ ︷︷ ︸

l

(xn1 ), x2n−1
n+1

)
, . . .

)
, x
l(n−1)+1
(l−1)(n−1)+1

)
.

For nonempty subsets A1, . . . , An of H we define

f(An1 ) = f(A1, . . . , An) =
⋃
{f(xn1 ) | xi ∈ Ai, i = 1, . . . , n}.

An n-ary hyperoperation f is called associative if

f
(
xi−1

1 , f(xn+i−1
i ), x2n−1

n+i

)
= f

(
xj−1

1 , f(xn+j−1
j ), x2n−1

n+j

)
,

holds, for every 1 ≤ i < j ≤ n and all x1, x2, . . . , x2n−1 ∈ H. An n-
ary hypergroupoid with the associative n-ary hyperoperation is called an n-
ary semihypergroup.

An n-ary hypergroupoid (H, f) in which the equation b ∈ f(ai−1
1 , xi, a

n
i+1)

has a solution xi ∈ H, for every ai−1
1 , ani+1, b ∈ H and 1 ≤ i ≤ n, is called

an n-ary quasihypergroup. If (H, f) is an n-ary semihypergroup and an n-
ary quasihypergroup, then it is called an n-ary hypergroup. An n-ary hyper-
groupoid (H, f) is commutative if, for all σ ∈ Sn and for every an1 ∈ H, we have
f(a1, . . . , an) = f(aσ(1), . . . , aσ(n)). If an1 ∈ H then we denote (aσ(1), . . . , aσ(n))

by a
σ(n)
σ(1) .

Definition 2.1. ([18]) Let (H, f) be an n-ary hypergroup and B a nonempty
subset of H. B is called an n-ary subhypergroup of (H, f), if f(xn1 ) ⊆ B, for
all xn1 ∈ B, and the equation b ∈ f(bi−1

1 , xi, b
n
i+1) has a solution xi ∈ B, for all

bi−1
1 , bni+1, b ∈ B and 1 ≤ i ≤ n.
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Definition 2.2. ([18]) Let (H, f) be a commutative n-ary hypergroup. (H, f)
is called a canonical n-ary hypergroup, if

(1) there exists a unique e ∈ H, such that, for every x ∈ H, f(x, en−1) =
{x};

(2) for all x ∈ H, there exists a unique x−1 ∈ H, such that e ∈ f(x, x−1, en−2);

(3) if x ∈ f(xn1 ), then, for all 1 ≤ i ≤ n, we have the following relation
xi ∈ f(x, x−1, . . . , x−1

i−1, x
−1
i+1, . . . , x

−1
n ).

Definition 2.3. ([18]) An (m,n)-hyperring is an algebraic hyperstructure
(R, f, g) which satisfies the following axioms:

(1) (R, f) is an m-ary hypergroup.

(2) (R, g) is an n-ary semihypergroup.

(3) The n-ary hyperoperation g is distributive with respect to the m-ary
hyperoperation f , i.e., for all ai−1

1 , ani+1, x
m
1 ∈ R, and 1 ≤ i ≤ n,

g
(
ai−1

1 , f(xm1 ), ani+1

)
= f

(
g(ai−1

1 , x1, a
n
i+1), . . . , g(ai−1

1 , xm, a
n
i+1)

)
.

A nonempty subset S of R is called an (m,n)-subhyperring, if (S, f, g) is
an (m,n)-hyperring. Let i ∈ {1, . . . , n}. An i-hyperideal I of R is an (m,n)-
subhyperring of R such that g(xi−1

1 , I, xni+1) ⊆ I, for every xn1 ∈ R. I is called
a hyperideal, if I is an i-hyperideal, for all 1 ≤ i ≤ n.

Example 2.4. Consider the set of all integers, Z, with the hyperoperations
defined as x⊕y = {x, y, x+y} and x⊗y = {x ·y}, for all x, y ∈ Z, where “+”
and “·” are ordinary addition and multiplication. Then it is routine to see that

(Z,⊕,⊗) is a hyperring. For xm1 , y
n
1 ∈ Z, set g(yn1 ) =

n⊗
i=1

yi = {
n∏
j=1

yj} and

f(xm1 ) =

m⊕
i=1

xi =
{
xm1 , xi1 + xi2 , ... , xi1 + xi2 + · · ·+ xim

}
such that i1, i2, ..., im are different natural numbers from 1 to m. Then, (Z, f, g)
is an (m,n)-hyperring.

Let (R, f, g) and (T, f ′, g′) be two (m,n)-hyperrings. A map φ : R −→ T
is called a homomorphism from R to T if, for all xm1 , y

n
1 ∈ R, the following

conditions are valid:
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1.
⋃
u∈f(xm

1 ) φ(u) ⊆ f ′
(
φ(x1), . . . , φ(xm)

)
2.
⋃
v∈g(yn1 ) φ(v) ⊆ g′

(
φ(y1), . . . , φ(yn)

)
If the equalities are valid in the above conditions, then φ is called a strong
homomorphism. A homomorphism from R to R is called endomorphism of
R. If φ1 and φ2 are endomorphisms on a hyperring R, then their composition
φ1 ◦ φ2, defined by (φ1 ◦ φ2)(x) =

⋃
a∈φ2(x) φ1(a), is also an endomorphism on

R.

3 Composition (m,n)-hyperrings

In this section, we introduce the composition (m,n)-hyperrings and give sev-
eral examples of them. Using the terminology in [10], they are composition
(m,n, 2)-hyperrings. Besides, connections between composition hyperrings
and composition (m,n)-hyperrings are established and investigated. In partic-
ular, we show how composition (m,n)-hyperrings can be determined by their
particular endomorphisms.

Definition 3.1. An algebraic hyperstructure (R, f, g, ◦) is called a composi-
tion (m,n)-hyperring if the following statements are satisfied.

(1) (R, f, g) is a commutative (m,n)-hyperring.

(2) (R, ◦) is a semihypergroup.

(3) For all xm1 , y
n
1 , z ∈ R, the following properties hold:

f(xm1 )◦ z = f(x1 ◦ z, . . . , xm ◦ z) and g(yn1 )◦ z = g(y1 ◦ z, . . . , yn ◦ z).

Remark 3.2. For m = n = 2 we get that (R, f, g, ◦) is a composition hyper-
ring, defined in [7]. For this reason throughout this paper, when we talk about
a composition (m,n)-hyperring we intend (m,n) 6= (2, 2).

Let (R, f, g, ◦) be a composition (m,n)-hyperring. An element c ∈ R is
called a constant, if c ◦ x = c, for all x ∈ R. If A is an arbitrary subset of R,
the set of all constants in A is called a foundation of A, denoted by Found(A).

The next theorem presents a method to construct a composition (m,n)-
hyperring from a composition hyperring.

Theorem 3.3. (Construction theorem) Every composition hyperring leads
to a composition (m,n)-hyperring.
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Proof. Let (R,+, ·, ◦) be a composition hyperring. For xm1 , y
n
1 ∈ R, define

f(xm1 ) =

m∑
i=1

xi and g(yn1 ) =

n∏
j=1

yj .

Since (R,+, ·, ◦) is a composition hyperring, it is not difficult to see that the
three assertions of Definition 3.1 are valid for (R, f, g, ◦).

An (m,n)-hyperring (R, f, g) is called Krasner, if (R, f) is a canonical m-
ary hypergroup and (R, g) is an n-ary semigroup with the absorbing element 0,
such that g(xi−1

1 , 0, xni+1) = 0, for all xn1 ∈ R (see [18]). Under this hypothesis
we obtain the following theorem.

Theorem 3.4. Let (R, f, g, ◦) be a composition (m,n)-hyperring such that
(R, f, g) is a Krasner (m,n)-hyperring. Then, (R, f, g, ◦) will derive a compo-
sition (2, n)-hyperring.

Proof. Define x+ y = f
(
x, y, 0(m−2)

)
, for every x, y ∈ R. It is clear that ” + ”

is commutative and associative. Also, 0 is a scalar neutral and a zero element
of (R,+, g, ◦). It is easy to see that the n-ary operation g is distributive with
respect to the hyperoperation ” + ”. Therefore (R,+, g, ◦) is a composition
(2, n)-hyperring.

We present here several examples, illustrating the given definitions and
results.

Example 3.5. Let (R,+, ·) be a commutative hyperring. Consider

R[[x]] = {(a0, a1, . . . , an, . . .) | ai ∈ R},

the set of all infinite sequences (a0, a1, . . . , an, . . .) with coefficients in R, with
the following hyperoperations:

(a0, a1, . . ., an, . . .)⊕ (b0, b1, . . ., bn, . . .)=
{

(c0, c1, . . ., cn, . . .) | ck ∈ ak + bk

}
(a0, a1, . . ., an, . . .)�(b0, b1, . . ., bn, . . .) =

{
(c0, c1, . . ., cn, . . .) | ck∈

∑
i+j=k

aibj

}
.

By [7], (R[[x]],⊕,�) is a hyperring, and also if there exists 0 ∈ R such that
0 + 0 = {0} and a · 0 = {0}, for all a ∈ R, then (R[x],⊕,�) is a subhyperring
of R[[x]], where

R[x]={(a0, a1, . . ., an, . . .) ∈ R[[x]] | ai = 0 except a finite number of indices i}
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is a subhyperring of R[[x]]. Also, consider the hyperoperation ” ◦ ” as follows:

h ◦ l = a0 ⊕ (a1 � l)⊕ . . .⊕ (an � ln),

where h = (a0, a1, . . . , an, . . .) ∈ R[x] such that ak = 0, for all k ≥ n + 1,
and l ∈ R[x] and also (ai, 0, . . . , 0, . . .) is denoted by short by ai. Then by [7],
(R[x],⊕,�, ◦) is a composition hyperring. Now, define the following m-ary
and n-ary hyperoperations on R[[x]]:

f
(

(a01, a11, . . ., an1, . . .), . . ., (a0m, a1m, . . ., anm, . . .)
)

=

m⊕
i=1

(a0i, a1i, . . ., ani, . . .)

g
(

(a01, a11, . . ., an1, . . .), . . ., (a0n, a1n, . . ., ann, . . .)
)

=

n⊙
j=1

(a0j , a1j , . . ., anj , . . .)

Hence, by Theorem 3.3, (R, f, g, ◦) is a composition (m,n)-hyperring with
Found(R[x]) = R.

Example 3.6. Let (R, f, g) be a commutative (m,n)-hyperring. Consider
the set R[[x]] in Example 3.5, and for (a0j , a1j , . . . , atj , . . .) ∈ R[[x]] such
that 1 ≤ j ≤ m,n, define the following m-ary and n-ary hyperoperations:
(Notice that hereafter, for brevity, a sequence of elements of R[[x]] such as
”(a01, a11, . . . , at1, . . .), . . . , (a0m, a1m, . . . , atm, . . .)” is denoted, for all m ∈ N,
by (a0, a1, . . . , at, . . .)

m
1 .)

F
(

(a0, a1, . . . , at, . . .)
m
1

)
=
{

(c0, c1, . . . , ct, . . .) | ck ∈ f(ak1, ak2, . . . , akm)
}

G
(

(a0, a1, . . . , at, . . .)
n
1

)
=
{

(d0, d1, . . . , dt, . . .) | dk ∈ f(k)

(
g(ai11, . . . , ainn)(z))},

where i1 + . . . + in = k and z = k(m − 1) + 1. Then, it is routine to verify
that (R[[x]], F,G) is an (m,n)-hyperring. Also, if there exists 0 ∈ R such that

f(ai, 0
(m−1)) = {ai} and g(ai−1

1 , 0, ani+1) = {0},

for all an1 ∈ R, then it can be seen that

R[x] =
{

(a0, a1, . . . , at, . . .) | ∃t such that ∀k ≥ t+ 1, ak = 0
}

is an (m,n)-subhyperring of R[[x]]. Now, suppose there exists 1 ∈ R such that,

for every a ∈ R, we have g(a, 1
(n−1)
R ) = {a}. Take h = (a0, a1, . . . , at, . . .) ∈

R[x] such that ak = 0, for all k ≥ t+1, and l ∈ R[x]. Define the hyperoperation
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” ∗ ” as follows: (the sequence (r, 0, 0, . . . , 0, . . .) is denoted by ”r”)

h∗l =



F
(
a0, G(a1, l, 1

(n−2)
R ), . . ., G

(
at, G(l(t), 1

(n−t)
R ), 1

(n−2)
R

)
, 0(m−t)

)
, if t < m, n

F(k)

(
a0, G(a1, l, 1

(n−2)
R ), . . ., G

(
at, G(k′)(l

(t)), 1
(n−2)
R

))
, if t > m, n

F(k)

(
a0, G(a1, l, 1

(n−2)
R ), . . ., G

(
at, G(l(t), 1

(n−t)
R ), 1

(n−2)
R

))
, if m < t < n

F
(
a0, G(a1, l, 1

(n−2)
R ), . . ., G

(
at, G(k′)(l

(t)), 1
(n−2)
R

))
, if n < t < m

such that t = k(m− 1) + 1 and t = k′(n− 1) + 1. Let t > m, n. Then{
(a0, a1, . . . , at, . . .)

}
=
{

(c0, c1, . . . , ct, . . .) | ci ∈ {ai}
}

=
{

(c0, c1, . . . , ct, . . .) | ci ∈ f(k)(ai, 0
(t−1))

}
= F(k)

(
(a0, 0, . . ., 0, . . .), (0, a1, 0, . . ., 0, . . .), . . ., (0, 0, . . ., 0, at, 0, . . .)

)
,

also, for all i ∈ {0, 1, ..., t}, we have

F
(

(0, . . . , 0, ai, 0, . . .)
m
1

)
=
{

(0, . . . , 0, ci, 0, . . .) | ci ∈ f(aim
i1 )
}

= (0, . . . , 0, f(aim
i1 ), 0, . . .).

Hence,

F
(
(a0, . . . , at, . . .)

m
1

)
= F

({
(a01, . . . , at1, . . .)

}
, . . . ,

{
(a0m, . . . , atm, . . .)

})
= F

(
F(k)

(
(a01, 0, . . .), . . . , (0, . . . , 0, at1, . . .)

)
, . . . , F(k)

(
(a0m, 0, . . .), ..., (0, . . . , 0, atm, . . .)

))
= F(k)

(
F
(
(a0, 0, . . .)

m
1

)
, . . . , F

(
(0, . . . , 0, at, 0, . . .)

m
1

))
= F(k)

(
(f(a0m

01 ), 0, . . .), . . . , (0, . . . , 0, f(atm
t1 ), . . .)

)
=
(
f(a0m

01 ), . . . , f(atm
t1 ), . . .

)
.

Therefore, for t > m, n such that in all sequences (a0, . . . , at, . . .)
m
1 ∈ R[x], for
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k ≥ t+ 1 and 1 ≤ i ≤ m, aki = 0, and l ∈ R[x] we have

F
(
(a0, . . . , at, . . .)

m
1

)
∗ l =

(
f(a0m

01 ), . . . , f(atm
t1 ), . . .

)
∗ l

= F(k)

(
f(a0m

01 ), G(f(a1m
11 ), l, 1

(n−2)
R ), . . . , G

(
f(atm

t1 ), G(k′)(l
(t)), 1

(n−2)
R

))
= F(k)

(
F
(
(a01, 0, . . .), . . . , (a0m, 0, . . .)

)
, G(F

(
(a11, 0, . . .), . . . , (a1m, 0, . . .)

)
, l, 1

(n−2)
R ),

. . . , G
(
F
(
(at1, 0, . . .), . . . , (atm, 0, . . .)

)
, G(k′)(l

(t)), 1
(n−2)
R

))
= F(k)

(
F (a0m

01 ), F
(
G
(
a11, l, 1

(n−2)
R

)
, . . . , G

(
a1m, l, 1

(n−2)
R

))
, . . . ,

F
(
G
(
at1, G(k′)(l

(t)), 1
(n−2)
R

)
, . . . , G

(
atm, G(k′)(l

(t)), 1
(n−2)
R

)))
= F

(
F(k)

(
a01, G

(
a11, l, 1

(n−2)
R

)
, . . . , G

(
at1, G(k′)(l

(t)), 1
(n−2)
R

))
, . . . ,

F(k)

(
a0m, G

(
a1m, l, 1

(n−2)
R

)
, . . . , G

(
atm, G(k′)(l

(t)), 1
(n−2)
R

)))
= F

(
(a01, a11, . . . , at1, . . .) ∗ l, . . . , (a0m, a1m, . . . , atm, . . .) ∗ l

)
.

Similarly, the related relation is valid also for ”G”. Moreover, we can show
that the assertion (3) of Definition 3.1 is valid for other conditions of the
definition of the hyperoperation ” ∗ ” and the other types of sequences in R[x].
Besides, for h = (a0, a1, . . . , at, . . .) ∈ R[x] such that t > m, n, and ak = 0 for

k ≥ t+ 1, and l, b ∈ R[x], we have G(0, b, 1
(n−2)
R ) = {0}, and so

1R ∗ b = (1R, 0, . . . , 0, . . .) ∗ b

= F(k)

(
1R, G

(
0, b, 1

(n−2)
R

)
, ..., G

(
0, G(k′)(b

(t)), 1
(n−2)
R

))
= F(k)

(
(1R, 0, . . . , 0, . . .), (0, . . . , 0, . . .)

(t−1))
=
{

(c0, c1, . . . , cd, . . .) | c0 ∈ f(k)(1R, 0
(t−1)), c1 ∈ f(k)(0

(t)), . . . , cd ∈ f(k)(0
(t))
}

=
{

(1R, 0, . . . , 0, . . .)
}

= {1R}.

Hence, for a ∈ R we have a ∗ b = (a, 0, . . . , 0, . . .) ∗ b = {a}. Thus, by validity
of assertion (3) of Definition 3.1, we conclude that

(h ∗ l) ∗ b =
(
F(k)

(
a0, G

(
a1, l, 1

(n−2)
R

)
, . . . , G

(
at, G(k′)(l

(t)), 1
(n−2)
R

)))
∗ b =

F(k)

(
a0 ∗ b,G

(
a1 ∗ b, l ∗ b, (1R ∗ b)(n−2)

)
, . . ., G

(
at ∗ b,G(k′)((l ∗ b)(t)), (1R ∗ b)(n−2)

))
= F(k)

(
a0, G

(
a1, l ∗ b, 1(n−2)

R

)
, . . . , G

(
at, G(k′)((l ∗ b)(t)), 1

(n−2)
R

))
= h ∗ (l ∗ b).

Therefore, (R[x], ∗) is a semihypergroup. It implies that (R[x], F,G, ∗) is a
composition (m,n)-hyperring.

Example 3.7. Let (R, f, g) be an arbitrary commutative (m,n)-hyperring and
” ◦ ” be defined by r ◦ s = {r}, for all r, s ∈ R. Then it is not difficult to verify
that (R, f, g, ◦) is a composition (m,n)-hyperring with Found(R) = R.
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In the following, we study the relationship between a composition (m,n)-
hyperring and a certain class of its strong endomorphisms. This is another
method to define composition (m,n)-hyperrings.

Theorem 3.8. Let (R, f, g, ◦) be a composition hyperring. For any element
y ∈ R, the function Φy : R −→ P∗(R) defined by Φy(x) = x◦y, for all x ∈ R, is
a strong endomorphism of the hyperring R. Moreover, for a nonempty subset
M of R, set ΦM (x) =

⋃
m∈M Φm(x), for all x ∈ R. Then we have

ΦΦx(y)(z) =
⋃

t∈Φy(z)

Φx(t), ∀x, y, z ∈ R. (1)

Proof. Let (R, f, g, ◦) be a composition (m,n)-hyperring and let y ∈ R. By
the definition of the function Φy, for all a, b ∈ R, we have

Φy(f(xm1 )) =
⋃

u∈f(xm
1 )

Φy(u) =
⋃

u∈f(xm
1 )

u ◦ y

= f(xm1 ) ◦ y
= f(x1 ◦ y, . . . , xm ◦ y)

= f(Φy(x1), . . . ,Φy(xm)).

Similarly, we have Φy(g(yn1 )) = g(Φy(y1), . . . ,Φy(yn)). Thus, Φy is a strong
endomorphism of the (m,n)-hyperring (R, f, g). Moreover, for all x, y, z ∈ R,
we have

ΦΦx(y)(z) =
⋃

s∈y◦x

Φs(z) =
⋃

s∈y◦x

z◦s = z◦(y◦x) = (z◦y)◦x =
⋃

t∈z◦y

t◦x =
⋃

t∈Φy(z)

Φx(t).

Theorem 3.9. Let (R, f, g) be a commutative (m,n)-hyperring and (Φy)y∈R
a family of its strong endomorphisms satisfying the equation

ΦΦx(y)(z) =
⋃

t∈Φy(z)

Φx(t),

for all x, y, z ∈ R. Define the hyperoperation ” ◦ ” as x ◦ y = Φy(x), for every
x, y ∈ R. Then (R, f, g, ◦) is a composition (m,n)-hyperring.

Proof. By assumption, for xm1 ∈ R, we have

f(xm
1 ) ◦ y =

⋃
u∈f(xm

1 )

u ◦ y =
⋃

u∈f(xm
1 )

Φy(u) = Φy(f(xm
1 )) = f(x1 ◦ y, . . . , xm ◦ y).
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Similarly, g(yn1 ) ◦ y = f(y1 ◦ y, . . . , yn ◦ y), for yn1 ∈ R. Also,

(x◦y)◦z=
⋃

s∈Φy(x)

s◦z=
⋃

s∈Φy(x)

Φz(s)=ΦΦz(y)(x)=
⋃

u∈Φz(y)

Φu(x)=
⋃

u∈y◦z

x◦u=x◦(y◦z).

Thus, (R, ◦) is a semihypergroup and so (R, f, g, ◦) is a composition (m,n)-
hyperring.

In the following, we determine conditions under which a family of endo-
morphisms of an (m,n)-hyperring generates the class (Φy)y∈R satisfying the
conditions in Theorems 3.8 and 3.9.

Let Ω be a family of endomorphisms of an (m,n)-hyperring (R, f, g). For
any y ∈ R, denote Py =

⋃
Φ∈Ω Φ(y). The set Py is called the orbit of y. An

orbit P is said to be principal if, for all x ∈ P and Φ1,Φ2 ∈ Ω, it holds:

Φ1(x) ∩ Φ2(x) 6= ∅ =⇒ Φ1 = Φ2.

Let (R, f, g) be a commutative (m,n)-hyperring and f(a, 0(m−1)) = {a}
for all a ∈ R.

Lemma 3.10. Let Ω be a family of strong endomorphisms of an (m,n)-
hyperring (R, f, g), such that:

(1) Φ1◦Φ2 ∈ Ω, for all Φ1,Φ2 ∈ Ω, where Φ1◦Φ2 is defined by: (Φ1◦Φ2)(x) =⋃
v∈Φ2(x) Φ1(v).

(2) Φ(0) = 0, for all Φ ∈ Ω.

(3) For all x, y ∈ R it holds:

Φ ∈ Ω and x ∈ Φ(y) =⇒ ∃Φ1 ∈ Ω such that y ∈ Φ1(x).

Then Ω induces a partition of the set Ω(R) =
⋃

Φ∈Ω,r∈R Φ(r) into orbits.

Proof. The proof is similar to the proof of Lemma 3.7 in [7] for composition
hyperrings.

Notice that, if the family Ω satisfies the three conditions of the previous
lemma and if Ω has at least two elements, then, for any principal orbit P , it
holds 0 /∈ P .

Let Ω be a family of strong endomorphisms of an (m,n)-hyperring (R, f, g)
satisfying conditions of Lemma 3.10. Also, let S be a nonempty set of principal
orbits with 0 /∈ S and for each P ∈ S, let ap be an element of P . Under these
hypotheses, we get the following result.
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Theorem 3.11. Let for each y ∈ R, the endomorphism Φy : R −→ P∗(R) be
defined as follows:

Φy(x) =

{
Φ(x), if ∃P ∈ S such that y ∈ P and Φ ∈ Ω, with y ∈ Φ(ap)
0, if ∀P ∈ S, y 6∈ P

Then

(1) the family (Φy)y∈R satisfies the relation ΦΦx(y)(z) =
⋃
t∈Φy(z) Φx(t), for

all x, y, z ∈ R;

(2) this family generates a composition hyperoperation on R.

Proof. (1) See the proof of Theorem 3.8 in [7].
(2) For all x, y ∈ R, define x ◦ y = Φy(x). Then by Theorem 3.9 and assertion
(1), we conclude that (R, f, g, ◦) is a composition (m,n)-hyperring.

Example 3.12. Let (R,+, ·) be the field of real numbers and A = {2q | q ∈
Q}. Define the hyperoperations ⊕A and �A on R as x ⊕A y = xA + yA
and x �A y = xAy. By Example 3.10 in [7], (R,⊕A,�A) is a commutative
hyperring. Now, we define the m-ary and n-ary hyperoperations ”f” and ”g”
on R as follows:

f(xm1 ) = x1 ⊕A . . .⊕A xm and g(yn1 ) = y1 �A . . .�A yn,

such that xm1 , y
n
1 ∈ R. Then, it is easy to see that (R, f, g) is a commutative

(m,n)-hyperring. Now, similar to Example 3.10 in [7], define two functions
h : R −→ P∗(R) and l : R −→ P∗(R) by h(x) = A · x = {2q · x | q ∈ Q} and
l(x) = −A·x = {−2q ·x | q ∈ Q}. Obviously, h and l are strong endomorphisms
of (R, f, g). Also, h ◦ h = l ◦ l = h and h ◦ l = l ◦ h = l. If x ∈ h(y), then
x = 2qy, for some q ∈ Q, and so y = 2−qx ∈ Ax = h(x). Similarly, x ∈ l(y)
implies that y ∈ l(x). Obviously h(0) = 0 and l(0) = 0. Let Ω = {h, l}. It is
easy to verify that Ω satisfies conditions of Lemma 3.10.

Besides, for any y ∈ R, its orbit has the form Py = h(y)∪ l(y) = {±2q · y |
q ∈ Q}.

If y 6= 0, then Py is a principal orbit, since, for any x ∈ Py, it holds
h(x)∩l(x) = ∅, because 2Qx∩(−2Qx) = ∅. Thus, by Theorem 3.11, each family
S of principal orbits generates corresponding composition hyperoperation on R.
For instance, if S = {Pn | n ∈ N}, then, for y ∈

⋃
n∈N Pn and y > 0, we put

Φy = h and, for y < 0, we put Φy = l. If y /∈
⋃
n∈N Pn, then Φy = 0. Thus,

the corresponding hyperoperation is defined by:

x ◦ y =


A · x if y ∈ A · N,
−A · x if y ∈ −A · N,
0 otherwise.
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4 Isomorphism theorems of composition (m,n)-hyperrings

One of the main argument regarding the algebraic (hyper)structures concerns
the three isomorphism theorems. As we have already mentioned in the first
section, they represent the topic of the paper [10], presented in the general
case, when the composition hyperoperation defined on the (m,n)-hyperrings
is a k-ary hyperoperation. It worth to mention that they are not just a simple
generalization of the similar theorems for composition hyperrings, since they
need supplementary assumptions stated in the following lemmas, that are not
clearly mentioned in [10]. Based on these considerations, in this section we
omit the proofs of the isomorphism theorems, except the second one (which is
slight different by the second isomorphism theorem in [10]), insisting on the
proofs of the lemmas that are fundamental in proving the theorems.

Throughout this section, (R, f, g, ◦) is a composition (m,n)-hyperring, such
that (R, f) is a canonical n-ary hypergroup and g(xi−1

1 , 0, xni+1) = {0}, for all
xn1 ∈ R.

Like in the classical case, we need to define the concept of hyperideal in a
such particular hyperring, called composition hyperideal. If 0 ◦ x = {0} for all
x ∈ R, then it is a so called composition (m,n, 2)-hyperideal, defined in [10].

Definition 4.1. The nonempty subset I of a composition (m,n)-hyperring
(R, f, g, ◦) is called a composition hyperideal, if the following conditions are
valid.

(1) I is a hyperideal of the (m,n)-hyperring (R, f, g).

(2) n ◦ r ⊆ N , for all n ∈ I and r ∈ R.

(3) For r, s, t ∈ R and f(r,−s, 0(m−2)) ∩ I 6= ∅, it holds that

f(t ◦ r,−t ◦ s, 0(m−2)) ⊆ I.

Moreover, if I is an i-hyperideal of (R, f, g), then we say that I is a com-
position i-hyperideal of R, for i ∈ {1, . . . , n}.

Let I be a composition hyperideal of R. Consider the following relation on
R:

xρy ⇐⇒ f(x, I, 0(m−2)) = f(y, I, 0(m−2)).

It is easy to see that ρ is an equivalence on R and the equivalence class rep-
resented by x is [x]ρ = f(x, I, 0(m−2)). Let R/I = {f(x, I, 0(m−2)) | x ∈ R}
be the set of all equivalence classes of the elements of R with respect to the
equivalence relation ρ.
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Lemma 4.2. Let (R, f, g, ◦) be a composition (m,n)-hyperring and I a compo-
sition hyperideal of R. Define the hyperoperations F,G,} on R/I as follows:

F
(
f(x1, I, 0

(m−2)), . . . , f(xm, I, 0
(m−2))

)
= {f(z, I, 0(m−2)) | z ∈ f(xm1 )}

G
(
g(y1, I, 0

(m−2)), . . . , g(yn, I, 0
(m−2))

)
= {f(c, I, 0(m−2)) | c ∈ g(yn1 )}

f(x, I, 0(m−2)) } f(y, I, 0(m−2)) = {f(z, I, 0(m−2)) | z ∈ x ◦ y}.

Then (R/I, F,G,}) is a composition (m,n)-hyperring, called the quotient
composition (m,n)-hyperring related to the equivalence relation ρ.

Proof. It is routine to check the validity of conditions of a composition (m,n)-
hyperring for (R/I, F,G,}), since (R, f, g, ◦) is a composition (m,n)-hyperring.
Hence, it remains to prove only that the hyperoperations F , G and } are
well-defined on R. Let f(xi, I, 0

(m−2)) = f(yi, I, 0
(m−2)), for xi, yi ∈ R

and 1 ≤ i ≤ m,n. Set L = F
(
f(x1, I, 0

(m−2)), . . . , f(xm, I, 0(m−2))
)

and D =

F
(
f(y1, I, 0

(m−2)), . . . , f(ym, I, 0(m−2))
)
. Let f(z, I, 0(m−2)) ∈ L. Since z ∈

f(xm1 ), this implies that

z ∈ f(z, 0(m−1))

⊆ f(z, I, 0(m−2))

⊆ f
(
f(xm1 ), I, 0(m−2)

)
= f

(
f(xm1 ), f(I(m)), f(0(m))(m−2)

)
= f

(
f(x1, I, 0

(m−2)), . . . , f(xm, I, 0
(m−2))

)
= f

(
f(y1, I, 0

(m−2)), . . . , f(ym, I, 0
(m−2))

)
= f

(
f(ym1 ), f(I(m)), f(0(m))(m−2)

)
= f

(
f(ym1 ), I, 0(m−2)

)
,

then there exist z′ ∈ f(ym1 ) and n ∈ I such that z ∈ f(z′, n, 0(m−2)). There-
fore,

f(z, I, 0(m−2)) ⊆ f
(
f(z′, n, 0(m−2)), I, 0(m−2)

)
= f

(
z′, f(n, I, 0(m−2)), 0(m−2)

)
⊆ f(z′, I, 0(m−2)).

Also, since (R, f) is canonical, then z ∈ f(z′, n, 0(m−2)) implies that z′ ∈
f(z,−n, 0(m−2)), and so similarly f(z′, I, 0(m−2)) ⊆ f(z, I, 0(m−2)). Thus,
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f(z, I, 0(m−2)) = f(z′, I, 0(m−2)) such that z′ ∈ f(ym1 ). Therefore, L ⊆ D.
Similarly, it can be proved that D ⊆ L.
Now, set

L = G
(
f(x1, I, 0

(m−2)), . . . , f(xn, I, 0
(m−2))

)
,

D = G
(
f(y1, I, 0

(m−2)), . . . , f(yn, I, 0
(m−2))

)
.

As before, z ∈ g(xn1 ) implies that

z ∈ g
(
f(y1, I, 0

(m−2)), . . . , f(yn, I, 0
(m−2))

)
= f

(
g(yn1 ), I, 0(m−2))

)
.

Hence, for z′ ∈ g(yn1 ) we can conclude that f(z, I, 0(m−2)) = f(z′, I, 0(m−2)) ∈
D. Then L ⊆ D and similarly we have D ⊆ L.
Now, suppose that L = f(x1, I, 0

(m−2)) } f(x2, I, 0
(m−2)) = {f(z, I, 0(m−2)) | z ∈

x1 ◦ x2} and D = f(y1, I, 0
(m−2))} f(y2, I, 0

(m−2)) = {f(z, I, 0(m−2)) | z ∈ y1 ◦ y2}.
Since (R, f) is canonical and x2 ∈ f(x2, I, 0

(m−2)) = f(y2, I, 0
(m−2)), then for

n ∈ I, we have n ∈ f(x2,−y2, 0
(m−2)). Hence, f(x2,−y2, 0

(m−2)) ∩ I 6= ∅.
Since I is a composition hyperideal, we have f(x1 ◦ x2,−x1 ◦ y2, 0

(m−2)) ⊆ I,
and so

x1 ◦ x2 ⊆ f(x1 ◦ x2, 0
(m−1))

⊆ f
(
x1 ◦ x2, f(x1 ◦ y2,−x1 ◦ y2, 0

(m−2)), 0(m−2)
)

= f
(
x1 ◦ y2, f(x1 ◦ x2,−x1 ◦ y2, 0

(m−2)), 0(m−2)
)

⊆ f(x1 ◦ y2, I, 0
(m−2)).

Since x1 ∈ f(y1, I, 0
(m−2)), there exists n′ ∈ I such that x1 ∈ f(y1, n

′, 0(m−2)).
Thus

x1 ◦ x2 ⊆ f(x1 ◦ y2, I, 0
(m−2))

⊆ f
(
f(y1, n

′, 0(m−2)) ◦ y2, I, 0
(m−2)

)
= f

(
f
(
y1 ◦ y2, n

′ ◦ y2, (0 ◦ y2)(m−2)
)
, I, 0(m−2)

)
⊆ f

(
f
(
y1 ◦ y2, I, I

(m−2)
)
, I, 0(m−2)

)
= f

(
y1 ◦ y2, f(I(m)), 0(m−2)

)
= f(y1 ◦ y2, I, 0

(m−2)).

Hence, z ∈ x1 ◦ x2 implies that there exists z′ ∈ y1 ◦ y2 such that z ∈
f(z′, I, 0(m−2)), that is, f(z, I, 0(m−2)) = f(z′, I, 0(m−2)). Then L ⊆ D. Simi-
larly we have D ⊆ L.
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Definition 4.3. A mapping h : R1 −→ R2 is called a strong homomorphism
of composition (m,n)-hyperrings (R1, f1, g1, ◦1) and (R2, f2, g2, ◦2), if, for all
xm1 , y

n
1 , x, y ∈ R1 , the following conditions are valid:

(1) h
(
f1(xm1 )

)
= f2

(
h(x1), . . . , h(xm)

)
;

(2) h
(
g1(yn1 )

)
= g2

(
h(y1), . . . , h(yn)

)
;

(3) h(x ◦1 y) = h(x) ◦2 h(y);

(4) h(0) = 0.

We say that h is an isomorphism, if h is one to one and onto, and write
R1
∼= R2 if R1 is isomorphic with R2. Also, if h is a strong homomorphism

from R1 into R2, then, for all x ∈ R1, we have f(−x) = −f(x). Moreover, let
kerh = {x ∈ R1 | h(x) = 0}, which is a hyperideal of R1, but generally it is
not a composition (m,n)-hyperideal.

Theorem 4.4. Let (R1, f1, g1, ◦1) and (R2, f2, g2, ◦2) be two composition (m,n)-
hyperrings. If h : R1 −→ R2 is a strong homomorphism such that kerh = H
is a composition hyperideal of R1, then R1/H ∼= Imh.

Proof. It is the particular case of Theorem 3.8 [10], for k = 2.

Lemma 4.5. Let Am1 be composition hyperideals of a composition (m,n)-
hyperring(R, f, g, ◦). Then

(1) Ai is a composition hyperideal of f(Am1 ), for every 1 ≤ i ≤ m.

(2) (f(Am1 ), f, g, ◦) is a composition (m,n)-hyperring.

(3) If the hyperideal {0} of (R, f, g) is composition, then f(Ai−1
1 , 0, Ami+1)∩Ai

is a composition hyperideal of f(Ai−1
1 , 0, Ami+1), for 1 ≤ i ≤ m.

(4)

m⋂
i=1

Ai is a composition hyperideal of R.

Proof. (1) For every 1 ≤ i ≤ m, we have Ai = f(Ai, 0
(m−1)) ⊆ f(Am1 ). Also,

for all am1 ∈ Ai we have f(am1 ) ⊆ Ai (since every Ai is a hyperideal). Moreover,
for every xn1 ∈ f(Am1 ), there exist a1m

11 , . . . , a
nm
n1 ∈ Am1 such that xi ∈ f(aimi1 ),

for all 1 ≤ i ≤ n. Hence,

g(xi−1
1 , Ai, x

n
i+1) ⊆ g

(
f(a1m

11 ), . . . , f(a
(i−1)m
(i−1)1 ), f(Am1 ), f(a

(i+1)m
(i+1)1 ), . . . , f(anmn1 )

)
⊆ g
(
f(Am1 )(n)

)
⊆ f(Am1 ),
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since f(Am1 ) is a hyperideal by [18]. Thus, Ai is a hyperideal of f(Am1 ).
Moreover, for every a ∈ Ai and x ∈ f(am1 ) ⊆ f(Am1 ), we have

x ◦ a ⊆ f(am1 ) ◦ a = f(a ◦ a1, . . . , a ◦ am) ⊆ Ai,

since Ai is a composition hyperideal, for all 1 ≤ i ≤ m. In addition, for r, s, t ∈
f(Am1 ), if f(r,−s, 0(m−2))∩Ai 6= ∅, then we have f(t ◦ r,−t ◦ s, 0(m−2)) ⊆ Ai,
since f(Am1 ) ⊆ R and Ai is a composition hyperideal of R. Therefore, Ai is a
composition hyperideal of f(Am1 ), for all 1 ≤ i ≤ m, by Definition 4.1.
(2) Since Am1 and f(Am1 ) are hyperideals of R, it is routine to verify that
(f(Am1 ), f, g) is an (m,n)-subhyperring of (R, f, g). Also, for every x, y ∈
f(Am1 ) there exist ai, bi ∈ Ai, for 1 ≤ i ≤ m, such that x ∈ f(am1 ) and
y ∈ f(bm1 ). Hence, we have

x◦y ⊆ f(am1 )◦f(bm1 ) =
⋃

s∈f(bm1 )

f(am1 )◦s =
⋃

s∈f(bm1 )

f(a1◦s, . . . , am◦s) ⊆ f(Am1 ),

since Am1 are composition hyperideals. Thus, f(Am1 ) ◦ f(Am1 ) ⊆ f(Am1 ) and
also assertion (3) of Definition 3.1 is clearly valid. Hence, f(Am1 ) is a composi-
tion (m,n)-subhyperring of R, meaning that (f(Am1 ), f, g, ◦) is a composition
(m,n)-hyperring.
(3) Since f(Ai−1

1 , 0, Ami+1) and Ai are hyperideals of R, then f(Ai−1
1 , 0, Ami+1)∩

Ai is a hyperideal of R and also is a hyperideal of f(Ai−1
1 , 0, Ami+1). Now, let

x ∈ f(Ai−1
1 , 0, Ami+1) and n ∈ f(Ai−1

1 , 0, Ami+1)∩Ai. Then n ∈ f(Ai−1
1 , 0, Ami+1),

and so by (2) we have

n ◦ x ⊆ f(Ai−1
1 , 0, Ami+1) ◦ f(Ai−1

1 , 0, Ami+1) ⊆ f(Ai−1
1 , 0, Ami+1).

For r, s, t ∈ f(Ai−1
1 , 0, Am

i+1) such that f(r,−s, 0(m−2))∩(f(Ai−1
1 , 0, Am

i+1)∩Ai) 6= ∅,
we have

f(t ◦ r,−t ◦ s, 0(m−2)) ⊆ f
(
f(Ai−1

1 , 0, Am
i+1) ◦ r,−f(Ai−1

1 , 0, Am
i+1) ◦ s, 0(m−2)

)
= f

(
f(Ai−1

1 ◦ r, 0 ◦ r,Am
i+1 ◦ r),−f(Ai−1

1 ◦ s, 0 ◦ s,Am
i+1 ◦ s), 0(m−2)

)
⊆ f

(
f(Ai−1

1 , 0, Am
i+1),−f(Ai−1

1 , 0, Am
i+1), 0(m−2)

)
⊆ f(Ai−1

1 , 0, Am
i+1),

since Am1 , {0} are composition hyperideals and f(Ai−1
1 , 0, Ami+1) is hyperideal.

Also, f(r,−s, 0(m−2))∩
(
f(Ai−1

1 , 0, Am
i+1)∩Ai

)
6= ∅ implies that f(r,−s, 0(m−2))∩

Ai 6= ∅. Since Ai is composition hyperideal, then f(t ◦ r,−t ◦ s, 0(m−2)) ⊆ Ai.
Therefore,

f(t ◦ r,−t ◦ s, 0(m−2)) ⊆ f(Ai−1
1 , 0, Ami+1) ∩Ai.
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Consequently, we obtain that f(Ai−1
1 , 0, Ami+1)∩Ai is a composition hyperideal

of f(Ai−1
1 , 0, Ami+1).

Since Am1 are composition hyperideals, the proof of (4) is straightforward.

We say that a hyperideal A of a composition (m,n)-hyperring (R, f, g, ◦)
is normal, if f(r,A,−r, 0(m−3)) ⊆ A, for all r ∈ R. Also, we recall Lemma
4.6 from [18], for the reader convenience, in the classical case, for composition
(m,n)-hyperrings.

Lemma 4.6. Let A be a normal hyperideal of a composition (m,n)-hyperring
(R, f, g, ◦). Then, for all a ∈ f(am1 ) and am1 ∈ R, we have

f(a,A, 0(m−2)) = f
(
f(am1 ), A, 0(m−2)

)
.

Proof. The proof is similar to proof of Lemma 4.6 in [18].

Theorem 4.7. If Am1 and {0} are normal composition hyperideals of a com-
position (m,n)-hyperring (R, f, g, ◦), then

f(Ai−1
1 , 0, Ami+1)/f(Ai−1

1 , 0, Ami+1) ∩Ai ∼= f(Am1 )/Ai.

Proof. Define h : f(Ai−1
1 , 0, Ami+1) −→ f(Am1 )/Ai by h(a) = f(a,Ai, 0

(m−2)).

It is clear that h is well-defined. For am1 ∈ f(Ai−1
1 , 0, Ami+1), we have

h
(
f(am1 )

)
=
{
h(x) | x ∈ f(am1 )

}
=
{
f(x,Ai, 0

(m−2)) | x ∈ f(am1 )
}

= F
(
f(a1, Ai, 0

(m−2)), . . . , f(am, Ai, 0
(m−2))

)
= F

(
h(a1), . . . , h(am)

)
.

Similarly, h
(
g(bn1 )

)
= G

(
h(b1), . . . , h(bn)

)
and h(a ◦ b) = f(a,Ai, 0

(m−2)) }
f(b, Ai, 0

(m−2)), for a, b, am1 , b
n
1 ∈ R. Also, h(0) = f(0, Ai, 0

(m−2)) = Ai =
0f(Am

1 )/Ai
. Hence, by Lemma 4.5, ”h” is a homomorphism of composition

(m,n)-hyperrings. Now, let f(a,Ai, 0
(m−2)) ∈ f(Am1 )/Ai such that a ∈ f(Am1 ).

Then, for every 1 ≤ i ≤ m, there exists ai ∈ Ai such that a ∈ f(am1 ). Since
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Ai is a normal hyperideal, by Lemma 4.6, we have

f(a,Ai, 0
(m−2)) = f

(
f(am1 ), Ai, 0

(m−2)
)

= f
(
ai−1

1 , f(ai, Ai, 0
(m−2)), ami+1

)
= f(ai−1

1 , Ai, a
m
i+1)

= f
(
ai−1

1 , f(Ai, 0
(m−1)), ami+1

)
= f

(
f(ai−1

1 , 0, ami+1), Ai, 0
(m−2)

)
= f(x,Ai, 0

(m−2)) (∀x ∈ f(ai−1
1 , 0, ami+1))

= h(x).

This implies that h is onto. Also, for any x ∈ f(Ai−1
1 , 0, Ami+1), by

x ∈ kerh⇐⇒ h(x) = Ai

⇐⇒ f(x,Ai, 0
(m−2)) = Ai

⇐⇒ x ∈ Ai

we have kerh = f(Ai−1
1 , 0, Ami+1)∩Ai which by Lemma 4.5 (3), is a composition

hyperideal of f(Ai−1
1 , 0, Ami+1). Consequently, by Theorem 4.4, the proof is

complete.

Remark 4.8. We included the proof of the second isomorphism theorem in
order to better emphasize the fact that the function ”h” is onto.

Remark 4.9. According with [20] and [22], if I is a normal hyperideal of
the (m,n)-hyperring (R, f, g), then F and G defined in Lemma 4.2 are m-
ary and n-ary operations, respectively. Moreover, the composition hyperoper-
ation defined on the quocient R/I is an operation. Therefore, in this case,
(R/I, F,G,}) is a composition (m,n)-ring, a natural generalization of com-
position ring. Theorem 4.7 is satisfied in such conditions.

Lemma 4.10. If A and B are composition hyperideals of (R, f, g, ◦) such that
A ⊆ B, then B/A is a composition hyperideal of R/A.

Proof. Since, A is a composition hyperideal of B, then (B/A,F,G) is a hyper-
ideal of (R/A,F,G) by Lemma 4.2. Let consider f(x,A, 0(m−2)) ∈ B/A and
f(y,A, 0(m−2)) ∈ R/A such that x ∈ B and y ∈ R. Since, B is composition
hyperideal, we have

f(x,A, 0(m−2)) } f(y,A, 0(m−2)) = {f(t, A, 0(m−2)) | t ∈ x ◦ y}
⊆ {f(t, A, 0(m−2)) | t ∈ B}
= B/A.
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Now, suppose that f(x,A, 0(m−2)), f(y,A, 0(m−2)), f(t, A, 0(m−2)) ∈ R/A. If

F
(
f(x,A, 0(m−2)),−f(y,A, 0(m−2)), 0

(m−2)
R/A

)
∩B/A 6= ∅,

then we have f(t ◦ x,−t ◦ y, 0(m−2)) ⊆ B, since B is composition hyperideal.
Hence

F
(
f(t, A, 0(m−2)) } f(x,A, 0(m−2)),−f(t, A, 0(m−2)) } f(y,A, 0(m−2)), 0

(m−2)

R/A

)
= F

(
{f(z,A, 0(m−2)) | z ∈ t ◦ x},−{f(c, A, 0(m−2)) | c ∈ t ◦ y}, 0(m−2)

R/A

)
=

⋃
z∈t◦x, c∈t◦y

F
(
f(z,A, 0(m−2)),−f(c, A, 0(m−2)), 0

(m−2)

R/A

)
=

⋃
z∈t◦x, c∈t◦y

{
f(d,A, 0(m−2)) | d ∈ f(z,−c, 0(m−2))

}
⊆
{
f(d,A, 0(m−2)) | d ∈ f(t ◦ x,−t ◦ y, 0(m−2))

}
⊆
{
f(d,A, 0(m−2)) | d ∈ B

}
= B/A.

Therefore, B/A is a composition hyperideal of R/A.

Theorem 4.11. Let A and B be composition hyperideals of a composition
(m,n)-hyperring (R, f, g, ◦) such that A ⊆ B. Then (R/A)/(B/A) ∼= R/B.

Proof. It is the particular case of Theorem 3.10 [10], for k = 2.

5 Conclusions and future work

Based on the notion of composition rings [1] and taking into account the
properties of the hyperrings of polynomials [13], a new type of hyperrings,
called composition hyperrings, has been introduced in [7]. Following the same
idea, in this note we have investigated the properties of composition (m,n)-
hyperrings, emphasizing the relations between them and the composition hy-
perrings, connection illustrated by several examples. Furthermore, conditions
for constructing a composition hyperoperation on (m,n)-hyperrings using par-
ticular endomorphisms of such hyperrings have been established.

On the other side, considering on an (m,n)-hyperring a composition k-ary
hyperoperation, one obtains the so called composition (m,n, k)-hyperrings,
recently studied in [10]. So the composition (m,n)-hyperrings are composition
(m,n, 2)-hyperrings, using the terminology in [10]. In the same paper, the
authors stated and proved the three isomorphism theorems for the composition
(m,n, k)-hyperrings, and for this reason, in Section 4, we omit the proofs of
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the similar theorems for composition (m,n)-hyperrings. We stress the fact
that Section 4 in this note is not a repetition of the work in [10], but an
integration; we have insisted more on the lemmas that assure the conditions
for the isomorphism theorems.

The study can be continued in more directions. One is already considered
in the submitted paper [21], where we extend this work to the case of n-ary
composition hyperrings. Another one concerns the prime, primary and maxi-
mal hyperideals in composition (m,n)-hyperrings. Besides one can define and
investigate the fuzzy substructures of composition (m,n)-hyperrings.
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