

A Fixed Point in Partial S_b -Metric Spaces

Nizar Souayah

Abstract

In this paper, we introduce an interesting extention of the partial b-metric spaces called partial S_b -metric spaces, and we show the existence of fixed point for a self mapping defined on such spaces.

1 Introduction

There exist many generalizations of the concept of metric spaces in the literature. Several papers have been published on the fixed point theory in S-metric spaces [7], [8], [9], [13], and [14]. Also, fixed point results in b-metric spaces were also studied by many authors [1], [2], [3], [4], [5] and [15].

In this work, we consider a new concept of S-metric spaces called partial S_b -metric spaces, which is an extension of the S-metric spaces, by allowing the self distance to be different from zero. We extend the results obtained by Shukla [15] in partial b-metric spaces, and we prove theorems for some contractive type mapping.

First we would like to point out three errors in the proof of Theorem 1 (on page 5) in [15]. The equation $b(Fz,Fx_l)=\lambda^{n_0}b(z,x_l)$ must be an inequality. Also, the inequality $b(Fz,x_l)\leq s[b(Fz,Fx_l)+b(Fx_l,x_l)]-b(x_l,x_l)$, should instead be written as $b(Fz,x_l)\leq s[b(Fz,Fx_l)+b(Fx_l,x_l)]-b(Fx_l,Fx_l)$. The author used a wrong argument to show that $\{x_n\}$ is Cauchy sequence by mentioning that since $x_n\in B[x_l,\frac{\epsilon}{2}]$ and $x_m\in B[x_l,\frac{\epsilon}{2}]$, then $b(x_n,x_m)<\frac{\epsilon}{2}+b(x_l,x_l)$ for all n,m>l. We suggest using the contraction principle after

Key Words: functional analysis, partial S_b -metric space, fixed point. 2010 Mathematics Subject Classification: Primary 54H25, 47H10.

Received: 09.02.2016 Accepted: 16.02.2016 showing that $Fz \in B[x_l, \frac{\epsilon}{2}].$

Let us recall the definitions of the b-metric spaces and the partial b-metric spaces.

Definition 1.1. [2] Let X be a nonempty set. A b-metric on X is a function $d: X^2 \to [0, \infty)$ if there exists a real number $s \ge 1$ such that the following conditions hold for all $x, y, z \in X$:

- (i) d(x,y) = 0 if and only if x = y
- (ii) d(x, y) = d(y, x)
- (iii) $d(x,z) \le s[d(x,y) + d(y,z)].$

The pair (X, d) is called a *b*-metric space.

Definition 1.2. [15] A partial b-metric on a nonempty set X is a function $b: X^2 \to [0, \infty)$ such that for all $x, y, z \in X:$:

- (i) x = y if and only if b(x, x) = b(x, y) = b(y, y)
- (ii) $b(x,x) \le b(x,y)$
- (iii) b(x,y) = b(y,x)
- (iv) there exists a real number $s \ge 1$ such that $b(x,y) \le s[b(x,z) + b(z,y)] b(z,z)$.

The partial b-metric space is a pair (X, b) such that X is a nonempty set and b is a partial b-metric on X.

Definition 1.3. A partial S_b -metric on a empty set X is a function S_b : $X^3 \longrightarrow \mathbb{R}_+$ such that for all $x, y, z, t \in X$:

- (i) x = y = z if and only if $S_b(x, x, x) = S_b(y, y, y) = S_b(z, z, z) = S_b(x, y, z)$
- (ii) $S_b(x, x, x) \le S_b(x, y, z)$
- (iii) $S_b(x, x, y) = S_b(y, y, x)$
- (iv) there exists $s \ge 1$ such that

$$S_b(x, y, z) \le s [S_b(x, x, t) + S_b(y, y, t) + S_b(z, z, t)] - S_b(t, t, t).$$

 (X, S_b) is then called a partial S_b -metric space.

Definition 1.4. Let (X, S_b) be a partial S_b -metric space and $\{x_n\}$ be a sequence in X. Then:

- 1. $\{x_n\}$ is called convergent if and only if there exists $z \in X$ such that $S_b(x_n, x_n, z) \longrightarrow S_b(z, z, z)$ as $n \to \infty$.
- 2. $\{x_n\}$ is said to be Cauchy sequence in (X, S_b) if $\lim_{n \to \infty} S_b(x_n, x_n, x_m)$ exists and finite.
- 3. (X, S_b) is a complete partial S_b -metric space if for every Cauchy sequence $\{x_n\}$ there exists $x \in X$ such that:

$$\lim_{n \to \infty} S_b(x_n, x_n, x_m) = \lim_{n \to \infty} S_b(x_n, x_n, x) = S_b(x, x, x).$$

Now, we give an example of a partial S_b -metric space that is not a partial S-metric space.

Example 1.5. Let $X = \mathbb{R}_+$, and p > 1 be a constant and $S_b : X \times X \times X \longrightarrow \mathbb{R}_+$ defined by $S_b(x,y,z) = [max\{x,y\}]^p + |max\{x,y\} - z|^p$ for all $x,y,z \in X$. Then (X,S_b) is a partial S_b -metric space with coefficient s=2p>1, but it is not a partial S-metric space. Indeed, for x=5,y=2,z=1,t=4 we have $S_b(x,y,z) = 5^p + 4^p$ and $S_b(x,x,t) + S_b(y,y,t) + S_b(z,z,t) - S_b(t,t,t) = 5^p + 1 + 3^p + 1 + 1 + 3^p - 4^p = 5^p + 2 \times 3^p + 3 - 4^p$, hence $S_b(x,y,z) > S_b(x,x,t) + S_b(y,y,t) + S_b(z,z,t) - S_b(t,t,t)$ for all p > 1; therefore, S_b is not a partial S-metric on X.

2 Main result

Theorem 2.1. Let (X, S_b) be a complete partial S_b -metric space with coefficient $s \ge 1$ and $T: X \longrightarrow X$ be a mapping satisfying the following condition:

$$S_b(Tx, Ty, Tz) \le \lambda S_b(x, y, z) \quad \forall x, y, z \in X, \quad \lambda \in [0, 1). \tag{2.1}$$

Then, T has a unique fixed point $u \in X$ and $S_b(u, u, u) = 0$.

Proof. Let's start by proving the uniqueness of the fixed point. Let $u, v \in X$ be two distinct fixed point of T, that is, Tu = u and Tv = v. We have

$$S_b(u, u, v) = S_b(Tu, Tu, Tv) < \lambda S_b(u, u, v) < S_b(u, u, v).$$

So, we must have $S_b(u, u, v) = 0 \Longrightarrow u = v$. Therefore, if T has a fixed point, then it is unique.

Let prove that $S_b(u, u, u) = 0$. Suppose that $S_b(u, u, u) > 0$. From equation (2.1),

$$S_b(u, u, u) = S_b(Tu, Tu, Tu) \le \lambda S_b(u, u, u) < S_b(u, u, u),$$

which leads to a contradiction, then $S_b(u, u, u) = 0$.

For the existence of fixed point, since $\lambda \in [0, 1)$, we can choose $n_0 \in \mathbb{N}$ such that for given $0 < \epsilon < 1$, we have

$$\lambda^{n_0} < \frac{\epsilon}{8s}.\tag{2.2}$$

Let $T^{n_0} \equiv F$ and $Fx_0^k = x_k \ \forall k \in \mathbb{N}$, where $x_0 \in X$ is arbitrary. Then, $\forall x, y \in X$ we have

$$S_b(Fx, Fy, Fz) = S_b(T^{n_0}x, T^{n_0}y, T^{n_0}z) \le \lambda^{n_0}S_b(x, y, z).$$

For any $k \in \mathbb{N}$, we have

$$S_b(x_{k+1}, x_{k+1}, x_k) = S_b(Fx_k, Fx_k, Fx_{k-1}) \leq \lambda^{n_0} S_b(x_k, x_k, x_{k-1})$$

$$\leq \lambda^{n_0} k S_b(x_1, x_1, x_0) \longrightarrow 0 \text{ as } k \to +\infty.$$

Therefore, we can choose $l \in \mathbb{N}$ such that $S_b(x_{l+1}, x_{l+1}, x_l) < \frac{\epsilon}{8s}$.(*) Let's define the ball

$$B_b(x_l, \frac{\epsilon}{2}) := \{ y \in X / S_b(x_l, x_l, y) < \frac{\epsilon}{2} + S_b(x_l, x_l, x_l) \}$$
 (2.3)

Now, we shall show that F maps $B_b(x_l, \frac{\epsilon}{2})$ into itself. We have $B_b(x_l, \frac{\epsilon}{2}) \neq \emptyset$ since $x_l \in B_b(x_l, \frac{\epsilon}{2})$. Let $x_z \in B_b(x_l, \frac{\epsilon}{2})$, then

$$S_{b}(Fx_{z}, Fx_{z}, Fx_{l}) \leq \lambda^{n_{0}} S_{b}(x_{z}, x_{z}, x_{l})$$

$$\leq \frac{\epsilon}{8s} S_{b}(x_{z}, x_{z}, x_{l})$$

$$\leq \frac{\epsilon}{8s} \left[\frac{\epsilon}{2} + S_{b}(x_{l}, x_{l}, x_{l})\right]$$

$$\leq \frac{\epsilon}{8s} [1 + S_{b}(x_{l}, x_{l}, x_{l})]. \tag{2.4}$$

Using the definition of the partial S_b -metric space, we obtain

$$S_{b}(Fx_{z}, Fx_{l}, Fx_{l}) \leq s[S_{b}(Fx_{z}, Fx_{z}, Fx_{l}) + S_{b}(Fx_{l}, Fx_{l}, Fx_{l}) + S_{b}(Fx_{l}, Fx_{l}, Fx_{l}, Fx_{l})]$$

$$- S_{b}(Fx_{l}, Fx_{l}, Fx_{l})$$

$$\leq s[\frac{\epsilon}{8s}(1 + S_{b}(x_{l}, x_{l}, x_{l})) + 2S_{b}(x_{l}, x_{l}, Fx_{l})]$$

$$\leq s[\frac{\epsilon}{8s}(1 + S_{b}(x_{l}, x_{l}, x_{l})) + 2S_{b}(x_{l}, x_{l}, x_{l+1})]$$

$$\leq s[\frac{\epsilon}{8s}(1 + S_{b}(x_{l}, x_{l}, x_{l})) + 2\frac{\epsilon}{8s}]$$

$$\leq \frac{\epsilon}{8} + \frac{\epsilon}{8}S_{b}(x_{l}, x_{l}, x_{l}) + \frac{\epsilon}{4}$$

$$\leq \frac{3\epsilon}{8} + \frac{\epsilon}{8}S_{b}(x_{l}, x_{l}, x_{l})$$

$$\leq \frac{\epsilon}{2} + S_{b}(x_{l}, x_{l}, x_{l}).$$

Then, $Fx_z \in B_b(x_l, \frac{\epsilon}{2})$. Thus F maps $B_b(x_l, \frac{\epsilon}{2})$ to itself. We note that $x_l \in B_b(x_l, \frac{\epsilon}{2})$, therefore $Fx_l \in B_b(x_l, \frac{\epsilon}{2})$. By repeating this process, we obtain $F^nx_l \in B_b(x_l, \frac{\epsilon}{2}) \ \forall n \in \mathbb{N}$, that is $x_m \in B_b(x_l, \frac{\epsilon}{2}) \ \forall m \geq l$. Therefore, we obtain for all $m > n \geq l$; let $n = l + i \Longrightarrow i = n - l$

$$S_{b}(x_{n}, x_{n}, x_{m}) = S_{b}(Tx_{n-1}, Tx_{n-1}, Tx_{m-1})$$

$$\leq \lambda S_{b}(x_{n-1}, x_{n-1}, x_{m-1})$$

$$\leq \lambda^{2} S_{b}(x_{n-2}, x_{n-2}, x_{m-2})$$

$$\vdots$$

$$\leq \lambda^{i} S_{b}(x_{l}, x_{l}, x_{m-l})$$

$$< S_{b}(x_{l}, x_{l}, x_{m-l})$$

$$< \frac{\epsilon}{2} + S_{b}(x_{l}, x_{l}, x_{l}).$$

But, $S_b(x_l, x_l, x_l) < S_b(x_l, x_l, x_{l+1}) < \frac{\epsilon}{8s}$. Hence,

$$S_b(x_n, x_n, x_m) < \frac{\epsilon}{2} + \frac{\epsilon}{8s} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus, $\{x_n\}$ is a Cauchy sequence.

Since X is a complete partial S_b -metric sapce, there exists $u \in X$ such that:

$$\lim_{n \to \infty} S_b(x_n, x_n, u) = \lim_{n \to \infty} S_b(x_n, x_n, x_m) = S_b(u, u, u) = 0.$$

Let's prove that u is a fixed point of T. For all $n \in \mathbb{N}$, we have

$$S_{b}(u, u, Tu) \leq s[S_{b}(u, u, x_{n+1}) + S_{b}(u, u, x_{n+1}) + S_{b}(Tu, Tu, x_{n+1})]$$

$$-S_{b}(x_{n+1}, x_{n+1}, x_{n+1})$$

$$\leq s[2S_{b}(u, u, x_{n+1}) + S_{b}(Tu, Tu, Tx_{n})]$$

$$\leq s[2S_{b}(u, u, x_{n+1}) + S_{b}(Tu, Tu, Tx_{n})]$$

$$\leq s[2S_{b}(u, u, x_{n+1}) + \lambda S_{b}(u, u, x_{n})]$$

$$\leq (2sS_{b}(u, u, x_{n+1}) + s\lambda S_{b}(u, u, x_{n})) \to 0 \text{ as } n \to \infty.$$

Thus, $S_b(u, u, Tu) = 0$, that is Tu = u. Hence, u is a unique fixed point of T.

Theorem 2.2. Let (X, S_b) be a complete partial S_b -metric space with coefficient $s \ge 1$ and $T: X \longrightarrow X$ be a mapping satisfying the following condition:

$$S_b(Tx, Ty, Tz) \le \lambda [S_b(x, x, Tx) + S_b(y, y, Ty) + S_b(z, z, Tz)] \quad \forall x, y, z \in X.$$
(2.5)

where $\lambda \in [0, \frac{1}{3})$, $\lambda \neq \frac{1}{3s}$ Then, T has a unique fixed point $u \in X$ and $S_b(u, u, u) = 0$.

Proof. We first prove the uniqueness of the fixed point of T if it has. We must show that, if $u \in X$ is a fixed point of T, that is Tu = u then $S_b(u, u, u) = 0$.

From (2.5), we obtain

$$S_b(u, u, u) = S_b(Tu, Tu, Tu) \leq \lambda [S_b(u, u, Tu) + S_b(u, u, Tu) + S_b(u, u, Tu)]$$

$$= 3\lambda S_b(u, u, Tu) \text{ since } \lambda \in [0, \frac{1}{3}), \text{ we have}$$

$$< S_b(u, u, u),$$

which implies that we must have $S_b(u, u, u) = 0$

Suppose $u, v \in X$ be two fixed point, that is Tu = u and Tv = v. Then we have $S_b(u, u, u) = S_b(v, v, v) = 0$.

Equation (2.5) gives

$$S_{b}(u, u, v) = S_{b}(Tu, Tu, Tv)$$

$$\leq \lambda[S_{b}(u, u, Tu) + S_{b}(u, u, Tu) + S_{b}(v, v, Tv)]$$

$$= 2\lambda S_{b}(u, u, u) + \lambda S_{b}(v, v, v)$$

$$= 0.$$

Therefore, u = v. Thereby, the uniqueness of the fixed point if it exists.

For the existence of the fixed point, let $x_0 \in X$ arbitrary, set $x_n = T^n x_0$ and $S_{b_n} = S(x_n, x_n, x_{n+1})$.

We can assume $S_{b_n} > 0$ for all $n \in \mathbb{N}$ otherwise x_n is a fixed point of T for at least one $n \geq 0$. For all n, we obtain from (2.5)

$$\begin{split} S_{b_n} &= S_b(x_n, x_n, x_{n+1}) = S_b(Tx_{n-1}, Tx_{n-1}, Tx_n) \\ &\leq \lambda[2S_b(x_{n-1}, x_{n-1}, Tx_{n-1}) + S_b(x_n, x_n, Tx_n)] \\ &= \lambda[2S_b(x_{n-1}, x_{n-1}, x_n) + S_b(x_n, x_n, x_{n+1})] \\ &= \lambda[2S_{b_{n-1}} + S_{b_n}]. \end{split}$$

Therefore $(1 - \lambda)S_{b_n} \leq 2\lambda S_{b_{n-1}}$. Thus

$$S_{b_n} \le \frac{2\lambda}{1-\lambda} S_{b_{n-1}}, \quad \lambda \in [0, \frac{1}{3}).$$
 (2.6)

Let $\beta = \frac{2\lambda}{1-\lambda} < 1$. By repeating this process we obtain

$$S_{b_n} \leq \beta^n b_0.$$

Therefore, $\lim_{n\to\infty} S_{b_n} = 0$. Let prove that $\{x_n\}$ is a Cauchy sequence. It follows from (2.5) that for $n, m \in \mathbb{N}$:

$$S_{b}(x_{n}, x_{n}, x_{m}) = S_{b}(T^{n}x_{0}, T^{n}x_{0}, T^{m}x_{0})$$

$$= S_{b}(Tx_{n-1}, Tx_{n-1}, Tx_{m-1})$$

$$\leq \lambda[2S_{b}(x_{n-1}, x_{n-1}, Tx_{n-1}) + S_{b}(x_{m-1}, x_{m-1}, Tx_{m-1})]$$

$$= \lambda[2S_{b}(x_{n-1}, x_{n-1}, x_{n}) + S_{b}(x_{m-1}, x_{m-1}, x_{m})]$$

$$= \lambda[2S_{b_{n-1}} + S_{b_{m-1}}].$$

So, for every $\epsilon > 0$, as $\lim_{n \to \infty} S_{b_n} = 0$, we can find $n_0 \in \mathbb{N}$ such that $S_{b_{n-1}} < \frac{\epsilon}{4}$ and $S_{b_{m-1}} < \frac{\epsilon}{2}$ for all $n, m > n_0$. Then, we obtain $2S_{b_{n-1}} + S_{b_{m-1}} \le 2\frac{\epsilon}{4} + \frac{\epsilon}{2} = \epsilon$.

As $\lambda < 1$ it follows that $S_b(x_n, x_n, x_m) < \epsilon \ \forall n, m > n_0$.

Thus, $\{x_n\}$ is a Cauchy sequence in X and $\lim_{n\to\infty} S_b(x_n,x_n,x_m)=0$.

By completeness of X, there exists $u \in X$ such that

$$\lim_{n \to \infty} S_b(x_n, x_n, u) = \lim_{n, m \to \infty} S_b(x_n, x_n, u) = S_b(u, u, u) = 0.$$
 (2.7)

Now, we shall prove that Tu = u. For any $n \in \mathbb{N}$

$$S_{b}(u, u, Tu) \leq s[2S_{b}(u, u, x_{n+1}) + S_{b}(Tu, Tu, x_{n+1})] - S_{b}(x_{n+1}, x_{n+1}, x_{n+1})$$

$$\leq s[2S_{b}(u, u, x_{n+1}) + S_{b}(Tu, Tu, Tx_{n})]$$

$$\leq s[2S_{b}(u, u, x_{n+1}) + \lambda[2S_{b}(u, u, Tu) + S_{b}(x_{n}, x_{n}, Tx_{n})].$$

Therefore, $(1-2s\lambda)S_b(u,u,Tu) \leq 2sS_b(u,u,x_{n+1}) + s\lambda S_b(x_n,x_n,Tx_n)$ giving

$$S_b(u, u, Tu) \le \frac{2s}{1 - 2s\lambda} S_b(u, u, x_{n+1}) + \frac{s\lambda}{1 - 2s\lambda} S_b(x_n, x_n, Tx_n).$$

Since $S_b(x_n, x_n, Tx_n) \longrightarrow S_b(u, u, Tu), n \longrightarrow \infty$, we obtain

$$S_b(u, u, Tu) \leq \frac{2s}{1 - 2s\lambda} S_b(u, u, x_{n+1}) + \frac{s\lambda}{1 - 2s\lambda} S_b(u, u, Tu)$$

$$(1 - \frac{s\lambda}{1 - 2s\lambda}) S_b(u, u, Tu) \leq \frac{2s}{1 - 2s\lambda} S_b(u, u, x_{n+1})$$

$$S_b(u, u, Tu) \leq \frac{2s}{1 - 3s\lambda} S_b(u, u, x_{n+1}).$$

As $\lambda \neq \frac{1}{3s}$ and from (2.7), we obtain $S_b(u, u, Tu) = 0$ and then Tu = u.

Theorem 2.3. Let (X, S_b) be a complete partial S_b -metric space with coefficient s > 1 and $T: X \longrightarrow X$ be a mapping satisfying the following condition:

$$S_b(Tx, Ty, Tz) \le \lambda \max[S_b(x, y, z), S_b(x, x, Tx), S_b(y, y, Ty), S_b(z, z, Tz)] \quad \forall x, y, z \in X.$$
(2.8)

where $\lambda \in [0, \frac{1}{2s})$. Then, T has a unique fixed point $u \in X$ and $S_b(u, u, u) = 0$.

Proof. Let us prove that if a fixed point of T exists, then it is unique. Let $u,v\in X$ be two fixed points of $T,\ u\neq v$, that is Tu=u and Tv=v. It follows from (2.8):

$$\begin{split} S_b(u,u,v) &= S_b(Tu,Tu,Tv) \leq \lambda \max[S_b(u,u,v),S_b(u,u,Tu),S_b(u,u,Tu),S_b(v,v,Tv)] \\ &= \lambda \max[S_b(u,u,v),S_b(u,u,u),S_b(v,v,v)] \\ &= \lambda S_b(u,u,v) \\ &< S_b(u,u,v) \text{ since } \lambda < 1. \end{split}$$

We obtain $S_b(u, u, v) < S_b(u, u, v)$ which gives $S_b(u, u, v) = 0$, then u = v. Therefore, if a fixed point of T exists, then it is unique. Let $x_0 \in X$ and define a sequence $\{x_n\}$ by $x_{n+1} = Tx_n \ \forall n \geq 0$. For any n, we obtain from (2.8)

$$S_b(x_{n+1}, x_{n+1}, x_n) = S_b(Tx_n, Tx_n, Tx_{n-1})$$

$$\leq \lambda \max[S_b(x_n, x_n, x_{n-1}), S_b(x_n, x_n, Tx_n), S_b(x_n, x_n, Tx_n), S_b(x_{n-1}, x_{n-1}, Tx_{n-1})]$$

$$= \lambda \max[S_b(x_n, x_n, x_{n-1}), S_b(x_n, x_n, Tx_n), S_b(x_{n-1}, x_{n-1}, Tx_{n-1})].$$

Since $S_b(x_{n-1}, x_{n-1}, Tx_{n-1}) = S_b(x_{n-1}, x_{n-1}, x_n)$ and by symmetry we have $S_b(x_{n-1}, x_{n-1}, x_n) = S_b(x_n, x_n, x_{n-1})$, thus

$$S_b(x_{n+1}, x_{n+1}, x_n) \le \lambda \max[S_b(x_n, x_n, x_{n-1}), S_b(x_n, x_n, x_{n+1})].$$

If $\max[S_b(x_n, x_n, x_{n-1}), S_b(x_n, x_n, x_{n+1})] = S_b(x_n, x_n, x_{n+1})$, then we obtain

$$S_b(x_{n+1}, x_{n+1}, x_n) \le \lambda S_b(x_n, x_n, x_{n+1})$$

= $\lambda S_b(x_{n+1}, x_{n+1}, x_n)$
< $S_b(x_{n+1}, x_{n+1}, x_n)$ absurd.

Therefore, $\max[S_b(x_n, x_n, x_{n-1}), S_b(x_n, x_n, x_{n+1})] = S_b(x_n, x_n, x_{n-1})$ and

$$S_b(x_{n+1}, x_{n+1}, x_n) \le \lambda S_b(x_n, x_n, x_{n-1}), \tag{2.9}$$

that is

$$S_b(Tx_n, Tx_n, Tx_{n-1}) \le \lambda S_b(x_n, x_n, x_{n-1}).$$
 (2.10)

By repeating this process, we obtain

$$S_b(x_{n+1}, x_{n+1}, x_n) \le \lambda^n S_b(x_1, x_1, x_0).$$
 (2.11)

For $n, m \in \mathbb{N}$, m > n, we obtain

$$\begin{split} S_{b}(x_{n},x_{n},x_{m}) &\leq s\left[S_{b}(x_{n},x_{n},x_{n+1}) + S_{b}(x_{n},x_{n},x_{n+1}) + S_{b}(x_{m},x_{m},x_{n+1})\right] \\ &- S_{b}(x_{n+1},x_{n+1},x_{n+1}) \\ &\leq 2sS_{b}(x_{n},x_{n},x_{n+1}) + sS_{b}(x_{m},x_{m},x_{n+1}) \\ &\leq 2sS_{b}(x_{n},x_{n},x_{n+1}) + s\left[s\left(S_{b}(x_{m},x_{m},x_{n+2}) + S_{b}(x_{m},x_{m},x_{n+2}) + S_{b}(x_{n+1},x_{n+1},x_{n+2})\right)\right] \\ &+ S_{b}(x_{n+1},x_{n+1},x_{n+2}) - S_{b}(x_{n+2},x_{n+2},x_{n+2})\right] \\ &\leq 2sS_{b}(x_{n},x_{n},x_{n+1}) + s\left[s(2S_{b}(x_{m},x_{m},x_{n+2}) + S_{b}(x_{n+1},x_{n+1},x_{n+2}) + 2s^{2}S_{b}(x_{m},x_{m},x_{n+2})\right] \\ &\leq 2sS_{b}(x_{n},x_{n},x_{n+1}) + s^{2}S_{b}(x_{n+1},x_{n+1},x_{n+2}) + 2s^{2}\left[s(2S_{b}(x_{m},x_{m},x_{n+3}) + S_{b}(x_{n+2},x_{n+2},x_{n+3})\right] \\ &\leq 2sS_{b}(x_{n},x_{n},x_{n+1}) + s^{2}S_{b}(x_{n+1},x_{n+1},x_{n+2}) + 2s^{3}S_{b}(x_{n+2},x_{n+2},x_{n+3}) \\ &+ 2^{2}s^{3}S_{b}(x_{m},x_{m},x_{m+3}) \\ &\leq 2sS_{b}(x_{n},x_{n},x_{n+1}) + s^{2}S_{b}(x_{n+1},x_{n+1},x_{n+2}) + \dots + \\ &+ 2^{m-n-2}s^{m-n}S_{b}(x_{m},x_{m},x_{m-1}). \end{split}$$

Now, using (2.11), we obtain

$$S_{b}(x_{n}, x_{n}, x_{m})$$

$$\leq 2s\lambda^{n}S_{b}(x_{1}, x_{1}, x_{0}) + s^{2}\lambda^{n+1}S_{b}(x_{1}, x_{1}, x_{0}) + 2s^{3}\lambda^{n+2}S_{b}(x_{1}, x_{1}, x_{0}) + \dots +$$

$$+ 2^{m-n-2}s^{m-n}\lambda^{m-1}S_{b}(x_{1}, x_{1}, x_{0})$$

$$\leq s\lambda^{n}\left[2 + s\lambda + 2s^{2}\lambda^{2} + 2s^{3}\lambda^{3} + \dots + 2^{m-n-2}s^{m-n-1}\lambda^{m-n-1}\right]S_{b}(x_{1}, x_{1}, x_{0})$$

$$\leq 2s\lambda^{n}\left[1 + \frac{1}{2}s\lambda + s^{2}\lambda^{2} + s^{3}\lambda^{3} + \dots + 2^{m-n-3}s^{m-n-1}\lambda^{m-n-1}\right]S_{b}(x_{1}, x_{1}, x_{0})$$

$$< 2s\lambda^{n}\left[1 + 2s\lambda + (2s\lambda)^{2} + (2s\lambda)^{3} + \dots + (2s\lambda)^{m-n-1}\right]S_{b}(x_{1}, x_{1}, x_{0})$$

$$\leq 2s\lambda^{n}\frac{1 - (2s\lambda)^{m-n}}{1 - 2s\lambda}S_{b}(x_{1}, x_{1}, x_{0})$$

$$< 2s\lambda^{n}\frac{1}{1 - 2s\lambda}S_{b}(x_{1}, x_{1}, x_{0}) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Hence, $\lim_{n \to \infty} S_b(x_n, x_n, x_m) = 0.$

Thus, $\{x_n\}$ is a Cauchy sequence in X. Since X is a complete partial metric

space, then there exists $u \in X$ such that

$$\lim_{n \to \infty} S_b(x_n, x_n, u) = \lim_{n \to \infty} S_b(x_n, x_n, x_m) = S_b(u, u, u) = 0.$$
 (2.12)

Let's prove that u is a fixed point of T. $\forall n \in \mathbb{N}$, we have

$$S_b(u, u, Tu) \leq s \left[2S_b(u, u, x_{n+1}) + S_b(Tu, Tu, x_{n+1}) \right] - S_b(x_{n+1}, x_{n+1}, x_{n+1})$$

$$\leq s \left[2S_b(u, u, x_{n+1}) + S_b(Tu, Tu, Tx_n) \right].$$

Using (2.10), we obtain $S_b(Tu, Tu, Tx_n) \leq \lambda S_b(u, u, x_n)$, then

$$S_b(u, u, Tu) \le 2sS_b(u, u, x_{n+1}) + s\lambda S_b(u, u, x_n)$$

= $2sS_b(x_{n+1}, x_{n+1}, u) + s\lambda S_b(x_n, x_n, u).$

Using (2.12) in the above inequality, we obtain $S_b(u, u, Tu) = 0$, then Tu = u. Therefore, u is a fixed point of T and it is unique. \square

Acknowledgement. This project was supported by King Saud University, Deanship of Scientific Research, Community College Research Unit.

References

- [1] T. Abeljawad, K. Abodayeh, N. Mlaiki, On fixed point generalizations to partial b-metric spaces, Journal of Computational Analysis & Applications 19 (2015), 883-891.
- [2] I.A. Bakhtin, The contraction principle in quasimetric spaces, Func. An., Ulianowsk, Gos. Ped. Ins. 30 (1989), 26-37.
- [3] M. Bota, A. Molnar, C. Varga, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory 12 (2011), 21–28.
- [4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis 1 (1993), 5–11.
- [5] M. Kir, H. Kiziltunc, On Some Well Known Fixed Point Theorems in b-Metric Spaces, Turkish Journal of Analysis and Number Theory 1 (2013), 13–16.
- [6] C. Li, R.P. Agarwal, C.-L. Tang, Infinitely many periodic solutions for ordinary p-Laplacian systems, Adv. Nonlinear Anal. 4 (2015), 251–261.
- [7] N. Mlaiki, α-ψ-Contractive Mapping on S-Metric Space, Mathematical Sciences Letters 4 (2015), 9–12.

- [8] N. Mlaiki, Common fixed points in complex S-metric space, Advances in Fixed Point Theory 4 (2014), 509–524.
- [9] N. Mlaiki, A contraction principle in partial S-metric space, Universal Journal of Mathematics and Mathematical Sciences 5 (2014), 109-119.
- [10] R. Precup, Nash-type equilibria and periodic solutions to nonvariational systems, Adv. Nonlinear Anal. 3 (2014), no. 4, 197–207.
- [11] D. Repovš, A two-parameter control for contractive-like multivalued mappings. Topology Appl. 159 (2012), no. 7, 18991905.
- [12] D. Repovš, P.V. Semenov, Continuous Selections of Multivalued Mappings, Mathematics and its Applications, Vol. 455, Kluwer Academic Publishers, Dordrecht, 1998.
- [13] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik. 64 (2012), 258–266.
- [14] S. Sedghi, N. Shobe, A Common unique random fixed point theorems in S-metric spaces, Journal of Prime Research in Mathematics 7 (2011), 25–34.
- [15] S. Shukla, Partial b-Metric Spaces and Fixed Point Theorems, Mediterranean Journal of Mathematics 11 (2014), 703–711.

Nizar Souayah

Department of Natural Sciences, Community College of Riyadh,

King Saud University, Riyadh, Saudi Arabia

E-mail: nizar.souayah@yahoo.fr