
DOI: 10.1515/auom-2016-0062
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A Fixed Point in Partial Sb-Metric Spaces

Nizar Souayah

Abstract

In this paper, we introduce an interesting extention of the partial b-
metric spaces called partial Sb-metric spaces, and we show the existence
of fixed point for a self mapping defined on such spaces.

1 Introduction

There exist many generalizations of the concept of metric spaces in the litera-
ture. Several papers have been published on the fixed point theory in S-metric
spaces [7], [8], [9], [13], and [14]. Also, fixed point results in b-metric spaces
were also studied by many authors [1], [2], [3], [4], [5] and [15].
In this work, we consider a new concept of S-metric spaces called partial Sb-
metric spaces, which is an extension of the S-metric spaces, by allowing the self
distance to be different from zero. We extend the results obtained by Shukla
[15] in partial b-metric spaces, and we prove theorems for some contractive
type mapping.

First we would like to point out three errors in the proof of Theorem 1 (on
page 5) in [15]. The equation b(Fz, Fxl) = λn0b(z, xl) must be an inequality.
Also, the inequality b(Fz, xl) ≤ s[b(Fz, Fxl) + b(Fxl, xl)] − b(xl, xl), should
instead be written as b(Fz, xl) ≤ s[b(Fz, Fxl) + b(Fxl, xl)] − b(Fxl, Fxl).
The author used a wrong argument to show that {xn} is Cauchy sequence
by mentioning that since xn ∈ B[xl,

ε
2 ] and xm ∈ B[xl,

ε
2 ], then b(xn, xm) <

ε

2
+ b(xl, xl) for all n,m > l. We suggest using the contraction principle after
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showing that Fz ∈ B[xl,
ε
2 ].

Let us recall the definitions of the b-metric spaces and the partial b-metric
spaces.

Definition 1.1. [2] Let X be a nonempty set. A b-metric on X is a function
d : X2 → [0,∞) if there exists a real number s ≥ 1 such that the following
conditions hold for all x, y, z ∈ X :

(i) d(x, y) = 0 if and only if x = y

(ii) d(x, y) = d(y, x)

(iii) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

Definition 1.2. [15] A partial b-metric on a nonempty set X is a function
b : X2 → [0,∞) such that for all x, y, z ∈ X : :

(i) x = y if and only if b(x, x) = b(x, y) = b(y, y)

(ii) b(x, x) ≤ b(x, y)

(iii) b(x, y) = b(y, x)

(iv) there exists a real number s ≥ 1 such that b(x, y) ≤ s[b(x, z) + b(z, y)]−
b(z, z).

The partial b-metric space is a pair (X, b) such that X is a nonempty set and
b is a partial b-metric on X.

Definition 1.3. A partial Sb-metric on a empty set X is a function Sb :
X3 −→ R+ such that for all x, y, z, t ∈ X:

(i) x = y = z if and only if Sb(x, x, x) = Sb(y, y, y) = Sb(z, z, z) = Sb(x, y, z)

(ii) Sb(x, x, x) ≤ Sb(x, y, z)

(iii) Sb(x, x, y) = Sb(y, y, x)

(iv) there exists s ≥ 1 such that

Sb(x, y, z) ≤ s [Sb(x, x, t) + Sb(y, y, t) + Sb(z, z, t)]− Sb(t, t, t).

(X,Sb) is then called a partial Sb-metric space.
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Definition 1.4. Let (X,Sb) be a partial Sb-metric space and {xn} be a se-
quence in X. Then:

1. {xn} is called convergent if and only if there exists z ∈ X such that
Sb(xn, xn, z) −→ Sb(z, z, z) as n→∞.

2. {xn} is said to be Cauchy sequence in (X,Sb) if lim
n→∞

Sb(xn, xn, xm)

exists and finite.

3. (X,Sb) is a complete partial Sb-metric space if for every Cauchy sequence
{xn} there exists x ∈ X such that:

lim
n→∞

Sb(xn, xn, xm) = lim
n→∞

Sb(xn, xn, x) = Sb(x, x, x).

Now, we give an example of a partial Sb-metric space that is not a partial
S-metric space.

Example 1.5. Let X = R+, and p > 1 be a constant and Sb : X×X×X −→
R+ defined by Sb(x, y, z) = [max{x, y}]p+ |max{x, y}− z|p for all x, y, z ∈ X.
Then (X,Sb) is a partial Sb-metric space with coefficient s = 2p > 1, but it
is not a partial S-metric space. Indeed, for x = 5, y = 2, z = 1, t = 4 we
have Sb(x, y, z) = 5p + 4p and Sb(x, x, t) +Sb(y, y, t) +Sb(z, z, t)−Sb(t, t, t) =
5p + 1 + 3p + 1 + 1 + 3p − 4p = 5p + 2 × 3p + 3 − 4p, hence Sb(x, y, z) >
Sb(x, x, t) +Sb(y, y, t) +Sb(z, z, t)−Sb(t, t, t) for all p > 1; therefore, Sb is not
a partial S-metric on X.

2 Main result

Theorem 2.1. Let (X,Sb) be a complete partial Sb-metric space with coeffi-
cient s ≥ 1 and T : X −→ X be a mapping satisfying the following condition:

Sb(Tx, Ty, Tz) ≤ λSb(x, y, z) ∀x, y, z ∈ X, λ ∈ [0, 1). (2.1)

Then, T has a unique fixed point u ∈ X and Sb(u, u, u) = 0.

Proof. Let’s start by proving the uniqueness of the fixed point. Let u, v ∈ X
be two distinct fixed point of T , that is, Tu = u and Tv = v.
We have

Sb(u, u, v) = Sb(Tu, Tu, Tv) ≤ λSb(u, u, v) < Sb(u, u, v).

So, we must have Sb(u, u, v) = 0 =⇒ u = v. Therefore, if T has a fixed point,
then it is unique.
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Let prove that Sb(u, u, u) = 0.
Suppose that Sb(u, u, u) > 0. From equation (2.1),

Sb(u, u, u) = Sb(Tu, Tu, Tu) ≤ λSb(u, u, u) < Sb(u, u, u),

which leads to a contradiction, then Sb(u, u, u) = 0.

For the existence of fixed point, since λ ∈ [0, 1), we can choose n0 ∈ N such
that for given 0 < ε < 1, we have

λn0 <
ε

8s
. (2.2)

Let Tn0 ≡ F and Fxk0 = xk ∀k ∈ N, where x0 ∈ X is arbitrary. Then,
∀x, y ∈ X we have

Sb(Fx, Fy, Fz) = Sb(T
n0x, Tn0y, Tn0z) ≤ λn0Sb(x, y, z).

For any k ∈ N, we have

Sb(xk+1, xk+1, xk) = Sb(Fxk, Fxk, Fxk−1) ≤ λn0Sb(xk, xk, xk−1)

≤ λn0kSb(x1, x1, x0) −→ 0 as k → +∞.

Therefore, we can choose l ∈ N such that Sb(xl+1, xl+1, xl) <
ε

8s
.(∗)

Let’s define the ball

Bb(xl,
ε

2
) := {y ∈ X/Sb(xl, xl, y) <

ε

2
+ Sb(xl, xl, xl)} (2.3)

Now, we shall show that F maps Bb(xl,
ε
2 ) into itself.

We have Bb(xl,
ε
2 ) 6= ∅ since xl ∈ Bb(xl, ε2 ). Let xz ∈ Bb(xl, ε2 ), then

Sb(Fxz, Fxz, Fxl) ≤ λn0Sb(xz, xz, xl)

≤ ε

8s
Sb(xz, xz, xl)

≤ ε

8s
[
ε

2
+ Sb(xl, xl, xl)]

≤ ε

8s
[1 + Sb(xl, xl, xl)]. (2.4)
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Using the definition of the partial Sb-metric space, we obtain

Sb(Fxz, Fxl, Fxl)≤ s[Sb(Fxz, Fxz, Fxl) + Sb(Fxl, Fxl, Fxl) + Sb(Fxl, Fxl, Fxl)]

− Sb(Fxl, Fxl, Fxl)

≤ s[
ε

8s
(1 + Sb(xl, xl, xl)) + 2Sb(xl, xl, Fxl)]

≤ s[
ε

8s
(1 + Sb(xl, xl, xl)) + 2Sb(xl, xl, xl+1)]

≤ s[
ε

8s
(1 + Sb(xl, xl, xl)) + 2

ε

8s
]

≤ ε

8
+
ε

8
Sb(xl, xl, xl) +

ε

4

≤ 3ε

8
+
ε

8
Sb(xl, xl, xl)

≤ ε

2
+ Sb(xl, xl, xl).

Then, Fxz ∈ Bb(xl, ε2 ). Thus F maps Bb(xl,
ε
2 ) to itself.

We note that xl ∈ Bb(xl,
ε
2 ), therefore Fxl ∈ Bb(xl,

ε
2 ). By repeating this

process, we obtain Fnxl ∈ Bb(xl, ε2 ) ∀n ∈ N, that is xm ∈ Bb(xl, ε2 ) ∀m ≥ l.
Therefore, we obtain for all m > n ≥ l; let n = l + i =⇒ i = n− l

Sb(xn, xn, xm) = Sb(Txn−1, Txn−1, Txm−1)

≤ λSb(xn−1, xn−1, xm−1)

≤ λ2Sb(xn−2, xn−2, xm−2)

...

≤ λiSb(xl, xl, xm−l)

< Sb(xl, xl, xm−l)

<
ε

2
+ Sb(xl, xl, xl).

But, Sb(xl, xl, xl) < Sb(xl, xl, xl+1) <
ε

8s
.

Hence,

Sb(xn, xn, xm) <
ε

2
+

ε

8s
<
ε

2
+
ε

2
= ε.

Thus, {xn} is a Cauchy sequence.
Since X is a complete partial Sb-metric sapce, there exists u ∈ X such that:

lim
n→∞

Sb(xn, xn, u) = lim
n→∞

Sb(xn, xn, xm) = Sb(u, u, u) = 0.
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Let’s prove that u is a fixed point of T . For all n ∈ N, we have

Sb(u, u, Tu) ≤ s[Sb(u, u, xn+1) + Sb(u, u, xn+1) + Sb(Tu, Tu, xn+1)]

−Sb(xn+1, xn+1, xn+1)

≤ s[2Sb(u, u, xn+1) + Sb(Tu, Tu, Txn)]

≤ s[2Sb(u, u, xn+1) + Sb(Tu, Tu, Txn)]

≤ s[2Sb(u, u, xn+1) + λSb(u, u, xn)]

≤ (2sSb(u, u, xn+1) + sλSb(u, u, xn))→ 0 as n→∞.

Thus, Sb(u, u, Tu) = 0, that is Tu = u. Hence, u is a unique fixed point of T .
�

Theorem 2.2. Let (X,Sb) be a complete partial Sb-metric space with coeffi-
cient s ≥ 1 and T : X −→ X be a mapping satisfying the following condition:

Sb(Tx, Ty, Tz) ≤ λ[Sb(x, x, Tx) + Sb(y, y, Ty) + Sb(z, z, Tz)] ∀x, y, z ∈ X.
(2.5)

where λ ∈ [0,
1

3
), λ 6= 1

3s
Then, T has a unique fixed point u ∈ X and

Sb(u, u, u) = 0.

Proof. We first prove the uniqueness of the fixed point of T if it has.
We must show that, if u ∈ X is a fixed point of T , that is Tu = u then
Sb(u, u, u) = 0.
From(2.5), we obtain

Sb(u, u, u) = Sb(Tu, Tu, Tu) ≤ λ[Sb(u, u, Tu) + Sb(u, u, Tu) + Sb(u, u, Tu)]

= 3λSb(u, u, Tu) since λ ∈ [0,
1

3
), we have

< Sb(u, u, u),

which implies that we must have Sb(u, u, u) = 0
Suppose u, v ∈ X be two fixed point, that is Tu = u and Tv = v. Then we
have Sb(u, u, u) = Sb(v, v, v) = 0.
Equation (2.5) gives

Sb(u, u, v) = Sb(Tu, Tu, Tv)

≤ λ[Sb(u, u, Tu) + Sb(u, u, Tu) + Sb(v, v, Tv)]

= 2λSb(u, u, u) + λSb(v, v, v)

= 0.
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Therefore, u = v. Thereby, the uniqueness of the fixed point if it exists.

For the existence of the fixed point, let x0 ∈ X arbitrary, set xn = Tnx0
and Sbn = S(xn, xn, xn+1).
We can assume Sbn > 0 for all n ∈ N otherwise xn is a fixed point of T for at
least one n ≥ 0. For all n, we obtain from (2.5)

Sbn = Sb(xn, xn, xn+1) = Sb(Txn−1, Txn−1, Txn)

≤ λ[2Sb(xn−1, xn−1, Txn−1) + Sb(xn, xn, Txn)]

= λ[2Sb(xn−1, xn−1, xn) + Sb(xn, xn, xn+1)]

= λ[2Sbn−1
+ Sbn ].

Therefore (1− λ)Sbn ≤ 2λSbn−1
. Thus

Sbn ≤
2λ

1− λ
Sbn−1

, λ ∈ [0,
1

3
). (2.6)

Let β =
2λ

1− λ
< 1. By repeating this process we obtain

Sbn ≤ βnb0.

Therefore, lim
n→∞

Sbn = 0. Let prove that {xn} is a Cauchy sequence. It follows

from (2.5) that for n,m ∈ N:

Sb(xn, xn, xm) = Sb(T
nx0, T

nx0, T
mx0)

= Sb(Txn−1, Txn−1, Txm−1)

≤ λ[2Sb(xn−1, xn−1, Txn−1) + Sb(xm−1, xm−1, Txm−1)]

= λ[2Sb(xn−1, xn−1, xn) + Sb(xm−1, xm−1, xm)]

= λ[2Sbn−1
+ Sbm−1

].

So, for every ε > 0, as lim
n→∞

Sbn = 0, we can find n0 ∈ N such that Sbn−1
<
ε

4
and Sbm−1

<
ε

2
for all n,m > n0. Then, we obtain 2Sbn−1

+Sbm−1
≤ 2

ε

4
+
ε

2
=

ε.
As λ < 1 it follows that Sb(xn, xn, xm) < ε ∀n,m > n0.
Thus, {xn} is a Cauchy sequence in X and lim

n→∞
Sb(xn, xn, xm) = 0.

By completeness of X, there exists u ∈ X such that

lim
n→∞

Sb(xn, xn, u) = lim
n,m→∞

Sb(xn, xn, u) = Sb(u, u, u) = 0. (2.7)
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Now, we shall prove that Tu = u. For any n ∈ N

Sb(u, u, Tu) ≤ s[2Sb(u, u, xn+1) + Sb(Tu, Tu, xn+1)]− Sb(xn+1, xn+1, xn+1)

≤ s[2Sb(u, u, xn+1) + Sb(Tu, Tu, Txn)]

≤ s[2Sb(u, u, xn+1) + λ[2Sb(u, u, Tu) + Sb(xn, xn, Txn)].

Therefore, (1−2sλ)Sb(u, u, Tu) ≤ 2sSb(u, u, xn+1)+sλSb(xn, xn, Txn) giving

Sb(u, u, Tu) ≤ 2s

1− 2sλ
Sb(u, u, xn+1) +

sλ

1− 2sλ
Sb(xn, xn, Txn).

Since Sb(xn, xn, Txn) −→ Sb(u, u, Tu), n −→∞, we obtain

Sb(u, u, Tu) ≤ 2s

1− 2sλ
Sb(u, u, xn+1) +

sλ

1− 2sλ
Sb(u, u, Tu)

(1− sλ

1− 2sλ
)Sb(u, u, Tu) ≤ 2s

1− 2sλ
Sb(u, u, xn+1)

Sb(u, u, Tu) ≤ 2s

1− 3sλ
Sb(u, u, xn+1).

As λ 6= 1

3s
and from (2.7), we obtain Sb(u, u, Tu) = 0 and then Tu = u. �

Theorem 2.3. Let (X,Sb) be a complete partial Sb-metric space with coeffi-
cient s > 1 and T : X −→ X be a mapping satisfying the following condition:

Sb(Tx, Ty, Tz) ≤ λmax[Sb(x, y, z), Sb(x, x, Tx), Sb(y, y, Ty), Sb(z, z, Tz)] ∀x, y, z ∈ X.
(2.8)

where λ ∈ [0,
1

2s
). Then, T has a unique fixed point u ∈ X and Sb(u, u, u) = 0.

Proof. Let us prove that if a fixed point of T exists, then it is unique. Let
u, v ∈ X be two fixed points of T , u 6= v, that is Tu = u and Tv = v. It
follows from (2.8):

Sb(u, u, v) =Sb(Tu, Tu, Tv) ≤ λmax[Sb(u, u, v), Sb(u, u, Tu), Sb(u, u, Tu), Sb(v, v, Tv)]

= λmax[Sb(u, u, v), Sb(u, u, u), Sb(v, v, v)]

= λSb(u, u, v)

< Sb(u, u, v) since λ < 1.

We obtain Sb(u, u, v) < Sb(u, u, v) which gives Sb(u, u, v) = 0, then u = v.
Therefore, if a fixed point of T exists, then it is unique.
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Let x0 ∈ X and define a sequence {xn} by xn+1 = Txn ∀n ≥ 0. For any
n, we obtain from (2.8)

Sb(xn+1, xn+1, xn) = Sb(Txn, Txn, Txn−1)

≤ λmax[Sb(xn, xn, xn−1), Sb(xn, xn, Txn), Sb(xn, xn, Txn), Sb(xn−1, xn−1, Txn−1)]

= λmax[Sb(xn, xn, xn−1), Sb(xn, xn, Txn), Sb(xn−1, xn−1, Txn−1)].

Since Sb(xn−1, xn−1, Txn−1) = Sb(xn−1, xn−1, xn) and by symmetry we have
Sb(xn−1, xn−1, xn) = Sb(xn, xn, xn−1), thus

Sb(xn+1, xn+1, xn) ≤ λmax[Sb(xn, xn, xn−1), Sb(xn, xn, xn+1)].

If max[Sb(xn, xn, xn−1), Sb(xn, xn, xn+1)] = Sb(xn, xn, xn+1), then we ob-
tain

Sb(xn+1, xn+1, xn) ≤ λSb(xn, xn, xn+1)

= λSb(xn+1, xn+1, xn)

< Sb(xn+1, xn+1, xn) absurd.

Therefore, max[Sb(xn, xn, xn−1), Sb(xn, xn, xn+1)] = Sb(xn, xn, xn−1)
and

Sb(xn+1, xn+1, xn) ≤ λSb(xn, xn, xn−1), (2.9)

that is
Sb(Txn, Txn, Txn−1) ≤ λSb(xn, xn, xn−1). (2.10)

By repeating this process, we obtain

Sb(xn+1, xn+1, xn) ≤ λnSb(x1, x1, x0). (2.11)

For n,m ∈ N, m > n, we obtain
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Sb(xn, xn, xm) ≤ s
[
Sb(xn, xn, xn+1) + Sb(xn, xn, xn+1) + Sb(xm, xm, xn+1)

]
−Sb(xn+1, xn+1, xn+1)

≤2sSb(xn, xn, xn+1) + sSb(xm, xm, xn+1)

≤2sSb(xn, xn, xn+1) + s

[
s

(
Sb(xm, xm, xn+2) + Sb(xm, xm, xn+2)

+Sb(xn+1, xn+1, xn+2)

)
− Sb(xn+2, xn+2, xn+2)

]
≤2sSb(xn, xn, xn+1) + s

[
s(2Sb(xm, xm, xn+2) + Sb(xn+1, xn+1, xn+2))

]
≤2sSb(xn, xn, xn+1) + s2Sb(xn+1, xn+1, xn+2) + 2s2Sb(xm, xm, xn+2)

≤2sSb(xn, xn, xn+1) + s2Sb(xn+1, xn+1, xn+2) + 2s2
[
s(2Sb(xm, xm, xn+3) +

+Sb(xn+2, xn+2, xn+3))
]

≤2sSb(xn, xn, xn+1) + s2Sb(xn+1, xn+1, xn+2) + 2s3Sb(xn+2, xn+2, xn+3)

+ 22s3Sb(xm, xm, xn+3)

≤2sSb(xn, xn, xn+1) + s2Sb(xn+1, xn+1, xn+2) + ...+

+ 2m−n−2sm−nSb(xm, xm, xm−1).

= 2sSb(xn+1, xn+1, xn) + s2Sb(xn+2, xn+2, xn+1) + ...+

+ 2m−n−2sm−nSb(xm, xm, xm−1).

Now, using (2.11), we obtain

Sb(xn, xn, xm)

≤ 2sλnSb(x1, x1, x0) + s2λn+1Sb(x1, x1, x0) + 2s3λn+2Sb(x1, x1, x0) + ...+

+ 2m−n−2sm−nλm−1Sb(x1, x1, x0)

≤ sλn
[
2 + sλ+ 2s2λ2 + 2s3λ3 + ...+ 2m−n−2sm−n−1λm−n−1

]
Sb(x1, x1, x0)

≤ 2sλn
[
1 +

1

2
sλ+ s2λ2 + s3λ3 + ...+ 2m−n−3sm−n−1λm−n−1

]
Sb(x1, x1, x0)

< 2sλn
[
1 + 2sλ+ (2sλ)2 + (2sλ)3 + ...+ (2sλ)m−n−1

]
Sb(x1, x1, x0)

≤ 2sλn
1− (2sλ)m−n

1− 2sλ
Sb(x1, x1, x0)

< 2sλn
1

1− 2sλ
Sb(x1, x1, x0) −→ 0 as n −→∞.

Hence, lim
n−→∞

Sb(xn, xn, xm) = 0.

Thus, {xn} is a Cauchy sequence in X. Since X is a complete partial metric
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space, then there exists u ∈ X such that

lim
n−→∞

Sb(xn, xn, u) = lim
n−→∞

Sb(xn, xn, xm) = Sb(u, u, u) = 0. (2.12)

Let’s prove that u is a fixed point of T . ∀n ∈ N, we have

Sb(u, u, Tu) ≤ s
[
2Sb(u, u, xn+1) + Sb(Tu, Tu, xn+1)

]
− Sb(xn+1, xn+1, xn+1)

≤ s
[
2Sb(u, u, xn+1) + Sb(Tu, Tu, Txn)

]
.

Using (2.10), we obtain Sb(Tu, Tu, Txn) ≤ λSb(u, u, xn), then

Sb(u, u, Tu) ≤ 2sSb(u, u, xn+1) + sλSb(u, u, xn)

= 2sSb(xn+1, xn+1, u) + sλSb(xn, xn, u).

Using (2.12) in the above inequality, we obtain Sb(u, u, Tu) = 0, then Tu = u.
Therefore, u is a fixed point of T and it is unique. �

Acknowledgement. This project was supported by King Saud Univer-
sity, Deanship of Scientific Research, Community College Research Unit.

References

[1] T. Abeljawad, K. Abodayeh, N. Mlaiki, On fixed point generalizations to
partial b-metric spaces, Journal of Computational Analysis & Applica-
tions 19 (2015), 883-891.

[2] I.A. Bakhtin, The contraction principle in quasimetric spaces, Func. An.,
Ulianowsk, Gos. Ped. Ins. 30 (1989), 26-37.

[3] M. Bota, A. Molnar, C. Varga, On Ekeland’s variational principle in b-
metric spaces, Fixed Point Theory 12 (2011), 21–28.

[4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica
et Informatica Universitatis Ostraviensis 1 (1993), 5–11.

[5] M. Kir, H. Kiziltunc, On Some Well Known Fixed Point Theorems in b-
Metric Spaces, Turkish Journal of Analysis and Number Theory 1 (2013),
13–16.

[6] C. Li, R.P. Agarwal, C.-L. Tang, Infinitely many periodic solutions for
ordinary p-Laplacian systems, Adv. Nonlinear Anal. 4 (2015), 251–261.

[7] N. Mlaiki, α-ψ-Contractive Mapping on S-Metric Space, Mathematical
Sciences Letters 4 (2015), 9–12.



A FIXED POINT IN PARTIAL Sb-METRIC SPACES 362

[8] N. Mlaiki, Common fixed points in complex S-metric space, Advances in
Fixed Point Theory 4 (2014), 509–524.

[9] N. Mlaiki, A contraction principle in partial S-metric space, Universal
Journal of Mathematics and Mathematical Sciences 5 (2014), 109-119.

[10] R. Precup, Nash-type equilibria and periodic solutions to nonvariational
systems, Adv. Nonlinear Anal. 3 (2014), no. 4, 197–207.
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