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Matkowski theorems in the context of
quasi-metric spaces and consequences on

G-metric spaces

Erdal Karapınar, Antonio-Francisco Roldán-López-de-Hierro and
Bessem Samet

Abstract

In this paper, we prove the characterization of a Matkowski’s theo-
rem in the setting of quasi-metric spaces. As a result, we observe that
some recent fixed point results in the context of G-metric spaces are
consequences of our main result.

1 Introduction

After the appearance of the Banach Contractive Mapping Principle in his
thesis in 1922, Fixed Point Theory has become one of the most useful tools in
Nonlinear Analysis due, mainly, to its applications. Many results have been
introduced in this field throughout the last ninety years.

In [1], Matkowski presented the following result.

Theorem 1.1 (Matkowski [1], Theorem 1). Let (X, d) be a complete metric

space, T : X → X, α : [0,∞)
5 → [0,∞), and let γ(t) = α(t, t, t, 2t, 2t) for all

t ≥ 0. Suppose that

(1) α is nondecreasing with respect to each variable,

(2) lim
t→∞

(t− γ(t)) =∞,
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(3) lim
k→∞

γk(t) = 0 for all t > 0,

(4) for every x ∈ X, there is a positive integer n = n(x) such that, for all
y ∈ X,

d(Tn(x)x, Tn(x)y) ≤ α(d(x, Tnx), d (x, Tny) , d (x, y) , d (Tnx, y) , d (Tny, y)). (1)

Then T has a unique fixed point a ∈ X and for each x ∈ X, lim
k→∞

T kx = a.

Only considering the function γ : [0,∞)→ [0,∞), Matkowski obtained the
following consequence.

Corollary 1.1 (Matkowski [1], Theorem 2). Let (X, d) be a complete metric
space and let T : X → X be a mapping. Assume that there exists a nonde-
creasing function γ : [0,∞) → [0,∞) such that, for all t > 0, we have that
lim
t→∞

(t − γ(t)) = ∞ and lim
k→∞

γk(t) = 0, and verifying that for each x ∈ X,

there is a positive integer n = n(x) such that

d(Tn(x)x, Tn(x)y) ≤ γ(d(x, y)) for all y ∈ X. (2)

Then T has a unique fixed point a ∈ X. Moreover, for each x ∈ X, lim
k→∞

T kx =
a.

Very recently, Gajić and Stojaković [2] proved the analog of Matkowski’s
theorem in the context of G-metric spaces as follows. We recall the clas-
sification of auxiliary functions given in [2]. Let ϕ : [0,∞) → [0,∞) be a
nondecreasing function. The additional properties that can be imposed on ϕ
are listed below:

(ϕ1) ϕ(0) = 0;

(ϕ2) ϕ(t) < t, for all t > 0;

(ϕ3) lim
k→∞

ϕk(t) = 0, for all t > 0;

(ϕ4) if {ti} ⊂ [0,∞) is a sequence such that ti+1 ≤ ϕ(ti), then lim
i→∞

ti = 0;

(ϕ5) for any y ≥ 0 there exists a t(y) ≥ 0, t(y) = sup
t≥0
{t ≤ y + ϕ(t)};

(ϕ6) lim
t→∞

(t− ϕ(t)) =∞;

(ϕ7)

∞∑
i=1

ϕi(t) <∞, for all t > 0.
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Theorem 1.2 (Gajić and Stojaković [2], Theorem 2.1). Let (X,G) be a com-
plete G-metric space, T : X → X, and ϕ : [0,∞) → [0,∞). If ϕ is nonde-
creasing mapping that satisfies either (ϕ3)&(ϕ6) or (ϕ4)&(ϕ5) and for each
x ∈ X there is a positive integer n = n(x) such that for all y ∈ X,

G(Tn(x)x, Tn(x)x, Tn(x)y) ≤ ϕ(G(x, x, y)),

then T has a unique fixed point a ∈ X. Moreover, for each x ∈ X,
lim
k→∞

T k(x) = a.

In recent times, some authors have proved that many fixed point theorems
in the context of G-metric spaces can be deduced from existing results in the
context of quasi-metric spaces and/or metric spaces (see e.g. [3, 4, 5, 6, 7, 8]).
However, in [2], the authors claimed that their results cannot be observed from
the corresponding results in the frame of usual metric spaces or quasi metric
spaces via the techniques used in [3, 4].

This manuscript has two aims: on the one hand, we introduce two dif-
ferent conditions to prove the analog of Matkowski’s theorem in the setting
of quasi-metric spaces by verbatim; on the other hand, we particularize our
main results to the setting of G-metric spaces pointing out that Gajić and
Stojaković’s results can be easily derived from such consequences by using the
same techniques in [3, 4].

2 Preliminaries

Throughout this paper, N = {0, 1, 2, . . .} denotes the set of nonnegative inte-
gers and R denotes the set of all real numbers. First, let us recall the following
definitions, notations and basic results.

Definition 2.1. A quasi-metric on X is a function q : X × X → [0,∞)
satisfying the following properties:

(q1) q(x, y) = 0 if and only if x = y;

(q2) q(x, y) ≤ q(x, z) + q(z, y) for any points x, y, z ∈ X.

In such a case, the pair (X, q) is called a quasi-metric space.

It is clear that any metric space is a quasi-metric space, but the converse
is not true. Now, we give the notions of convergence and completeness on
quasi-metric spaces.

Definition 2.2. Let (X, q) be a quasi-metric space, {xn} be a sequence in X,
and x ∈ X. We say that:
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• {xn} converges to x (and we denote it by {xn} → x) if

lim
n→∞

q(xn, x) = lim
n→∞

q(x, xn) = 0;

• {xn} is a Cauchy sequence if for all ε > 0, there exists n0 ∈ N such that
q(xn, xm) < ε for all n,m ≥ n0.

The quasi-metric space is said to be complete if every Cauchy sequence is
convergent.

As q is not necessarily symmetric, some authors distinguished between
left/right Cauchy/convergent sequences and completeness.

Definition 2.3. (Jleli and Samet [4]) Let (X, q) be a quasi-metric space, {xn}
be a sequence in X, and x ∈ X. We say that:

• {xn} right-converges to x if limn→∞ q(xn, x) = 0;

• {xn} left-converges to x if limn→∞ q(x, xn) = 0;

• {xn} is a right-Cauchy sequence if for all ε > 0 there exists n0 ∈ N such
that q(xn, xm) < ε for all m > n ≥ n0;

• {xn} is a left-Cauchy sequence if for all ε > 0 there exists n0 ∈ N such
that q(xm, xn) < ε for all m > n ≥ n0.

Remark 2.1. A sequence {xn} in a quasi-metric space is Cauchy if, and only
if, it is left-Cauchy and right-Cauchy.

Definition 2.4. Let (X, q) be a quasi-metric space and let T : X → X be a
mapping. We say that T is

• right-continuous if {q(Txn, Tu)} → 0 for all sequence {xn} ⊆ X and all
u ∈ X such that {q(xn, u)} → 0;

• left-continuous if {q(Tu, Txn)} → 0 for all sequence {xn} ⊆ X and all
u ∈ X such that {q(u, xn)} → 0;

• T is continuous if {Txn} → Tu for all sequence {xn} ⊆ X and all u ∈ X
such that {xn} → u.

Notice that if T is, at the same time, right-continuous and left-continuous,
then it is continuous.

With respect to conditions (ϕ1) to (ϕ7) introduced in the previous section,
Gajić and Stojaković demonstrated the following relationships.
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Lemma 2.1. ([2]) Let ϕ : [0,∞)→ [0,∞) be a nondecreasing function. Then

(i) (ϕ3)⇔ (ϕ4)⇒ (ϕ2),

(ii) if ϕ is right continuous, then (ϕ2)⇔ (ϕ3)⇔ (ϕ4),

(iii) (ϕ7)⇒ (ϕk)⇒ (ϕ2)⇒ (ϕ1), where k ∈ {3, 4},

(iv) (ϕ5)⇔ (ϕ6),

(v) (ϕ2) ; (ϕ3) and (ϕ2) ; (ϕ4),

(vi) (ϕ5) + (ϕ3) ; (ϕ7) and (ϕ6) + (ϕ3) ; (ϕ7),

(vii) (ϕ7) ; (ϕ5) and (ϕ7) ; (ϕ6).

Corollary 2.1. ([2]) A nondecreasing mapping ϕ : [0,∞) → [0,∞) verifies
(ϕ3) and (ϕ6) if, and only if, it satisfies (ϕ4) and (ϕ5).

3 The Matkowski’s theorem in the context of quasi-metric
spaces

In this section, we will prove two different analogs of the previous theorem in
the context of quasi-metric spaces. To be exact, we will need an additional
hypothesis on the contractive condition or in the quasi-metric space.

Let denote by FMat the family of all functions ϕ : [0,∞) → [0,∞) as in
Theorem 1.1, that is, ϕ is nondecreasing and it satisfies (ϕ3) and (ϕ6). By
Lemma 2.1, we have the following characterization.

Lemma 3.1. (Gajić and Stojaković [2]) A nondecreasing function ϕ : [0,∞)→
[0,∞) belongs to FMat if, and only if, it satisfies (ϕ4) and (ϕ5).

In fact, as (ϕ3) implies (ϕ2), we also have the following result.

Lemma 3.2. Suppose that ϕ ∈ FMat.

1. ϕ(t) < t for all t > 0.

2. ϕ(t) ≤ t for all t ≥ 0.

3. ϕ (0) = 0.

4. lim
k→∞

ϕk(t) = 0 for all t ≥ 0.

5. ϕk is nondecreasing for all k ∈ N.
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3.1 M-symmetric quasi-metric spaces

In this subsection, we present a simple condition which will be able to consider
an extension of Matkowski’s theorem to quasi-metric spaces and to G-metric
spaces.

Definition 3.1. Given a positive real number M > 0, we will say that a
quasi-metric space (X, q) is M -symmetric if

q (y, x) ≤M q (x, y) for all x, y ∈ X.

If X is not reduced to a single point, we can find x, y ∈ X such that
q (x, y) > 0. Therefore, 0 < q (x, y) ≤M q (y, x) ≤M2 q (x, y). Hence, M ≥ 1.

Example 3.1. Using M = 1, every metric space is a symmetric space. In
fact, a quasi-metric space is a metric space if, and only if, it is 1-symmetric.

Example 3.2. Let X = R and let define

q(x, y) =

{
2 (x− y) , if x ≥ y,

y − x, if x < y.

Then (X, q) is a complete 2-symmetric quasi-metric space, but it is not a
metric space.

The main properties of M -symmetric quasi-metric spaces are listed in the
following result.

Lemma 3.3. Let (X, q) be an M -symmetric quasi-metric space, let {xn} ⊆ X
be a sequence and let x ∈ X. Then the following properties hold.

1. The following conditions are equivalent.

(a) {xn} right-converges to x.

(b) {xn} left-converges to x.

(c) {xn} converges to x.

2. If a sequence is right-convergent, then it is convergent, and its limit
coincide with its right-limit.

3. The following conditions are equivalent.

(a) {xn} is right-Cauchy.

(b) {xn} is left-Cauchy.

(c) {xn} is Cauchy.

4. If {yn} ⊆ X and {q (xn, yn)} → 0, then {q (yn, xn)} → 0.



Matkowski theorems in the context of quasi-metric spaces and
consequences on G-metric spaces 315

3.2 The Matkowski’s theorem on M-symmetric quasi-metric spaces

In this subsection, we prove a version of Theorem 1.1 using the M -symmetry
of the quasi-metric space.

Definition 3.2. Given M ≥ 1 and two functions α : [0,∞)
5 → [0,∞) and

γ : [0,∞) → [0,∞), we will say that (α, γ,M) is a Matkowski’s triple if the
following conditions are fulfilled:

(P1) α is nondecreasing with respect to each variable and γ is nondecreasing;

(P2) α (t, t, t, (M + 1)t, (M + 1)t) ≤ γ(t) for all t ≥ 0;

(P3) lim
t→∞

(t− γ(t)) =∞;

(P4) lim
k→∞

γk(t) = 0 for all t > 0.

Notice that if (α, γ,M) is a Matkowski’s triple, then γ ∈ FMat, and all
items of Lemma 3.2 are applicable.

Example 3.3. Suppose that, given M ≥ 1 and λ ∈ [0, 1), α and γ are defined
by

α (t1, t2, t3, t4, t5) = λ max

{
t1, t2, t3,

t4
M + 1

,
t5

M + 1

}
,

γ(t) = α (t, t, t, (M + 1)t, (M + 1)t) = λ t.

Then (α, γ,M) is a Matkowski’s triple.

The following one is the main result of the present manuscript.

Theorem 3.1. Let (X, q) be a complete M -symmetric quasi-metric space and
let T : X → X be a mapping. Suppose that there exists a Matkowski’s triple
(α, γ,M) verifying the following property:

• for every x ∈ X, there is a positive integer n = n(x) such that, for all
y ∈ X,

q(Tn(x)x, Tn(x)y) ≤ α
(
q (x, y) , q(x, Tn(x)x),

q(x, Tn(x)y), q(Tn(x)x, y), q(Tn(x)y, y)
)
. (3)

Then T has a unique fixed point a ∈ X. Furthermore, for each x ∈ X,
lim
k→∞

T kx = a and Tn(a) is continuous at a.
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Remark 3.1. Notice that the mapping T is not assumed to be continuous.

The previous theorem improves Theorem 1.1 in three senses: (1) we only as-
sume that (X, q) is a quasi-metric space; (2) we only suppose that
α (t, t, t, (M + 1)t, (M + 1)t) ≤ γ(t) for all t ≥ 0, but the equality is not ne-
cessary; (3) we also prove that Tn(a) is continuous at a.

Our proof is based on the original Matkowski’s proof given in [1]. However,
some details are different. Then, for a better understanding, we divide the
proof in 14 steps.

Proof. Step 1. We claim that, for all x ∈ X, the set {q(x, T kx) : k ∈ N} is
bounded.

Let x ∈ X be arbitrary. By hypothesis, there exists a positive integer
n = n(x) such that (3) holds. Given an integer s ∈ {0, 1, 2, . . . , n(x)− 1}, we
are going to show that the set {q(x, T kn(x)+sx) : k ∈ N} is bounded (varying
s on {0, 1, 2, . . . , n(x)− 1}, we can conclude that Step 1 holds). We define

uk = q(x, T kn(x)+sx) for all k ∈ {0, 1, 2, . . .} ,
h = max{u0, q(x, Tn(x))}.

Due to (ϕ6), there exists c ∈ (0,∞), with c > h, such that

t− ϕ(t) > h for all t ∈ [ c,∞) . (4)

Since c > h ≥ u0, then
u0 < c.

Next, we claim that uk < c for all k ∈ N. On the contrary, assume that there
exists a positive integer j such that uj ≥ c but ui < c for all i < j. Notice that
uj−1 < c ≤ uj . Taking (3) into account together with the triangle inequality,
we derive that

uj = q(x, T jn(x)+sx) ≤ q(x, Tn(x)x) + q(Tn(x)x, T jn(x)+sx)

≤ h+ q(Tn(x)x, Tn(x)T (j−1)n(x)+sx). (5)
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Using the contractivity condition (3) with y = T (j−1)n(x)+sx,

q(Tn(x)x, Tn(x)T (j−1)n(x)+sx)

≤ α
(
q(x, T (j−1)n(x)+sx), q(x, Tn(x)x), q(x, Tn(x)T (j−1)n(x)+sx),

q(Tn(x)x, T (j−1)n(x)+sx), q(Tn(x)T (j−1)n(x)+sx, T (j−1)n(x)+sx)
)

= α
(
uj−1, q(x, T

n(x)x), q(x, T jn(x)+sx), q(Tn(x)x, T (j−1)n(x)+sx),

q(T jn(x)+sx, T (j−1)n(x)+sx)
)

≤ α
(
uj−1, h, uj , q(T

n(x)x, T (j−1)n(x)+sx), q(T jn(x)+sx, T (j−1)n(x)+sx)
)
.

(6)

Notice that

q(Tn(x)x, T (j−1)n(x)+sx) ≤ q(Tn(x)x, x) + q(x, T (j−1)n(x)+sx)

≤M q(x, Tn(x)x) + q(x, T (j−1)n(x)+sx)

≤M h+ uj−1 ≤M c+ c ≤ (M + 1)uj ,

and

q(T jn(x)+sx, T (j−1)n(x)+sx) ≤ q(T jn(x)+sx, x) + q(x, T (j−1)n(x)+sx)

≤M q(x, T jn(x)+sx) + q(x, T (j−1)n(x)+sx) = M uj + uj−1 ≤ (M + 1)uj .

As α is nondecreasing on each variable, it follows from (6) that

q(Tn(x)x, Tn(x)T (j−1)n(x)+sx)

≤ α
(
uj−1, h, uj , q(T

n(x)x, T (j−1)n(x)+sx), q(T jn(x)+sx, T (j−1)n(x)+sx)
)

≤ α (uj , uj , uj , (M + 1)uj , (M + 1)uj) ≤ γ (uj) .

Then (5) implies that

uj ≤ h+ q(Tn(x)x, Tn(x)T (j−1)n(x)+sx) ≤ h+ γ (uj)

Therefore, uj − γ (uj) ≤ h, which contradicts (4) because we suppose that
uj ≥ c. Therefore, it is impossible to find such j, which proves that

q(x, T kn(x)+sx) = uk < c for all k ∈ {0, 1, 2, . . .} . (7)

This proves that the set {q(x, T kn(x)+sx) : k ∈ N} is bounded, and varying s
on {0, 1, 2, . . . , n(x)− 1}, we conclude that Step 1 holds. Let define

S1
x = sup{q(x, T kx) : k ∈ {0, 1, 2, . . .}} .
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Step 2. We claim that, for all x ∈ X, the set {q(T kx, x) : k ∈ N} is
bounded.

This step follows from the fact that q(T kx, x) ≤M q(x, T kx) ≤M · S1
x for

all x ∈ X and all k ∈ N. Let define, for all x ∈ X,

S2
x = sup{q(T kx, x) : k ∈ {0, 1, 2, . . .}} and Sx = S1

x + S2
x.

As a consequence of Steps 1 and 2, we have proved that, for all x ∈ X, the
orbit {T kx : k ∈ N} is a q-bounded subset of X because

q(T kx, T k
′
x) ≤ q(T kx, x) + q(x, T k

′
x) ≤ S1

x + S2
x = Sx for all k, k′ ∈ N.

If x is a fixed point of T , then the existence of such kind of points is proved.
On the contrary case, if Tx 6= x, then

S1
x ≥ q(x, Tx) > 0 and S2

x ≥ q(Tx, x) > 0. (8)

The following steps have sense when we begin the process using a point x0 ∈ X
which is not a fixed point of T .

Step 3. Starting from an arbitrary point x0 ∈ X, we claim that the
iterative sequence {xk}k≥0 given by

xk+1 = Tnkxk for all k ∈ N (where nk = n(xk)) (9)

verifies the following properties

xk+1 = Tn0+n1+...+nkx0, (10)

xk+j = Tnk+nk+1+...+nk+j−1xk for all k, j ∈ N. (11)

Indeed, notice that

x1 = Tn0x0, x2 = Tn1x1 = Tn1Tn0x0 = Tn0+n1x0,

and, by induction methodology, we deduce that (10) holds. This means that
{xk}k≥0 is a subsequence of the orbit {T kx0}∞k=0. To prove (11), we observe
that

xk+j = Tn0+n1+...+nk+j−1x0 = Tnk+nk+1+...+nk+j−1
(
Tn0+n1+...+nk−1x0

)
= Tnk+nk+1+...+nk+j−1xk.

Step 4. We claim that {xk}k≥0 is a right-Cauchy sequence on (X, q).
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If Tx0 = x0, then x0 is a fixed point of T (and the existence of such kind
of points is guaranteed). Assume that Tx0 6= x0. Let ε > 0 be arbitrary. By
(P4), limk→∞ γk(S1

x0
) = 0. Hence, there exists k0 ∈ N such that

γk(S1
x0

) < ε for all k ≥ k0. (12)

Let k, j ∈ N be arbitrary integers such that k ≥ k0 and j ≥ 1. Denote by s0
the integer s0 = nk + nk+1 + . . . + nk+j−1 and let s1 ∈ {s0, nk−1, s0 + nk−1}
be the appropriate index such that

max
{
q(xk−1, T

s0xk−1), q(xk−1, T
nk−1xk−1), q(xk−1, T

s0+nk−1xk−1)
}

= q(xk−1, T
s1xk−1). (13)

By using (10) and (11), we get that

q(xk, xk+j) = q(Tnk−1xk−1, T
nk−1+nk+nk+1+...+nk+j−1xk−1)

= q(Tnk−1xk−1, T
nk−1Tnk+nk+1+...+nk+j−1xk−1)

= q(Tnk−1xk−1, T
nk−1T s0xk−1).

Using the contractivity condition (3) with y = T s0xk−1, we observe that

q(xk, xk+j) = q(Tnk−1xk−1, T
nk−1T s0xk−1)

≤ α
(
q (xk−1, T

s0xk−1) , q(xk−1, T
n(xk−1)xk−1), q(xk−1, T

n(xk−1)T s0xk−1),

q(Tn(xk−1)xk−1, T
s0xk−1), q(Tn(xk−1)T s0xk−1, T

s0xk−1)
)

≤ α
(
q (xk−1, T

s0xk−1) , q(xk−1, T
nk−1xk−1), q(xk−1, T

s0+nk−1xk−1),

q(Tnk−1xk−1, T
s0xk−1), q(Tnk−1+s0xk−1, T

s0xk−1)
)
. (14)

Taking into account (13), we observe that

q(Tnk−1xk−1, T
s0xk−1) ≤ q(Tnk−1xk−1, xk−1) + q(xk−1, T

s0xk−1)

≤M q(xk−1, T
nk−1xk−1) + q(xk−1, T

s0xk−1) ≤ (M + 1) q(xk−1, T
s1xk−1)

and

q(Tnk−1+s0xk−1, T
s0xk−1) ≤ q(Tnk−1+s0xk−1, xk−1) + q(xk−1, T

s0xk−1)

≤M q(xk−1, T
nk−1+s0xk−1) + q(xk−1, T

s0xk−1)

≤ (M + 1) q(xk−1, T
s1xk−1).
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As α is nondecreasing on each argument, it follows from (14) that

q(xk, xk+j) ≤ α
(
q (xk−1, T

s0xk−1) , q(xk−1, T
nk−1xk−1), q(xk−1, T

s0+nk−1xk−1),

q(Tnk−1xk−1, T
s0xk−1), q(Tnk−1+s0xk−1, T

s0xk−1)
)

≤ α (q(xk−1, T
s1xk−1), q(xk−1, T

s1xk−1), q(xk−1, T
s1xk−1),

(M + 1) q(xk−1, T
s1xk−1), (M + 1) q(xk−1, T

s1xk−1))

≤ γ(q(xk−1, T
s1xk−1)).

Using s2 ∈ {s1, nk−2, s1 + nk−2} be the appropriate index such that

max
{
q(xk−2, T

s1xk−2), q(xk−2, T
nk−2xk−2), q(xk−2, T

s1+nk−2xk−2)
}

= q(xk−2, T
s2xk−2),

and repeating the previous argument, we deduce that

q(xk−1, T
s1xk−1) ≤ γ(q(xk−2, T

s2xk−2)).

Hence, as γ is nondecreasing, we have that

q(xk, xk+j) ≤ γ(q(xk−1, T
s1xk−1)) ≤ γ2(q(xk−2, T

s2xk−2))

≤ . . . ≤ γk(q(x0, T
skx0))

for appropriate indices s0, s1, . . . , sk ∈ N. Since q(x0, T
skx0) ≤ S1

x0
and γk is

nondecreasing, if we take k ≥ k0, it follows from (12) that

q(xk, xk+j) ≤ γk(q(x0, T
skx0)) ≤ γk(S1

x0
) < ε.

As k ≥ k0 and j ≥ 1 are arbitrary, we conclude that {xk}k≥0 is a right-Cauchy
sequence on (X, q).

Step 5. We claim that {xk}k≥0 is a left-Cauchy sequence on (X, q).
This step follows from Step 4 and item 3 of Lemma 3.3.
Step 6. {xk}k≥0 converges to some a ∈ X.
Since {xk}k≥0 is both left- and right-Cauchy, Remark 2.1 guarantees that

it is a Cauchy sequence on (X, q). As it is complete, there exists a ∈ X such
that {xk} → a, which means that

lim
k→∞

q(a, xk) = lim
k→∞

q(xk, a) = 0. (15)

Step 7. We claim that

lim
k→∞

q(xk, T
n(a)xk) = 0.
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Indeed, using the contractivity condition (3), we have that, for all k ≥ 1,

q(xk, T
n(a)xk) = q(Tnk−1xk−1, T

n(a)Tnk−1xk−1) = q(Tnk−1xk−1, T
nk−1Tn(a)xk−1)

≤ α
(
q(xk−1, T

n(a)xk−1), q(xk−1, T
n(xk−1)xk−1), q(xk−1, T

n(xk−1)Tn(a)xk−1),

q(Tn(xk−1)xk−1, T
n(a)xk−1), q(Tn(xk−1)Tn(a)xk−1, T

n(a)xk−1)
)

= α
(
q(xk−1, T

n(a)xk−1), q(xk−1, T
nk−1xk−1), q(xk−1, T

nk−1+n(a)xk−1),

q(Tnk−1xk−1, T
n(a)xk−1), q(Tnk−1+n(a)xk−1, T

n(a)xk−1)
)
. (16)

Let r1 ∈ {n(a), nk−1, nk−1 + n(a)} be an appropriate index such that

max
{
q(xk−1, T

n(a)xk−1), q(xk−1, T
nk−1xk−1), q(xk−1, T

n(a)+nk−1xk−1)
}

= q(xk−1, T
r1xk−1).

Since

q(Tnk−1xk−1, T
n(a)xk−1) ≤ q(Tnk−1xk−1, xk−1) + q(xk−1, T

n(a)xk−1)

≤M q(xk−1, T
nk−1xk−1) + q(xk−1, T

n(a)xk−1) ≤ (M + 1) q(xk−1, T
r1xk−1),

and

q(Tnk−1+n(a)xk−1, T
n(a)xk−1)

≤ q(Tnk−1+n(a)xk−1, xk−1) + q(xk−1, T
n(a)xk−1)

≤M q(xk−1, T
nk−1+n(a)xk−1) + q(xk−1, T

n(a)xk−1)

≤ (M + 1) q(xk−1, T
r1xk−1),

then it follows from (16) that

q(xk, T
n(a)xk) ≤ α

(
q(xk−1, T

n(a)xk−1), q(xk−1, T
nk−1xk−1), q(xk−1, T

nk−1+n(a)xk−1),

q(Tnk−1xk−1, T
n(a)xk−1), q(Tnk−1+n(a)xk−1, T

n(a)xk−1)
)

≤ α (q (xk−1, T
r1xk−1) , q(xk−1, T

r1xk−1), q(xk−1, T
r1xk−1),

(M + 1) q(xk−1, T
r1xk−1), (M + 1) q(xk−1, T

r1xk−1))

≤ γ(q (xk−1, T
r1xk−1)).

Repeating this argument and taking into account that γ is nondecreasing, it
yields that, for all k ∈ N,

q(xk, T
n(a)xk) ≤ γ(q (xk−1, T

r1xk−1)) ≤ γ2(q (xk−2, T
r2xk−2)) ≤ . . .

≤ γk(q (x0, T
rkx0)) ≤ γk(S1

x0
).

By using (P4), we conclude that Step 7 holds.
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Step 8. We claim that

lim
k→∞

q(Tn(a)xk, xk) = 0. (17)

This step follows from Step 7 and from item 4 of Lemma 3.3.
Step 9. We claim that Tn(a)a = a, that is, a is a fixed point of Tn(a).
We reason by contradiction. Assume that Tn(a)a 6= a and let

ε1 = q(a, Tn(a)a) > 0 and ε2 = q(Tn(a)a, a) > 0.

Without loss of generality, suppose that ε1 ≤ ε2 (the contrary case is similar).
By item 1 of Lemma 3.2,

γ(ε1) < ε1.

Let k0 ∈ N be such that

max
{
q (a, xk) , q (xk, a) , q(Tn(a)xk, xk), q(xk, T

n(a)xk)
}

≤ ε1 − γ(ε1)

4
< ε1 for all k ≥ k0.

By using the triangle inequality,

ε2 = q(Tn(a)a, a) ≤ q(Tn(a)a, Tn(a)xk) + q(Tn(a)xk, xk) + q (xk, a)

≤ q(Tn(a)a, Tn(a)xk) +
ε1 − γ(ε1)

2
. (18)

Since

q(Tn(a)a, xk) ≤ q(Tn(a)a, a)+q(a, xk) ≤M q(a, Tn(a)a)+q(a, xk) ≤ (M+1)ε1

and

q(a, Tn(a)xk) ≤ q(a, xk) + q(xk, T
n(a)xk)

≤ ε1 − γ(ε1)

4
+
ε1 − γ(ε1)

4
=
ε1 − γ(ε1)

2
< ε1,

the contractivity condition (3) guarantees that

q(Tn(a)a, Tn(a)xk)

≤ α
(
q (a, xk) , q(a, Tn(a)a), q(a, Tn(a)xk), q(Tn(a)a, xk), q(Tn(a)xk, xk)

)
≤ α (ε1, ε1, ε1, (M + 1)ε1, ε1) ≤ α (ε1, ε1, ε1, (M + 1)ε1, (M + 1)ε1)

≤ γ(ε1).
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From (18), it yields

ε2 ≤ q(Tn(a)a, Tn(a)xk) +
ε1 − γ(ε1)

2

≤ γ(ε1) +
ε1 − γ(ε1)

2
=
ε1 + γ(ε1)

2
<
ε1 + ε1

2
= ε1 ≤ ε2,

which is a contradiction. As a consequence, Tn(a)a = a.
Step 10. We claim that a is the unique fixed point of Tn(a).
Suppose, on the contrary, that there exists b ∈ X, with b 6= a, such that

Tn(a)b = b. Taking (3) into account, we get that

q(a, b) = q(Tn(a)a, Tn(a)b)

≤ α
(
q (a, b) , q(a, Tn(a)a), q(a, Tn(a)b), q(Tn(a)a, b), q(Tn(a)b, b)

)
= α (q (a, b) , q(a, a), q(a, b), q(a, b), q(b, b)) = α (q (a, b) , 0, q(a, b), q(a, b), 0)

≤ α (q (a, b) , q (a, b) , q(a, b), (M + 1) q(a, b), (M + 1) q(a, b))

≤ γ(q(a, b)) < q(a, b),

which is a contradiction. Hence, a is the unique fixed point of Tn(a).
Step 11. We claim that a is a fixed point of T .
By step 9, Tn(a)(Ta) = T (Tn(a)a) = Ta, which means that Ta is also a

fixed point of Tn(a). And by Step 10, Ta = a.
Step 12. We claim that, for each x ∈ X, we have that lim

k→∞
q(a, T kx) = 0.

For this purpose, we fix x ∈ X and let s ∈ {0, 1, 2, . . . , n(a)− 1} be arbi-
trary. Let define

bk = q(a, T kn(a)+sx) for all k = {0, 1, 2, . . .} .

Let show that bk ≤ bk−1 for all k ≥ 1 reasoning by contradiction. Assume
that there exists some k0 ∈ N such that bk0 > bk0−1. Therefore,

bk0 = q(a, T k0n(a)+sx) = q(Tn(a)a, Tn(a)T (k0−1)n(a)+sx)

≤ α
(
q(a, T (k0−1)n(a)+sx), q(a, Tn(a)a), q(a, Tn(a)T (k0−1)n(a)+sx),

q(Tn(a)a, T (k0−1)n(a)+sx), q(Tn(a)T (k0−1)n(a)+sx, T (k0−1)n(a)+sx)
)

≤ α
(
bk0−1, 0, q(a, T

k0n(a)+sx),

q(a, T (k0−1)n(a)+sx), q(T k0n(a)+sx, T (k0−1)n(a)+sx)
)

= α
(
bk0−1, 0, bk0 , bk0−1, q(T

k0n(a)+sx, T (k0−1)n(a)+sx)
)
.
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Since

q(T k0n(a)+sx, T (k0−1)n(a)+sx) ≤ q(T k0n(a)+sx, a) + q(a, T (k0−1)n(a)+sx)

≤M q(a, T k0n(a)+sx) + q(a, T (k0−1)n(a)+sx) = M bk0 + bk0−1

≤ (M + 1) bk0 ,

taking into account that bk0 > bk0−1 ≥ 0, it follows that

bk0 ≤ α
(
bk0−1, 0, bk0 , bk0−1, q(T

k0n(a)+sx, T (k0−1)n(a)+sx)
)

≤ α (bk0 , bk0 , bk0 , (M + 1) bk0 , (M + 1) bk0) ≤ γ(bk0) < bk0 ,

which is a contradiction. This proves that

bk ≤ bk−1 for all k ≥ 1.

Repeating the previous argument, for all k ∈ N,

bk = q(a, T kn(a)+sx) = q(Tn(a)a, Tn(a)T (k−1)n(a)+sx)

≤ α
(
q(a, T (k−1)n(a)+sx), q(a, Tn(a)a), q(a, Tn(a)T (k−1)n(a)+sx),

q(Tn(a)a, T (k−1)n(a)+sx), q(Tn(a)T (k−1)n(a)+sx, T (k−1)n(a)+sx)
)

≤ α
(
bk−1, 0, q(a, T

kn(a)+sx),

q(a, T (k−1)n(a)+sx), q(T kn(a)+sx, T (k−1)n(a)+sx)
)

= α
(
bk−1, 0, bk, bk−1, q(T

kn(a)+sx, T (k−1)n(a)+sx)
)
,

where

q(T kn(a)+sx, T (k−1)n(a)+sx) ≤ q(T kn(a)+sx, a) + q(a, T (k−1)n(a)+sx)

≤M q(a, T kn(a)+sx) + q(a, T (k−1)n(a)+sx) = M bk + bk−1 ≤ (M + 1) bk−1.

Thus,

bk ≤ α
(
bk−1, 0, bk, bk−1, q(T

kn(a)+sx, T (k−1)n(a)+sx)
)

≤ α (bk−1, bk−1, bk, (M + 1) bk−1, (M + 1) bk−1) ≤ γ(bk−1).

As γ is nondecreasing,

bk ≤ γ(bk−1) ≤ γ2(bk−2) ≤ . . . ≤ γk(b0) = γk(q(a, T sx)).
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Since a, x and s are fixed, then property (P4) implies that {bk} → 0, that is

{q(a, T kn(a)+sx)} → 0.

Varying s ∈ {0, 1, 2, . . . , n(a)− 1}, we conclude that Step 12 holds.
Step 13. We claim that, for each x ∈ X, we have that lim

k→∞
q(T kx, a) = 0.

This step follows from Step 12 and from item 4 of Lemma 3.3. Joining
Steps 12 and 13, we have proved that {T kx} → a for all x ∈ X.

Step 14. We shall show that Tn(a) is continuous at a.
To prove this assertion, we take an arbitrary sequence {yk} ⊆ X that

converges to a, that is,

lim
k→∞

q (yk, a) = lim
k→∞

q (a, yk) = 0. (19)

Let show that
q(a, Tn(a)yk) ≤ q(a, yk) for all k ∈ N (20)

by contradiction. Assume that there exists some k ∈ N such that
q(a, Tn(a)yk) > q(a, yk). Again by (3), we have that

q(a, Tn(a)yk) = q(Tn(a)a, Tn(a)yk)

≤ α
(
q (a, yk) , q(a, Tn(a)a), q(a, Tn(a)yk), q(Tn(a)a, yk), q(Tn(a)yk, yk)

)
≤ α

(
q (a, yk) , 0, q(a, Tn(a)yk), q(a, yk), q(Tn(a)yk, yk)

)
.

Since

q(Tn(a)yk, yk) ≤ q(Tn(a)yk, a) + q(a, yk)

≤M q(a, Tn(a)yk) + q(a, yk) ≤ (M + 1)q(a, Tn(a)yk),

therefore

q(a, Tn(a)yk) ≤ α
(
q (a, yk) , 0, q(a, Tn(a)yk), q(a, yk), q(Tn(a)yk, yk)

)
≤ α

(
q(a, Tn(a)yk), q(a, Tn(a)yk), q(a, Tn(a)yk),

(M + 1)q(a, Tn(a)yk), (M + 1)q(a, Tn(a)yk)
)

≤ γ(q(a, Tn(a)yk)) < q(a, Tn(a)yk),

which is a contradiction. As a consequence, (20) holds, and by (19),
{q(a, Tn(a)yk)} → 0. Moreover, as q(Tn(a)yk, a) ≤ M q(a, Tn(a)yk) for all
k ∈ N, then also {q(Tn(a)yk, a)} → 0. Therefore, {Tn(a)yk} → a = Tn(a)a,
which means that Tn(a) is continuous at x = a. This finishes the proof.
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Corollary 3.1. Let (X, q) be a complete M -symmetric quasi-metric space, let
T : X → X be a mapping and let ϕ ∈ FMat be a Matkowski function. Assume
that, for each x ∈ X, there is a positive integer n = n(x) such that

for all y ∈ X, q(Tn(x)x, Tn(x)y) ≤ ϕ(q(x, y)). (21)

Then T has a unique fixed point a ∈ X. Moreover, for each x ∈ X, we have
that lim

k→∞
T kx = a and Tn(a) is continuous at a.

Proof. Given ϕ ∈ FMat, let define αϕ : [0,∞)
5 → [0,∞) for all t1, t2, t3, t4, t5 ∈

[0,∞) by
αϕ(t1, t2, t3, t4, t5) = ϕ(t1).

Then αϕ is nondecreasing on each argument and

αϕ(t, t, t, (M + 1) t, (M + 1) t) = ϕ(t).

Then (αϕ, ϕ,M) is a Matkowski’s triple and

q(Tn(x)x, Tn(x)y) ≤ ϕ(q(x, y))

= αϕ

(
q (x, y) , q(x, Tn(x)x), q(x, Tn(x)y), q(Tn(x)x, y), q(Tn(x)y, y)

)
.

This means that Theorem 3.1 is applicable.

In the following result, the integer n = n(x) is constant.

Corollary 3.2. Let (X, q) be a complete M -symmetric quasi-metric space and
let T : X → X be a mapping. Suppose that there exists a Matkowski’s triple
(α, γ,M) and a positive integer number n such that, for all x, y ∈ X,

q(Tnx, Tny) ≤ α (q (x, y) , q(x, Tnx), q(x, Tny), q(Tnx, y), q(Tny, y))

Then T has a unique fixed point a ∈ X. Furthermore, for each x ∈ X,
lim
k→∞

T kx = a and Tn is continuous at a.

If we take λ ∈ [0, 1) and ϕλ(t) = λ t for all t ≥ 0, then ϕλ ∈ FMat and we
get the following result.

Corollary 3.3. Let (X, q) be a complete M -symmetric quasi-metric space, let
T : X → X be a mapping and let λ ∈ [0, 1). Assume that, for each x ∈ X,
there is a positive integer n = n(x) such that

for all y ∈ X, q(Tn(x)x, Tn(x)y) ≤ λ q(x, y).

Then T has a unique fixed point a ∈ X. Moreover, for each x ∈ X, we have
that lim

k→∞
T kx = a and Tn(a) is continuous at a.
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If we take ϕ(t) = t/ (1 + t) for all t ≥ 0, then ϕ ∈ FMat and we get the
following result.

Corollary 3.4. Let (X, q) be a complete M -symmetric quasi-metric space and
let T : X → X be a mapping. Assume that, for each x ∈ X, there is a positive
integer n = n(x) such that

for all y ∈ X, q(Tn(x)x, Tn(x)y) ≤ q(x, y)

1 + q(x, y)
.

Then T has a unique fixed point a ∈ X. Moreover, for each x ∈ X, we have
that lim

k→∞
T kx = a and Tn(a) is continuous at a.

3.3 The Matkowski’s theorem using a symmetric contractivity con-
dition on quasi-metric spaces

In this subsection, we show how it is possible to consider a version of Theorem
1.1 on quasi metric spaces using a symmetric contractivity condition, like in
the following result.

Theorem 3.2. Let (X, q) be a complete quasi-metric space, let T : X → X be
a mapping and let ϕ ∈ FMat be a Matkowski function. Assume that, for each
x ∈ X, there is a positive integer n = n(x) such that

for all y ∈ X,
q(Tn(x)x, Tn(x)y) ≤ ϕ(q(x, y)) and (22)

q(Tn(x)y, Tn(x)x) ≤ ϕ(q(y, x)). (23)

Then T has a unique fixed point a ∈ X. Moreover, for each x ∈ X, we have
that lim

k→∞
T kx = a and Tn(a) is continuous at a.

Although Theorem 3.2 seems to be an extension of Theorem 1.1, actually,
it is not a true generalization. In fact, we are going to show that Theorem 1.1
and Theorem 3.2 are, indeed, equivalent.

Lemma 3.4. Theorem 1.1 follows from Theorem 3.2.

Proof. If q is a metric on X, then both conditions (22) and (23) are equivalent
to (2). Then, if we assume that Theorem 3.2 holds, it is evident that Theorem
1.1 also holds.

Lemma 3.5. Theorem 3.2 follows from Theorem 1.1.
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Proof. Assume that Theorem 1.1 holds, and we are going to show that Theo-
rem 3.2 also holds. Let (X, q) be a complete quasi-metric space, let T : X → X
be a mapping and let ϕ ∈ FMat be a Matkowski function. Assume that, for
each x ∈ X, there is a positive integer n = n(x) such that (22)-(23) holds. Let
define dq : X ×X → [0,∞) by

dq (x, y) = max {q (x, y) , q (y, x)} for all x, y ∈ X.

As (X, q) is a complete quasi-metric space, it is well-know that dq is a complete
metric on X. Furthermore, given x ∈ X, let n(x) ∈ N be such that (22)-(23)
holds. Then, taking into account that ϕ is a nondecreasing function, we have,
for all y ∈ X,

dq(T
n(x)x, Tn(x)y) = max

{
q(Tn(x)x, Tn(x)y), q(Tn(x)y, Tn(x)x)

}
≤ max {ϕ(q(x, y)), ϕ(q(y, x))}
= ϕ (max {q(x, y), q(y, x)})
= ϕ(dq(x, y)).

Hence, T verifies the contractivity condition of Theorem 1.1. Such theorem
guarantees that T has a unique fixed point a ∈ X and that lim

k→∞
T kx = a for

each x ∈ X.

In our main theorems, we have used that ϕ is a nondecreasing function
satisfying (ϕ3) = (P4) and (ϕ6) = (P3). By Corollary 2.1, we can replace
these conditions by another ones.

Corollary 3.5. Corollary 3.1 and Theorem 3.2 also hold if ϕ is a nondecreas-
ing function satisfying (ϕ4) and (ϕ5).

If we take λ ∈ [0, 1) and ϕλ(t) = λ t for all t ≥ 0, then ϕλ ∈ FMat and we
get the following result.

Corollary 3.6. Let (X, q) be a complete quasi-metric space, let T : X → X be
a mapping and let λ ∈ [0, 1). Assume that, for each x ∈ X, there is a positive
integer n = n(x) such that

for all y ∈ X,
q(Tn(x)x, Tn(x)y) ≤ λ q(x, y) and

q(Tn(x)y, Tn(x)x) ≤ λ q(y, x).

Then T has a unique fixed point a ∈ X. Moreover, for each x ∈ X, we have
that lim

k→∞
T kx = a and Tn(a) is continuous at a.
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If we take ϕ(t) = t/ (1 + t) for all t ≥ 0, then ϕ ∈ FMat and we get the
following result.

Corollary 3.7. Let (X, q) be a complete quasi-metric space and let T : X →
X be a mapping. Assume that, for each x ∈ X, there is a positive integer
n = n(x) such that

for all y ∈ X,

q(Tn(x)x, Tn(x)y) ≤ q(x, y)

1 + q(x, y)
and

q(Tn(x)y, Tn(x)x) ≤ q(y, x)

1 + q(y, x)
.

Then T has a unique fixed point a ∈ X. Moreover, for each x ∈ X, we have
that lim

k→∞
T kx = a and Tn(a) is continuous at a.

4 Consequences: Fixed Point Results on G-Metric Spaces

In this section, we particularize the previous results to the setting of G-metric
spaces, and we show that some existing fixed point results in the context of G-
metric spaces can be easily deduced from our main theorems. For the sake of
completeness, we collect here some definitions and basic result about G-metric
spaces (for more details, see e.g. [3]-[18]).

In 2003, Mustafa and Sims [12] proved that most of the claims concerning
the topological properties of D-metrics were incorrect. In order to repair these
drawbacks, they gave a more appropriate notion of generalized metrics, called
G-metrics.

Definition 4.1. (Mustafa and Sims [12]) A G-metric space is a pair (X,G)
where X is a nonempty set and G : X ×X ×X → [0,∞) is a function such
that, for all x, y, z, a ∈ X, the following conditions are fulfilled:

(G1) G(x, y, z) = 0 if x = y = z;

(G2) G(x, x, y) > 0 for all x, y ∈ X with x 6= y;

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y;

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . ( symmetry in all three variables);

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) ( rectangle inequality).

In such a case, the function G is called a G-metric on X.
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Example 4.1. If X is a non-empty subset of R, then the function G : X ×
X ×X → [0,∞), given by

G (x, y, z) = |x− y|+ |x− z|+ |y − z| for all x, y, z ∈ X,

is a G-metric on X.

One of the most useful properties of G-metrics is the following one.

Lemma 4.1. If (X,G) is a G-metric space, then

G(x, y, y) ≤ 2G(y, x, x) for all x, y ∈ X.

Definition 4.2. Let (X,G) be a G-metric space, let x ∈ X be a point and let
{xm} ⊆ X be a sequence. We say that:

• {xm} G-converges to x, and we write {xn}
G−→ x or {xn} → x, if

limm,m′→∞G(xm, xm′ , x) = 0, that is, for all ε > 0 there exists m0 ∈ N
verifying that G(xm, xm′ , x) < ε for all m,m′ ∈ N such that m,m′ ≥ m0

(in such a case, x if the G-limit of {xm});

• {xm} is G-Cauchy if limm,m′,m′′→∞G(xm, xm′ , xm′′) = 0, that is, for
all ε > 0 there exists m0 ∈ N verifying that G(xm, xm′ , xm′′) < ε for all
m,m′,m′′ ∈ N such that m,m′,m′′ ≥ m0.

• (X,G) is complete if every G-Cauchy sequence in X is G-convergent in
X.

Theorem 4.1. Let (X,G) be a G-metric space and let qG : X ×X → [0,∞)
be the function defined by qG(x, y) = G(x, y, y) for all x, y ∈ X. Then:

1. (X, qG) is a 2-symmetric quasi-metric space;

2. {xn} ⊆ X is G-convergent to x ∈ X if, and only if, {xn} is convergent
to x in (X, qG);

3. {xn} ⊆ X is G-Cauchy if, and only if, {xn} is Cauchy in (X, qG);

4. (X,G) is G-complete if, and only if, (X, qG) is complete.

Lemma 4.2. The previous theorem also holds if we replace qG by q′G, defined
by q′G(x, y) = G(x, x, y) for all x, y ∈ X.

The following one is the particularization of Theorem 3.1 to quasi-metric
spaces of the form (X, qG) given in Theorem 4.1.
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Corollary 4.1. Let (X,G) be a complete G-metric space and let T : X → X
be a mapping. Suppose that there exists a Matkowski’s triple (α, γ, 2) verifying
the following property:

• for every x ∈ X, there is a positive integer n = n(x) such that, for all
y ∈ X,

G(Tn(x)x, Tn(x)y, Tn(x)y) ≤ α
(
G (x, y, y) , G(x, Tn(x)x, Tn(x)x),

G(x, Tn(x)y, Tn(x)y), G(Tn(x)x, y, y), G(Tn(x)y, y, y)
)
.

Then T has a unique fixed point a ∈ X. Furthermore, for each x ∈ X,
lim
k→∞

T kx = a and Tn(a) is continuous at a.

The same result using q′G as in Lemma 4.2 is given in the following state-
ment.

Corollary 4.2. Let (X,G) be a complete G-metric space and let T : X → X
be a mapping. Suppose that there exists a Matkowski’s triple (α, γ, 2) verifying
the following property:

• for every x ∈ X, there is a positive integer n = n(x) such that, for all
y ∈ X,

G(Tn(x)x, Tn(x)x, Tn(x)y) ≤ α
(
G (x, x, y) , G(x, x, Tn(x)x),

G(x, x, Tn(x)y), G(Tn(x)x, Tn(x)x, y), G(Tn(x)y, Tn(x)y, y)
)
.

Then T has a unique fixed point a ∈ X. Furthermore, for each x ∈ X,
lim
k→∞

T kx = a and Tn(a) is continuous at a.

As a consequence, the main result in [2] can be seen as a simple consequence
of the previous results.

Theorem 4.2. Theorem 1.2 immediately follows from Corollary 3.1.

Proof. It is sufficient to take qG(x, y) = G(x, x, y) for all x, y ∈ X in Corollary
3.1 together with Theorem 4.1. Notice that the conditions (ϕ3)&(ϕ6) and
(ϕ4)&(ϕ5) are equivalent due to Corollary 2.1.

Competing interests

The authors declare that there is no conflict of interests regarding the publi-
cation of this article.



Matkowski theorems in the context of quasi-metric spaces and
consequences on G-metric spaces 332

Authors’ contributions

All authors contributed equally and significantly in writing this article. All
authors read and approved the final manuscript.

Acknowledgements

The second author has been partially supported by Junta de Andalućıa by
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