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ATTACHMENT OBSERVABILITY OF A
ROTATING BODY-BEAM

JUDICAEL DEGUENON and ALINA BĂRBULESCU

Abstract

In this article we analyze the admissibility and the exact observability
of a body-beam system when the output is taken in a point of attachment
from the beam to the body. The single output case chosen here is the
practical measurement of the strength, its velocity or its moment. We
prove the exact observability for the moment and the admissibility for
the other cases. These results are obtained by the spectral properties of
rotating body beam system operator and Ingham’s inequalities.

1 Introduction

Understanding complex systems means focusing on their internal struc-
tures, functions, behaviour and interactions with other systems. Systems’
thinking involves the exploration of interdependencies, dynamics, and feed-
back loops occurring within the system. This involves asking how the parts
function within the whole and moving among the different levels of abstraction
to understand global function [11]. Knowledge concerning these systems [3] [7]
[16] [20] is important to forecast their behaviour, improve their maintenance
and transformation, self-organization, better understand structural tendencies
of non-orderly appearing phenomena [18].

The problem of body - beam system’ stabilization [8] has been extensively
studied in the literature. Bailleul and Levi [2] proved that in the presence of a
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structural friction and in the control’ s absence, the system has a finite number
of equilibrium states in rotation. Bloch and Titi [4] proved the existence of a
inertial variety of the system, in the situation of viscous friction. Considering
the effect of viscous amortization, Xu and Bailleul [22] proved that for all
constant angular velocity, less than a critical value, the system is exponentially
stabilisable only by a feedback of moment of control type:

Γ1(t) = 0; Γ2(t) = 0; Γ3(t) = −νω(t), ν ≥ 0.

Novel and Coron [1] built another law of moment feedback, that globally
stabilizes the system:

Γ1(t) = 0; Γ2(t) = 0; Γ3(t) = ωt(Id+

∫ 1

0

u2 dx) + 2ω

∫ 1

0

uut dx.

The problem of the boundary stabilization at the free extremity of the beam
(x = L) has also been studied. Laousy et al. [14] proved the exponentially sta-
bility of the system (without amortization) for two boundary linear controls at
the free extremity of the beam (Γ1(t) = −αutx(L, t); Γ2(t) = βutx(L, t)) and
a control of moment type (Γ3(t) = −γ(ω(t)−w∗). Chentouf and Couchouron
[6] extended the results of [14] by a class of non linear boundary controls
(Γ1(t) = −f(utx(L, t)); Γ2(t) = g(utx(L, t)); Γ3(t) = −γ(ω(t)− ω∗)).

Since the stabilization of a system is possible for measures and feedback
laws at the free extremity of the beam, the problem that naturally arises,
and is studied here, is the system stabilization for measures collected at the
attachment point. Therefore, we analyse here the existence of admissible and
stable states in the bearing edge.

2 Preliminaries

Let consider a distributed, non excited system, described by the equation
[13]:

(
∑

)

{
φ̇(t) = Aφ(t), ∀t ≥ 0,
φ(0) = φ0.

The state of this kind of system can not always be directly measured from
physical point of view. But, sometimes it is possible to collect some infor-
mation on the system and monitor its evolution during an interval of time
[0, τ0]. Thus, the observability problem is the reconstruction of the system’
state, using the measures collected on that time interval.

Assume that the state space of the study system is a Banach space, X.
If the operator associated to the system generates a C0 semi-group, then the
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solution can be written as φ(t) = T (t)φ0, and it is enough to determine φ at
each moment t, knowing the initial condition φ0.

Suppose that we collect q measures on the system, defined by the output
function:

(S)

{
y(t) = (y1(t), y2(t), . . . , yq(t))

= Cφ(t),

where C is an unbounded operator, whose domain D(C) ⊂ X is invariant
with respect to the C0 semi-group T (t)t≥0 and y(.) ∈ L2(0, T ; Rq). We have:
y(t) = CT (t)φ0 = Ψφ0(t). The observability is equivalent to the existence of
an inverse of the following operator:

Υ : L2(0, T ; Rq) 7→ X, y 7→ Υy = φ0.

Definition 2.1. The system (
∑

) together with (S) is exactly observable
if there are constants τ0 > 0 and M > 0 such that:

M−1 ‖ φ0 ‖2X≤
∫ τ0

0

‖ CT (t)φ0 ‖2O dt ≤M ‖ φ0 ‖2X . (1)

Let (
∏0

) be the open loop system given by:

(
∏0

):

 φ̇(t) = Aφ(t),
y(t) = Cφ(t),
φ(0) = φ0.

The first equation of (
∏0

) implies that φ(t) = T (t)φ0 is a weak solution.

Analyzing the second equation of (
∏0

), it results that if φ0 /∈ D(A), we can
have φ(t) /∈ D(A) and, therefore, y(t) is not defined. To get around this
difficulty, we work with the following:

Definition 2.2 [19] C is an output admissible operator for the semi-group
(T (t))t≥0 or the couple (A,C) is admissible if there are two positive constants
M, τ0 such that: ∫ τ0

0

‖ CT (t)φ0 ‖20 dt ≤M ‖ φ0 ‖2X . (2)

Proposition 2.3. An operator A has a compact resolvent in a Hilbert
space X, iff the resolvent set, ρ(A), is not void and the injection of D(A) in
X is compact, D(A) carrying the graph norm.
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3 Results

The simplified model of body-beam system discussed in the following is de-
scribed by:

utt(x, t) + uxxxx(x, t) = ω2
∗u(x, t), t > 0, x ∈ (0, 1)

u(0, t) = ux(0, t) = 0, t > 0,
uxx(1, t) = uxxx(1, t) = 0, t > 0,
u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ (0, 1)
y(t) = uxx(0, t), t > 0

(3)

where ω∗ is a positive constant, representing the rotation speed of the disc
about its axis, u(x, t) is the transverse displacement of the beam at the abscissa
x at the moment t, y(t) is the only measure of the force moment at the clamping
point. Let consider

H2
L(0, 1) = {f/f, fx, fxx ∈ L2(0, 1), f(0) = fx(0) = 0}.

The state space of system (3) is the Hilbert space X = H2
L(0, 1) × L2(0, 1),

endowed with the inner product:

< f, g >X=

∫ 1

0

{f1xx(x)g1xx(x) + f2(x)g2(x)− ω2
∗f1(x)g1(x)} dx.

The observation space is O = R, endowed with its usual inner product.

Denoting by H4(0, 1) =
{
f ∈ L2(0, 1) : ∂

βf
∂xβ
∈ L2(0, 1),∀β ∈ N

}
, we de-

fine the operators A0, and Aω∗ , respectively by:{
D(A0) = {f ∈ H4(0, 1)/f(0) = fx(0) = fxx(1) = fxxx(1) = 0}
A0f(x) = f (4)(x), ∀f ∈ D(A0).

(4)

D(Aω∗) = D(A0)×H2
L(0, 1), (5)

Aω∗

(
u
v

)
(x) =

[
0 I

−A0 + ω2
∗ 0

](
u
v

)
(x). (6)

In the following we shall denote by A the operator Aω∗ for ω∗ = 0.

Proposition 3.1. The unbounded operator A0 is linear and admits a
countable infinity of eigenvalues 0 < l1 < l2 < . . . < ln < . . . such that
limn→+∞ ln = +∞. The corresponding eigenvectors (en)n≥1 form an orthog-
onal basis of L2(0, 1).
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Proof. I. A0 is self-adjoint on L2(0, 1)
We prove that A0 is maximal monotone, symmetric on L2(0, 1) and we

apply Proposition VII.6, page 113 from [5].
• A0 is monotone and positive:

〈A0f, f〉L2(0,1) =

∫ 1

0

(f ′′(x))2 dx ≥ 0 ∀f ∈ D(A0).

• A0 is maximal:
We want to prove, by Lax Milgram, that Im(I +A0) = L2(0, 1).
Let f ∈ L2(0, 1). We want to determine an element u ∈ D(A0) such that

(I +A0)u = f. (7)

(7) is equivalent with:  u+ uxxxx = f
u(0) = ux(0) = 0
uxx(1) = uxxx(1) = 0.

(8)

Let l : H2
L(0, 1)→ R, v 7→

∫ 1

0
fv dx. l is a linear and continuous form and :

|l(v)| =
∣∣∣∣∫ 1

0

fv dx

∣∣∣∣ ≤ ‖f‖L2(0,1)‖v‖L2(0,1) (9)

But
v(x) =

∫ x
0
vξ(ξ) dξ ∀v ∈ H2

L(0, 1) and vξ(ξ) =
∫ ξ
0
vyy(y) dy ∀v ∈ H2

L(0, 1).
By Fubini’s theorem it results that:

v(x) =

∫ x

0

∫ ξ

0

vyy(y) dydξ =

∫ x

0

vyy(y)

∫ x

y

dξ dy =

∫ x

0

(x− y)vyy(y) dy.

Using Hölder’ s inequality, we deduce that:

|v(x)| ≤
[∫ x

0

(x− y)2 dy

] 1
2
[∫ x

0

|vyy|2 dy
] 1

2

=

√
x3

3
‖vyy‖2L2(0,1) ⇒

|v(x)|2 ≤ x3

3
‖v‖2H2

L(0,1)
⇒

‖v‖L2(0,1) ≤
√

3

6
‖v‖H2

L(0,1)
∀v ∈ H2

L(0, 1). (10)

From (9) and (10), it results that:

|l(v)| ≤
√

3

6
‖f‖H2

L(0,1)
‖v‖H2

L(0,1)
. (11)
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Let g be the application: g : H2
L(0, 1)×H2

L(0, 1)→ R,

(u, v) 7→
∫ 1

0

(uv + uxxvxx) dx =< u, v >L2(0,1) + < u, v >H2
L(0,1)

.

- g is a bilinear form,
- g is H2

L(0, 1) - coercive:

g(u, u) = ‖u‖2L2(0,1) + ‖u‖2H2
L(0,1)

≥ ‖u‖2H2
L(0,1)

,

- g is continuous (from (10)):

g(u, u) ≤ ‖u‖L2(0,1)‖v‖L2(0,1) + ‖u‖H2
L(0,1)

‖v‖H2
L(0,1)

≤
(

1 +
1

12

)
‖u‖H2

L(0,1)
‖v‖H2

L(0,1)
.

By Lax Milgram (Corollary V.8 page 84 of [5]) we deduce that the equation
g(u, v) = l(v) has an unique solution u ∈ H2

L(0, 1) for all v ∈ H2
L(0, 1).

By direct calculation, we prove that u satisfies the equation for all v ∈
H2
L(0, 1), ∫ 1

0

[
uxx(x) +

∫ x

1

∫ τ1

1

u(τ2) dτ2dτ1

]
vxx(x) dx−

−
∫ 1

0

[∫ x

1

∫ τ1

1

f(τ2) dτ2dτ1

]
vxx(x) dx = 0,

for all v ∈ H2
L(0, 1). This implies that, for all v ∈ L2(0, 1),∫ 1

0

[
uxx(x) +

∫ x

1

∫ τ1

1

u(τ2) dτ2dτ1

]
v(x) dx−

−
∫ 1

0

[∫ x

1

∫ τ1

1

f(τ2) dτ2dτ1

]
v(x) dx = 0.

Therefore u is a solution of the equation:

uxx(x) +

∫ x

1

∫ τ1

1

u(τ2) dτ2dτ1 −
∫ x

1

∫ τ1

1

f(τ2) dτ2dτ1 = 0. (12)

For x = 1, from (12) we obtain uxx(1) = 0.
By differentiation with respect to x, in equation (12), it results that:

uxxx(x) +

∫ x

1

u(τ) dτ −
∫ x

1

f(τ) dτ = 0. (13)
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The condition uxxx(1) = 0 is obtained putting x = 1 in (13).
By differentiation with respect to x, in equation (13), the following relation

results:
uxxxx + u = f, u ∈ D(A0)

II. A0 is symmetric.
A double integration per parts prove that:

< A0f, g >L2(0,1)=< f,A0g >L2(0,1)=

∫ 1

0

fxxgxx dx ∀f, g ∈ D(A0).

III. A0 has a compact resolvent.
A0 is the operator associated to the form g of the variational triplet

(L2(0, 1), H2(0, 1), b). Since g is H2(0, 1) coercive, then A0 est invertible by
Lax Milgram. Therefore 0 ∈ ρ(A0).

The injection from H4(0, 1) to L2(0, 1) is compact and D(A0) ⊂ H4(0, 1),
so the injection from D(A0) to L2(0, 1) is compact.

Applying Proposition 2.3, it results that A0 has a compact resolvent.

Since A0 is monotone, positive and maximal, the spectrum is formed by
real positive numbers. From III it results that the spectrum of A0 is formed
by a countable infinity of eigenvalues 0 < l1 < l2 < . . . < ln < . . . such
that limn→+∞ ln = +∞. The corresponding eigenvectors (en)n≥1 form an
orthogonal basis of L2(0, 1) [17]. Furthermore, the geometric multiplicity of
each eigenvalue of A0 is equal to its algebraic multiplicity [21].

Remark 3.2. Xu and Bailleul proved in [22] that: If ω2
∗ < l1, then Aω∗

generates a C0 group of unity operators on X and the output operator, C,
defined by: C(ϕ1, ϕ2) = (ϕ1)xx(0), belongs to L(X1, O), where X1 is the
Banach space D(Aω∗) with a graph norm on X.

In the following we consider that ω∗ is a very small constant. Since it is
possible to estimate asymptotically the size of eigenvectors of the operator Aω∗ ,
we show the exact observability of the couple (Aω∗ , C) by spectral analysis and
the inequality of Ingham.

Proposition 3.3. For all angular constant speed ω∗, the spectrum of Aω∗
can be written as:

σ(Aω∗) =
{
ν±n|ν±n = ±

√
ω2
∗ − ln,∀n = 1, 2, . . . ,m− 1

}
∪

∪
{
ν±n|ν±n = ±i

√
ln − ω2

∗,∀n = m,m+ 1, . . .
}
,

where m is the smallest positive integer such that ω2
∗ < lm. Moreover, the

corresponding generalized eigenvectors can be chosen to form a Riesz basis on
X and the eigenvalues νn or ν−n, with n 6= m− 1 are algebraically simple.
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Proof. The proof of this proposition is given in [22]. If ω2
∗ 6= ln,∀n ∈ N\{0},

all the eigenvalues of the system are algebraically simples. If ω2
∗ = ln0 for a

certain n0 ∈ N\{0}, the corresponding eigenvalue ν±n0
has a multiplicity of

second order.

Proposition 3.4.[12] Let f(t) =
∑N ′

n=N ane
−iλnt, where λn are real num-

bers, satisfying the separation relation: there is γ > 0 such that: λn−λn−1 ≥
γ > 0, ∀ N ≤ n ≤ N ′. Then, for each ε > 0 and T = π + ε, there is a
constant C(ε) > 0 (independent on N and N ′) such that:

1

2TC(ε)

∫ T

−T
|f(t)|2dt ≤

N ′∑
n=N

|an|2 ≤
C(ε)

2T

∫ T

−T
|f(t)|2dt. (14)

Moreover, the conclusion remains true for the uniformly convergent series on
the interval [−T, T ].

Theorem 3.5. For any constant angular velocity ω∗ <
√
l1, the system

(3) is exactly observable.

Proof. Part I. We find a form for the solution of (3).
ν ∈ C is the eigenvalue of Aω∗ iff there is (u, v) ∈ D(Aω∗), (u, v) 6= (0, 0)

that satisfies: 
v = νu
uxxxx − (ω2

∗ − ν2)u = 0
u(0) = ux(0) = 0
uxx(1) = uxxx(1) = 0.

(15)

Then ω2
∗ − ν2 is the eigenvalue of the operator A0 defined in (4). For all

n ∈ N\{0}, we have ln = ω2
∗ − ν2n. Choosing ω∗ small enough, such that

0 ≤ ω2
∗ < l1 < l2 < . . . < ln . . . , (16)

the spectrum of Aω∗ can be written as:

σ(Aω∗) =
{
ν±n = ±iλn|λn =

√
ln − ω2

∗, n ∈ N∗
}
, (17)

taking into account Proposition 3.3. The corresponding eigenvectors are:

φn =

[
en

iλnen

]
, φ−n =

[
en

−iλnen

]
∀n ∈ N\{0}.

We choose (en)n≥1 such that (φn)n∈Z∗ form an orthonormal basis of X.
For n ≥ 1, we define: αn =< φn, (u0, v0) >X , α−n = αn, λ−n = −λn.
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With these notations, the solution of (3) can be written as:

(u, v) =
∑
n≥1

αne
−iλntφn +

∑
n≥1

αne−iλntφn =
∑
n∈Z∗

αne
−iλntφn, (18)

y(t) =
∑
n∈Z∗

αn(en)xx(0)e−iλnt. (19)

Part II. We prove that: (en0)xx(0) 6= 0 for all n ∈ N\{0}.
Suppose, by reduction ad absurdum, that there is n0 ∈ N\{0} such that

(en0
)xx(0) = 0. Then en0

satisfies the ordinary differential equation:{
(en0

)xxxx(x) = ln0
en0

(x),
en0(0) = (en0)x(0) = (en0)xx(1) = (en0)xxx(1) = 0.

(20)

Using (en0
)x(x) as multiplier and integrating by part with respect to x on

[0, 1], we obtain from (20) that: en0(1) = 0. Analogous, using the multiplier
(en0)x(x), it results that:∫ 1

0

[
3(e′′n0

)2(x) + ln0
(en0

)2(x)
]
dx = 0.

Therefore, en0
(x) = 0, ∀x ∈ (0, 1), that argues against the hypothesis that

en0
(x) is an eigenvector of the operator A0. So, the proof of Part II is complete.

Part III. We prove that:

lim
n→+∞

|(en)xx(0)| =
√

2, |λn+1 − λn| = O(n2).

Denote by:
l = µ4 = ω2

∗ − ν2. (21)

From the second and the third equations of the system (15), it results that:

u(x) = 2a (cosh(µx)− cos(µx)) + 2b (sinh(µx)− sin(µx)) ,

where a, b are real constants. The last condition of (15) can be written as:(
coshµ+ cosµ sinhµ+ sinµ
sinhµ− sinµ coshµ+ cosµ

)(
a
b

)
=

(
0
0

)
.

u is the non-vanishing solution of the system (15) iff:∣∣∣∣ coshµ+ cosµ sinhµ+ sinµ
sinhµ− sinµ coshµ+ cosµ

∣∣∣∣ = 0⇔ coshµ cosµ+ 1 = 0. (22)
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A solution, µ, of (22) has the following properties:
• µ ∈ iR∗ ∪R;
• µ > 0 is a solution of (22) ⇔ −µ is a solution of (22);
• µ > 0 is the solution of (22) ⇔ iµ is a solution of (22).

To avoid the repetition of the eigenvalues of Aω∗ , we consider µ > 0. The
equation (22) is transcendent, so it has no algebraic solutions. The asymptotic
behavior of the solution can be studied, when n→ +∞. Its positive solutions
can be estimated by:

µn = µ0n +O(e−n), µ0n = (n− 1/2)π, ∀ n ≥ 1. (23)

where µ0n are the solutions of the equation cosµ = 0.
The constants a and b satisfy the relation: a = knb, with

kn = −
[

sinhµn + sinµn
coshµn + cosµn

]
and

(en)xx(0) = 4bknµ
2
n.

Normalizing φn in X:

‖ φn ‖2X= (2µ4
n − ω2

∗) ‖ en ‖2L2(0,1)= 1,

we obtain:
|b| =

√
|2µ4

n − ω2
∗|√∣∣∣∣ (kn + 1)2

e2µn

2µn
− (kn − 1)2

e−2µn

2µn
+ 8(k2n − 1)(−1)n

coshµn
µn

− kn
µn

+ 4k2n

∣∣∣∣.
From (23) it results that:

|kn| ∼ 1, |b|µ2
n ∼

∣∣2−O (1/n4)∣∣− 1
2 |4 +O (1/n)|−

1
2 ⇒ lim

n→+∞
|(en)xx)(0)| =

√
2.

From (17), (23) and (21) it results that |λn+1−λn| = O(n2), so, the proof
of Part III is complete. From (19), Definition 2.1, the results of Part III
and Proposition 3.4 it results that the system (3) is exactly observable. This
complete the proof of Theorem 3.5.

Remark. 3.6. The exact observability, within the meaning of the left
inequality in (1) is also true if ω∗ <

√
l1, when the output y(t) = uxx(0, t) is

replaced by y(t) = uxxx(0, t) or y(t) = utxx(0, t) in the system (3). Moreover,
in the last case, the output operator C is in L(X1, O). It would be interesting
to look to other states spaces to make them admissible and to build observers.
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Indeed, to prove the left inequality, the same procedure can be followed,
noting that:

uxxx(0, t) =
∑
n∈Z∗

αne
iλntenxxx(0), utxx(0, t) =

∑
n∈Z∗

αne
iλnt(iλnenxx(0)),

and writing the initial condition: (u0, v0) =
∑
n∈Z∗ αnφn, with

φn = [en, iλnen]T , φ−n = φn, λn = iµ2
n, µn = (n−1/2)π+O(1/n4), n ∈ N∗,

en(x) =
1√
2µ2

n

{
− sinhµn + sinµn

coshµn + cosµn
[coshµnx− cosµnx] + sinhµnx− sinµnx

}
.

From limn→∞ enxx(0) =
√

2, it results that

lim
n→∞

enxxx(0)n−1 =
√

2π, and lim
n→∞

|λn|n−2 = π2.

By Proposition 3.4. we deduce the left inequality from the exact observ-
ability definition.
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