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Abstract: In this paper, the experimental determination of the stress intensity factor in thick walled 

cylinders subject to uniform internal pressure and having longitudinal non-penetrating cracks is presented. 

Photoelastic measurements were used together with the expressions of the stress field near the crack tip for Mode I 

crack extension and a specific methodology for stress intensity factor determination. Two types of longitudinal cracks 

- internal and external - were considered. Four plane models were manufactured and analyzed in a plane 

polariscope at different values of the applied internal pressure. The values of the normalized stress intensity factor 

were calculated and the results were compared to those reported by other authors. A good accuracy was noticed, 

showing the reliability of the experimental procedure. 
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1. Introduction 

The computation of the stress intensity factor (SIF) at the tip of a crack is possible if one knows 

the stress field near the crack tip. In the scientific literature, many analytical, numerical and experimental 

methods were developed for this purpose. From the experimental methods, photoelasticity proved to be a 

very reliable one, and many scientists devoted their efforts to improve the photoelastic computation of the 

stress intensity factor. 

Etheridge and Dally [1] made a comparative analysis of several methods for the determination of 

the stress intensity factor based on the analysis of the isochromatic fringes in the region surrounding the 

crack tip. All these methods use the experimental data obtained from only one or two fringes. Irwin [2] 

used the equations of the stress field near the crack tip for Mode I to calculate the stress intensity factor 

from a single fringe data. Bradley and Kobayashi [3] modified the method of Irwin by using the values of 

the fringe order from two consecutive fringes. Schroedel and Smith [4] proposed the calculation of the 

stress intensity factor using the values of the fringe order on a line normal to the crack tip, method which 

was subsequently developed by Smith [5]. A methodology similar to that proposed in [3] was developed 

by Etheridge and Dally [6], which introduced a correction factor for the boundary effects in the expressions 

of the stress intensity factor. Chona et al. [7] used the Westergaard stress field expressions, written as series 

expansion and obtained the coefficients of the expansion using photoelastic data. Sanford and Dally [8] and 

Sanford [9-11] used photoelastic data in an iterative scheme based on the least square method and the 

Newton-Raphson procedure to obtain the stress intensity factor for a mixed Mode I + II. Their procedure 

was used in practical cases by Hyde and Warrior [12] and Mahinfalah and Zackery [13]. A similar 

overdeterministic algorithm based on photoelastic data was proposed by Stepanova et al. [14] to assess the 

complete Williams series coefficients of the linear elastic stress field in the vicinity of the crack tip for a 

wide class of experimental specimens subject to mixed mode loading: edge cracked semi-circular disk 

specimen, plates with two collinear cracks under tensile loading, pure shear loading and mixed mode 

loading. Patil et al. [15] proposed a linear least square approach to estimate the mixed-mode crack tip 

fracture parameters by solving the multi-parameter stress field equation. The stress intensity factor was 

extracted from the estimated fracture parameters, calculated using isochromatic and isoclinic data around 

the crack tip obtained by the ten‐step phase shifting technique. The method of Irwin [2] was used by 

Umezaki et al. [16] to determine the stress intensity factor in an epoxy resin plate with lateral crack under 

3-point bending, using isochromatics multiplied and extracted from original isochromatic images obtained 

from a white light photoelastic experiment. Experimental measurements using photoelasticity were 

performed by Cirello et al. [17] in order to validate a numerical procedure, which combines two hybrid 

finite element formulations, for the stress intensity factor determination in cracked perforated plates with a 
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periodic distribution of holes and square representative volume elements. A new method for calculating 

stress intensity factors was proposed by Diaz et al. [18]. They analyzed a data array calculated from two 

photoelastic images and emphasized that it is possible to obtain accurate results in a few seconds by 

capturing only the light- and dark-field images from a circular polariscope. 

In this paper, the stress intensity factor in a thick walled cylindrical shell subject to a uniform 

internal pressure and having a straight non-penetrating longitudinal crack is calculated by bidimensional 

photoelasticity. The experimental results are processed using the method proposed in [5]. In order to 

validate the obtained results, the values of the experimentally obtained stress intensity factor were compared 

to those reported by other authors. 

 

2. Methodology 

The global field equations for the stress components for a straight front crack under mode I 

conditions in an infinite plate can be written in the form [19]: 
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where (r, ) are the polar coordinates in a system of axes having the origin at the crack tip (Figure 1). The 

constant term 0x in the expression of x was introduced by Irwin [2] which observed that, when an extending 

crack moves across a plate of finite width, at a certain length the stress field equations (1) may not be accurate 

and a correction needs to be applied for a finite body. 

 
Figure 1: The system of axes 

If the measurement zone is close enough to the crack tip, the first term in equations (1) is dominant, 

e.g. the other terms become negligible, except the constant term 0x. In this case, one can write:  
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Smith [5] proposed the evaluation of the order of the isochromatic fringes on a line normal to the 

crack front, that is   =  /2, following his observations that the Mode I fringe patterns tend to spread in 

a direction approximately normal to the crack surface, expecting thus the best accuracy of the fringe 

along this direction. Rewriting equations (2) for  =  /2, one obtains: 
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The maximum shear stress in the points lying on the above mentioned line can be calculated 

using the well-known equation from theory of elasticity: 
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Using the results from equation (3), the expression of the maximum shear stress can be put in the 

form: 
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A
B

r
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in which 8IA K /   and B is a constant. On the other hand, max can be calculated using the 

photoelastic data as: 
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2
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where N is the fringe order in a certain point and f is the photoelastic constant of the model. Normalizing  

equation (5) with a  and denoting 
max 8appK r   as the apparent stress intensity factor, one 

obtains 
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in which  is the load parameter, which, for the studied structure is the uniform pressure p acting on the 

internal wall of the tube. From equation (5), valid under the assumptions of linear elastic fracture mechanics 

(outside the nonlinear zone at the crack tip), one can notice a linear variation of the normalized apparent 

stress intensity factor / ( )appK a   with the non-dimensional parameter /r a . Thus, in a set of 

photoelastic data, one needs to identify the linear zone and extrapolate this line across the nonlinear zone 

to the crack tip in order to obtain the value of the normalized stress intensity factor. Smith [20] emphasizes 

that the accuracy of the method depends on the ability of the experimentalist to locate the linear zone and 

suggests that this zone may be found for /r a   greater than 0.4 and up to  0.7 or more. 

 

3. Experimental procedure 

Photoelastic experiments were made on four circular rings, having a radial non-penetrating crack, as 

plane models of a tube with a straight longitudinal crack. The dimensions of the models together with the 
applied internal pressure, are presented in  
 

 

Table 1. 
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Table 1-  Geometry of the models and the applied loads 

Model 

no. 
Crack type 

External 

radius 

Re [mm] 

Internal 

radius 

Ri [mm] 

Re/Ri 

Crack 

length 

a [mm] 

a/t 

(t = Re-Ri) 

Applied 

pressure 

p [MPa] 

1 external 40 20 2 8.2 0.41 2.27 

2 internal 40 20 2 4.8 0.24 1.89 

3 external 50 20 2.5 15.3 0.51 1.89 

4 internal 50 20 2.5 7.4 0.25 1.99 
 

The models were manufactured from an araldite plate, having a thickness of  5.6 mm. The cracks 

were saw cut and sharpened at the tip with a razor blade. The photoelastic constant of the model f = 2.28 

MPa/fringe was obtained using a disk made of the same photoelastic material loaded radially in 

compression and having the same thickness as the specimens [21]. In order to apply a uniform pressure 

on the internal surface of the rings, a simple device was used (Figure 2).  

 
Figure 2: The loading device 

The device is made of a rubber cylindrical tube having the external diameter equal to the internal 

diameter of the model. The tube is compressed longitudinally using a screw - nut system, increasing it’s 

external diameter and applying thus a uniform pressure which causes the opening of the crack in Mode I, 

[21]. 

For the stress intensity factor computation, it is necessary to know the value of the internal 

pressure p in each case. For this, one can use the expressions of the radial and hoop stresses in an uncracked 

thick walled tube subject  to uniform internal pressure: 
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These stresses are the principal ones, which means that, along an isochromatic fringe, the value  of  

r  h is constant and equal to Nf,  N  being the fringe order. One can determine the fringe order N on a 

diameter perpendicular to the crack, where the influence of the crack on the isochromatic field is negligible. 

Taking into account equations (8), one obtains: 
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where rN is the radius of a point where the fringe order is N. Thus, the expression of the applied internal 

pressure can be written as 
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The values of the applied pressure calculated with equation (10) are listed in  
 

 

Table 1. Pictures of the isochromatic fringes are shown in Figure 3. 

 

    
a     b 

Figure 3: Isochromatic fringes for the external crack (a) and internal crack (b) 

All models were analyzed in a plane polariscope and the fringe order on a line starting from the crack 

tip and normal to the crack plane was determined using the Tardy compensation method. In order to 

compensate the manufacturing errors, measurements were made on both sides of the crack and the results 

were averaged. It should be underlined that, in the case of the internal crack, the loading device does not 

apply the pressure also on the crack faces, as it happens in the case of real a cylindrical shell with an internal 

crack, subjected to internal pressure. This must be taken into account when comparing the obtained results 

with those of other authors. 

 

4. Results  

The variation of the normalized apparent stress intensity factor  /appK p a  versus /r a  is 

plotted in Figure 4 for all four considered cases. For each case, only the points in the linear area of the 

graph were considered for extrapolation. These points are marked on the plots with black rhombs, while 

the points that were discarded are represented as hollow rhombs. In each case, the equation of the linear 

fit is displayed on the graph. It can be seen that, in all cases, the coefficient of determination R2 (goodness 

of fit) has values between 0.939 and 0.998, showing thus very small differences between the obtained 

results and the proposed fit.   
In order to check the accuracy of the experimental results, comparison was made with non-

dimensional SIF values reported by other authors for the same structure. 
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Figure 4: Variation of the non-dimensional stress intensity factors for all studied cases 

In the case of an internal crack, a general equation for the normalized stress intensity factor is 

given by Kendall [22] for a load (internal pressure) acting on both the internal wall and on the crack faces, 

which is not the case in this research, as mentioned earlier. To obtain the stress intensity value for the case 

when pressure is applied only on the internal surface of the ring but not on the crack faces, one should 

find also in the literature values of SIF for a pressure applied only on the crack faces. Then, these values 

should be subtracted from those obtained using the equation proposed in [22]. Such results were reported 

by Andrasic and Parker [23] for different  Re/Ri and a/t ratios. Since the a/t values used in the present 

research are not tabulated in [23], they were obtained by polynomial interpolation. In the case of a single 

external crack, results are presented by Pastramă and de Castro [24]. 

The experimental results for all four models, together with similar results reported in [22-24] are 

given in Table 2. One can notice a very good agreement between the two sets of results, showing a relative 

error of less than 3%. In Table 2 are also listed values of the non-dimensional parameter (r/a)1/2 in which 

the linear zone of the plot is extended. These values are in good agreement with the predictions from [20]. 
 

Table 2- Comparison between the experimental results and those of other authors 

Re/Ri a/t crack type 


I
K / p a  Relative error 

[%] 

Extent of the 

linear zone experimental [22-24] 

2 0.41 external 1.248 1.272 1.89 (r/a)1/2  (0.36 , 0.76) 

 0.24 internal 1.63 1.595 -2.19 (r/a)1/2  (0.42 , 1.18) 

2.5 0.51 external 0.925 0.901 -2.66 (r/a)1/2  (0.4 , 0.64) 

 0.25 internal 1.122 1.111 -0.99 (r/a)1/2  (0.56 , 1.36) 

 

5. Conclusions 

A photoelastic experiment was undertaken in order to determine the normalized stress intensity 

factor in a thick walled cylindrical shell subject to a uniform internal pressure and having a straight 

longitudinal non-penetrating crack. Four plane models, two with an internal crack and two having an 

external crack, were analyzed. The values of the apparent stress intensity factor for each case were plotted 

against r / a  and the linear zone was extrapolated at the crack tip. A simple device was used to apply a 

uniform internal pressure, whose values were determined from photoelastic data collected far from the 

crack tip. The extent of the linear zone of the graph was determined in each case and compared with the 

predictions from the literature. The values of the normalized stress intensity factor obtained in this 

experimental work were compared to those reported by other authors. A good agreement was noticed, 

showing a difference of less than 3% between the results. One can conclude that the methodology is 

reliable and can be successfully used for stress intensity factor determination. 
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