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Apart from the basic thermal applications of pyrolysis, certain 
other aspects of it must be addressed properly. For the same 
purpose, there is a need for a robust modelling scheme 
which can efficiently describe the pyrolysis phenomenon. 
At the elementary level, the thermal degradation of 
material (Li et al., 2009; Yan et al., 2009) (biodegradable or 
non-biodegradable) is performed by the thermogravimetry 
technique. This technique measures the extensive, as well 
as intensive properties of materials such as the mass, heat 
flux, and temperature variation of material with respect to 
the reference material. However, one of the most inherent 
parts of pyrolysis is the yield of secondary fuels, which can 
be further processed to get energetic biofuels. Therefore, 
the kinetic analysis of conversion process plays a major role 
in the determination of characteristics of the final products 
obtained from thermal degradation.

Method of assessing the kinetics of any process 
depends on the condensed phase reactions, as they 
guide the formulation of absolute rate theory without the 
involvement of momenta or ballistic motion. They signify 
position probability of particles (if the number of steps 
increases, probability follows the Gaussian distribution). 
Moreover, it also leads to an important approximation that 
activities of the reactants and products can be assumed to 
be one, or it would not be part of the equilibrium constant 
(Burnham, 2017). Mathematical schemes, iso-conversional 
and model-fitting methods, are used to simplify the kinetic 
mechanism of pyrolysis, but they have certain merit and 
demerit over each other. Inconsistent values of Arrhenius 
parameters and their hypothesis make them depart from 

the realistic overview of the problem. Chemical kinetics of 
material is determined by the reactivity of any given set of 
reactions. It becomes difficult to tackle a situation where 
one can compromise with the intrinsic behaviour of biomass 
pyrolysis. Therefore, there is a need to approximate the rate 
equation by using an asymptotic approach.

In this paper, the emphasis is laid on the effect of kinetic 
parameters on the approximated solution of the multi-
reaction model. Several simplifications and approximations 
to the multi-reaction model are performed for an ideal 
thermal profile. Therefore, the heating rate is considered 
to vary with time. Furthermore, the effect of altering the 
sample temperature profile is also examined to determine 
the trend of the mass-loss curves. Thereafter, a comparative 
sketch of temperature non-linear variation is drawn against 
the results obtained from the isothermal and non-isothermal 
conditions.

Mathematical modelling of biomass pyrolysis
It has been assumed that the activation energies of 
concurrent reactions could be represented through the 
continuous normal distribution function (Anthony and 
Howard, 1976). However, the same model is tested for 
the different density functions, and it is reported that 
the modelling of biomass pyrolysis can be can be rather 
precisely described by the Rayleigh distribution than the 
Gaussian distribution (Dhaundiyal and Singh, 2018a). 
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The Gamma and the Gaussian distributions, on the other 
hand, provide a good insight into the constant thermal 
history. A detailed study of assumption and restriction is 
reported in the literature (Dhaundiyal and Tewari, 2017). 
The material of interest is having a variety of reactivity; 
hence, it is reasonable to distinguish the set of independent 
parallel reactions by the differential equation for ith number 
of reactions. The solid-state reaction rate equation can be 
represented by Eq. 1:

		  (1)

where:
ki(T)	 –	 the rate constant, (1 – αi) denotes the remaining 

mass fraction
t	 –	 time
f(αi)	 –	 the conversion function

The sum of the initial (1 – αi) should not be more than 
one. Parallel reaction model can be generalised from a set 
of discrete reactions to a continuous distribution. The final 
solution of differential equation (Eq. 1) is provided by Eq. 
2. It is evident from Eq. 2 that the integral has no analytical 
solution; therefore, it requires some approximation schemes.

The mathematical expression of non-isothermal nth 
order multi-reaction model equation derived from the Eq. 
1 is:

		  (2)

where:
G(E)	 –	 the continuous distribution function
n	 –	 represents the reaction order
D(T)	 –	 the double exponential term
T	 –	 temperature
E (kJ·mol-1)	– denotes the activation energy.

To simplify the integral Eq. 2, the arbitrary unitless 
variable ‘z’ and the energy correction scale y are assumed to:

where:
z0 and zm	 –		lower and upper limits of the double 

exponential function
R	 –	a universal gas constant
χ (kJ·mol-1)	–	the threshold parameter

Eq. 2 denotes the distributed activation energy model 
equations for the first, as well as nth order reactions. It 
comprises two components. One of the components refers 
to the double exponential term D(z), which is a function of 
non-linear thermal history encountered by the sample of 
biomass, whereas the other term denotes the continuous 
distribution function of varying activation energies of 

the overlapped concurrent reactions. To demonstrate the 
approach, the temperature depending term is simplified as 
Eq. 3:

	 (3)

Deciding an appropriate density function should be 
accomplished with serious attention. In the stochastic 
modelling of biomass pyrolysis, density function represents 
the probabilistic behaviour of all those overlapped parallel 
reactions which differ in activation energies by a small 
margin. It is difficult to quote the superiority of one form 
over another, despite there being various other schemes 
proposed to describe the biomass with good accordance 
between experimental and predicted solution. The most 
common distribution function is Gaussian (Dhaundiyal and 
Tewari, 2017), but it is not necessary that thermo-analytical 
data follow the symmetrical pathway. There are also some 
other ways of analysing the problem of biomass pyrolysis 
(Dhaundiyal and Singh, 2017a). The function G(E) is 
considered to follow three parametric forms (3-P) of Weibull 
distribution, where ‘χ’ (kJ·mol-1) represents the minimum 
barrier of the energy required to initiate the reactions. Here, 
μ and β (kJ·mol-1) denote the shape and scale parameters of 
the Weibull distribution function respectively:

	 	 (4)

The practical value of dimension-less ratio            is always 
δ >> 1.

The major drawback of the computational mechanism is 
to solve two distinct components simultaneously. Therefore, 
it requires a lot of resources to evaluate it for multiple times. 
In the previous approximation, Miura (1995) proposed the 
relationship for the effective disparity between activation 
energies of reactions by replacing the double exponential 
term with its approximations without paying heed to 
their influence on the value of the conversion (α) at the 
point of discord. His approach is latterly rebutted by Cai 
and Liu (2011). Assessment of Miura’s approximation led 
to the miscellaneous value of frequency factor when the 
predicted solution is synchronised with the Gaussian 
distribution. Mathematically, with some assumption, the 
double exponential term can be approximated by the 
conventional Laplace scheme rather than the hit and trial 
methods. Hence, it is crucial to estimate the behaviour of the 
exponential term by demarcating the passive domain from 
the active ones.

To demonstrate the approach, ramping profile of 
temperature is assumed to follow the course of the parabolic 
temperature programme:

	 T(K) = al2 + T0(K)	 (5)

where:
l (min)	–	 an instant of time

a (°C·min-2)                        –  represents the rate of change of heating 

	 rate (θ).
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Boundary conditions for non-linear thermal history is 
given as:

T(0) = T0; T(t) = Tm

The expression for double exponential term is expressed 
as:

		  (6) 

Applying the Laplace approximation to Eq. 6, we get:

 		  (7)

It is obvious from Eq. 7 that the function D(z) leaps from 
zero to one as y increases by stepwise width of yw around 
the neighbourhood of the mean value of energy correction 
factor, ys, thus it can be approximated through the Taylor 
series expansion about y = ys:

	 J(y) ~ J(ys) + (y – ys) J‘(ys) + ...	 (8)

where:

Using the following conditions, J(ys) = 0 and 

we get the values of: 

  

where:
τ	 –	 a time scale factor
W(τ)	 –	 represents the Lambert W function

Note: The ratio of  lies in domain of (0,1), therefore, τ will always be 

positive real number. Since 

Eq. 2 demarcates two different set of reactions for the 
first and nth order reactions, hence they are solved and 
programmed separately. Thereafter, the mutually exclusive 
effect of them on the numerical solution is graphically 
demonstrated.

Case 1: The first order reaction scheme
All the parallel reactions that follow the first order reactions 
are represented by Eq. 2:

		  (9)

Let v = (y – 1) be integral form transformed into:

	 	 (10)

The term                 in Eq. 10 is assumed to be
negligibly  small everywhere except at the vicinity of ys, 
therefore, it is to be evaluated by the Taylor expansion about 
y = ys. 

To demonstrate the approximation scheme of nth multi 
reaction model equations, application of Heaviside step 
function H(x) is introduced to differentiate the distribution 
of activation energies for two different intervals of x.

After incorporating the step function H(x), Eq. (10) can 
be represented in the form:

	 	 (11)

Further simplification yields:

	  (12)

Eq. 12 represents the required expression for the first 
order reactions.

The parameter Ii is an unbiased parameter that needs to 
be computed once, so the first few computed values are:

I0 ≈ -0.5772, I1 ≈ -0.9890, I2 ≈ -1.8149, I3 ≈ -5.8903

To improve the accuracy of the given numerical solution, 
the other integral terms can be evaluated through integral 
equation:

Case 2: The nth order reaction scheme
Similarly, the numerical solution for nth order multi reaction 
model can be derived through the Binomial expansion of 
Eq. 13 as:

(13) 
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Rearrangement and simplification of Eq. 13 yields the 
desirous expression for nth order reactions:

	 W	 (14)

Eq. 14 represents the required expression for nth order 
reactions.

Here, the first few values of independent parameters (Uk, 
Vk, Wk) are given below: 

U0 ≈ -0.3678, U1 ≈ -0.2357, U2 ≈ -0.1727, U3 ≈ -0.1360,

V0 ≈-0.5676, V1≈ -0.3515, V2 ≈ -0.2525, V3 ≈ -0.1964,

W0 ≈ -0.6832, W1 ≈ -0.4110, W2 ≈ -0.2906, W3 ≈ -0.2238.

Modelling and simulation of prototype model 
MATLAB R2015a software is considered for the computation 
and simulation process. The non-linear thermal history 
experienced by the biomass sample is programmed for 

iterative loops. The objective functions of the computational 
problem are expressed by Eq. 12 and Eq. 14. Each allocated 
value goes through a common checkpoint for evaluating the 
acceptable range of permissible error. Until and unless the 
value qualifies itself as a suitable member of the permissible 
range, the iterative loop keeps looking for another assigned 
value to the input system. Eventually, thermo-chemical 
parameters are examined on the criterion of constraints 
imposed on the given pyrolysis problem. As the root mean 
square error and coefficient of regression is the foundation 
of grey box modelling, comparative tabulation of the non-
linear regime with linear ramping thermal history is given 
in Table 1.

Application of pine waste
Chemical analysis is performed through the CHNO-S 
analyser, whereas the higher heating value of pine waste 
is recorded with the help of a bomb calorimeter. Thermal 
evaluation of pine waste is based on thermogravimetric-
differential thermal analyser (Diamond TG/DTA, Perkin Elmer, 
and USA). The sample of 5.68 mg is heated in a crucible pan 
of alumina from 303 K to 923 K. To circumvent the obnoxious 
error of buoyant effect at the high temperature, horizontal 
differential type of prototype analyser is considered for 
experimentation. Thermocouple type ‘R’ is involved to 
measure the temperature inside the furnace. The volumetric 
flow rate of inert gas inside the chamber is fixed to 
200 mL·min-1. Indium and tin are used as reference materials 
for the differential thermograms. Thermoanalytical data of 
pine needles sample is used for the qualitative assessment 
of multi-reaction model through a physically distinct regime 
of temperature. Elemental composition of pine needles is 
illustrated in Table 2.
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Table 1	 Comparative error of different non-isothermal profile

Distribution type Ramping profile (non-isothermal) Root mean square error (RMSE) R2 (coefficient of regression)

Weibull
distribution

linear 0.11  0.822

parabolic  0.070  0.960

Table 2	 Elemental composition of pine needles

C% H% N% O% S% Ash content (%) Higher heating value (MJ·kg-1)

53.7 5.21 0.61 32.13 0.22 4.72 19.5

 

Fig. 1	 The effect of frequency factor (A) on the numerical solution
a – first order; b – nth order (χ = 1.10 kJ·mol-1; μ = 0.70; β = 0.85 kJ·mol-1; T0 = 290 K; a = 0.0135 °C·min-2)

 a b
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Fig. 2	 The effect of location parameter of Weibull distribution on numerical solution (χ)
a – first order; b – nth order (A = 103 min-1; μ = 0.70; β = 0.85 kJ·mol-1; n = 1.6; T0 = 290 K; a = 0.0135 °C·min-2)

 a b

 

Fig. 3	 The effect of the scale parameter (β) of distribution function on the numerical result
a – first order; b – nth order (χ = 1.10 kJ·mol-1; μ = 0.70; A = 103 min-1; n = 10; T0 = 290 K; a = 0.0135 °C·min-2)

 a b

 

Fig. 4	 The effect of the shape parameter (μ) of distribution function on the numerical result
a – first order; b – nth order (χ = 1.10 kJ·mol-1; β = 0.85 kJ·mol-1; A = 103 min-1; n = 1.6; T0 = 290 K; a = 0.0135 °C·min-2)

 a b

 

Fig. 5	 The effect of initial temperature (T0) of furnace on the numerical result
a – first order; b – nth order (χ = 1.10 kJ·mol-1; β = 0.85 kJ·mol-1; A = 103 min-1; n = 1.6; μ = 0.70; a = 0.0135 °C·min-2)

 a b
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The effects of various parameters on the pyrolysis problem 
are embedded together, and it is graphically illustrated. 
The effect of frequency factor (A) for the non-linear regime 
is shown in Fig. 1a, b. At the onset of the pyrolysis process, 
the remaining mass fraction which is denoted by (1 – a) is 
approximately equal to one and as temperature increases 
with time, it decreases unless it reaches its residual mass 
(mr). It seems that undulation in the remaining mass curves 
decreases as the decreasing trend in the frequency factor 
value has been encountered. Consequently, the curves 
get shifted in the right direction. Although the stochastic 
modelling through non-linear approach is perfectly 
depicting the initiating point of evaporation (the sunken 
segment of the curves), the rate of change of (1 – a) with 
time is very subtle with the molecular collision of reactants. 
Therefore, the validation of the predicted model is suitable 
within the given range of 103 <A(min-1) <105. If the value 
exceeds 105, the condition of ‘no-solution’ arises as it is 
impossible for (1 – a) to be negative or more than one 
unless the surface oxidation affects the chemical affinity of 
the pyrolytic reactions. On the other hand, the domain of 
frequency factor less than 105 makes pyrolysis process slow, 
and the higher level of residual weight is obtained through 
the stochastic model, which overrides the possibilities of 
occurrence of proper devolatilization process. Observance 
for both cases (first-order, as well as nth order reactions) 
states the rate of conversion (α) decreases at a low value of 
A. The influence of variation of activation energy (E∞) on the 
numerical solution is illustrated in Fig. 2a, b. The increase in 

Results and discussion

 

Fig. 6	 The effect of upper limit of activation energy (E∞) on the predicted result
a – first order; b – nth order (χ = 1.10 kJ·mol-1; μ = 0.70; β = 0.85 kJ·mol-1; T0 = 290 K; a = 0.0135 °C·min-2; A = 103 min-1)

 a b

 

Fig. 7	 Comparative sketch of experimental and predicted nth 
order pattern for non-linear thermal history

the upper limit of activation energy causes shift of (1 – a) 
curves to the left direction. The domain of activation 
energies for higher and the first order reactions has a variant 
effect on the shape, as well as thermochemical attributes 
for the non-linear regime of thermal decomposition. 
As the difference between activation energies of 
reactants gets wide up, the rate of conversion changes 
with time. For the activation energies of the first-order 
reactions E∞  >60  kJ·mol-1, the conversion of biomass is 
relatively faster than all those reactions that take place at 
E∞ >60 kJ·mol-1. Unlike the case of the first order, nth order 
reactions add up the concrete values to the outcome 
of the stochastic modelling. The interval of 55  kJ·mol-1 
≤ E∞ <60 kJ·mol-1 gives a promising result to the numerical 
solution. Inequality holds good for the given experimental 
conditions, else the solution converges to the isothermal 
conditions of pyrolysis (Dhaundiyal and Singh, 2017b). 
The values obtained through stochastic modelling exhibit 
the compensatory effect amongst Arrhenius parameters, 
especially for activation energies (Burnham, 2014).

The effect of scale parameter β (kJ·mol-1) of distribution 
function on the numerical solution is depicted in Fig. 3a, b. 
The domain of β unanimously agreed for the higher and 
first-order reactions. The condition of no solution is imposed 
for all the values of β ≤0.70, therefore, the defined domain 
of the scale parameter to get the desirous result is 0.90 ≤ 
b <1.075. Unlike the Arrhenius parameters, the slope of 
conversion remains the same, but the temperature scale 
shifted up for the given domain of b.

The influence of the shape μ and the location parameters 
χ (kJ·mol-1) of distribution function on the numerical solution 
is depicted in Fig. 4a, b and Fig. 5a,  b, respectively. Likewise, 
to the activation energies variation, the first and nth order 
reactions are inconsistent to each other. The magnitude of 
the shape parameters μ for μ ≤0.85 is asymptotically stable 
and provides solution to the experimental solution except 
for some infringement at the outbound of (1 – a), however, 
the first-order reaction prediction defied the solution 
outright at μ ≤0.85. Therefore, the common solution for 
both reaction regimes lies in the domain of 0.75 < μ < 0.85. 
The value of the shape parameter causes the conversion α to 
increase drastically and shift of the (1 – a) curves downward. 
On the other hand, the decrease in the location or threshold 
parameter initiates the pyrolysis process spontaneously, and 
the conversion α becomes independent of the temperature 
scale for a certain time. The domain of threshold parameter 
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for the precise solution of the predicted solution varies from 
0.90 < χ ≤ 1.11. 

The relevance of physically different regime of thermal 
history and its effect on the predicted remaining mass 
proposition is depicted in Fig. 6a, b. With the increasing 
initial temperature (T0), the remaining mass fraction curves 
shifted towards the left, therefore, the temperature scale is 
reduced for the same conversion value. The behaviour of the 
curve changes rapidly to exponential decaying function as 
temperature elevates for the same initial time. The predicted 
solution converges swiftly at the vicinity of 284 K, therefore, 
the initial experimental parameter (T0) must exist in an open 
interval of 284 < T < 289. 

On the other hand, the precise solution for the first 
order reactions is obtained for all the values of T0(K) ≥ 289. 
This implies that the first order reaction requires a  high-
temperature range to maintain the same conversion than 
that of the nth order reactions at the same instance of time 
l (min). At the onset of pyrolysis process, the inflexion 
points are visible, which demarcates evaporation of water 
content in the biomass, but as the temperature decreases, 
the inflexion point changes at the same time for different 
initial temperature (T0). The domain of ‘a’ for the first- order 
reaction suggests the numerical solution ∀a <0.014 °C·min-2. 

It is worth mentioning that quantitative analysis of linear 
ramping problem (Dhaundiyal et al., 2019; Dhaundiyal et al., 
2018b) of non-linear thermal history provided the qualitative 
insight of the same problem through better fitting of 
predicted model to the given thermo-analytical data (Table 
1). It is observed through linear ramping that the activation 
energy is increased for the same experimentation when the 
linear thermal history is executed, therefore it is sure that 
frequency factor and activation energy vary simultaneously 
with thermal history. Sensitivity and attributes of curves 
largely rely upon scale, threshold and shape parameters. 

Conclusion
Through predicted data of non-linear thermal history, 
57.5 kJ·mol-1 can be incorporated as the upper limit of 
activation energies, which is a bit lower than the expected 
ones (Dhaundiyal and Singh, 2018a) due to the mutually 
compensatory effect. On the other hand, the frequency 
factor lies in the range of 103 to 105 min-1. The initial 
temperature should be more than 289 K. The value of ‘a’ 
lower than 0.014 °C·min-2 violates the boundary  condition,  
therefore the value of 0.014 °C·min-2 is considered as the 
minimum permissible value of the parameter ‘a’. The value 
lower than 11 kJ·mol-1 exhibit (1 – a) curve becomes 
asymptotic to the isothermal lines. The reaction order 
should be within the domain of 0.9 < n <1.6 for numerical 
prediction of the non-linear ramping profile. The derived 
results provided good information about variation of the 
heating rate with time and the effect of initial temperature 
on the different reaction orders.  
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