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The Distributed Activation Energy Model (DAEM) or Multiple 
Reaction Model (MRM) applies either to the total amount of 
volatiles released or to the amount of an individual volatile 
constituent like carbon monoxide or tar (Howard, 1981). It 
is also called the Distributed Rate Model, and uses Vand’s 
treatment of independent parallel processes (Vand, 1943) 
in modelling the resistance of metallic films. The detailed 
study includes the total amount of volatiles released during 
the pyrolysis process (Howard, 1981; Donskoi and McElwain, 
1999). Originally, the coal devolatilization, however, was 
considered first to develop the Distributed Activation 
Energy Model (Pitt, 1962), yet the DAEM also applies to the 
pyrolysis of other materials, including biomass, residual oils, 
resin char (Teng and Hsieh, 1999), and kerogen (Lakshmanan 
and White, 1994). Calculations of solutions to this model 
involve evaluations of double integrals, which vary rapidly 
and hence create significant numerical difficulties. In order 
to tackle the integral complication, asymptotic expansion 
has been adopted for the accurate approximation to our 
problem. The solution for the DAEM model is given by Eq. (1):

		  (1) 

where:
T (t)	 –	 the time varying absolute temperature of the 

biomass
R	 –	 the universal gas constant

E	 –	 the activation energy
k0	 –	 the pre-exponential or frequency factor
β (β >0)	–	 the scale parameter of initial distribution function 

respectively

The aim of this paper is to use asymptotic methods to 
make accurate approximations to the integrals and thereby 
evaluate the influence of relevant parameters on the 
biomass pyrolysis.

Asymptotic expansion
The relationship between the DAEM and the single first 
order reaction model have been explored by Niksa and 
Lau (1993), which is based on the approach of holding 
the activation energy fixed, and defining an effective or 
nominal rate constant <k> (Niksa and Lau, 1993). They 
also gave an analytical approximations to the DAEM for 
the exponentially and the linearly varying temperature 
profiles. The basis of approach lies on exploiting the rapid 
changes occurring in the double exponential term in Eq. (1). 
The procedure adopted by Niksa and Lau (1993) provides 
accurate approximations to the DAEM for all the relevant 
parameters for the kinetic mechanism of biomass pyrolysis. 
The modification done by them is simply refinement of the 
concept applied by Suuberg (1983), who used unit step 
function approximation to Double exponential term (DExp) 
(Howard, 1981; Vand, 1943; Pitt, 1962). In the subsequent 
sections, a more accurate approximation to DExp has been 
developed, which is implemented in the two different types 
of distribution cases (Narrow and Wide distribution).
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Material and methods
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Simplification of Double exponential term (DExp)
The integrand in Eq. (1) contains two terms. The first term 
(DExp) depends on time through the temperature history 
experienced by the sample. The second part is independent 
of time and depends on the distribution of volatiles in the 
sample. 

Approximation to the double exponential is 
represented as:

		  (2)

In order to motivate the stepwise simplification of 
this integrand, some typical values of the parameters and 
functions are considered. The frequency factor or pre-
exponential term is mainly in the range of k0 ~ 1010–1013 s-1, 
whereas the activation energies of interest are in the 
range from 100 kJ·mol-1 to 300 kJ·mol-1. The typical values 
of temperatures depend on the particular experiments, 
but 1000 K to 2000 K is usually used. To demonstrate the 
simplification method, the temperature is considered to 
ramp linearly with time (t). T = mt, DExp becomes:

		

where:
m	 –	 heating rate (°C·min-1)

The integral in the exponent can be approximated by

using the Laplace approach, where the parameter   is

assumed to be large, hence the major contribution from the 
integral is when the value of u is near t or the temperature is 
near its maximum. This provides the well-known asymptotic 
approximation to DExp function:

		  (3)

Eq. (3) can also be expressed in the form: 

where the function varies from zero to one as E increases, 
over a range of step size Ew around the central value Es.

Let 

After comparing it with Eq. (3), we get:

The behaviour of Es is of interest, so h(E) is expanded by 
using Taylor series:

h(E) ~ h(Es) + (E – Es) h‘(Es) + ...

Now h(E), Es and Ew are chosen in such a manner: 

h(Es) = 0  and  h(Es) = 

After solving, we have:

where:
Y(x) – represents Lambert W function

Distribution function
There are two different limits which are applied to the 
distribution function F(E). One, which is relatively wide initial 
distribution as compared with the width of DExp, is known as 
a wide initial distribution. If the initial distribution function 
is relatively narrow as compared with the width of DExp, it 
is defined as a narrow initial distribution. The significance 
of the distribution type defines the shape of the total 
integrand, which changes with time and applied limit. When 
the initial distribution is relatively wide compared to Ew, the 
total integrand initially behaves similar to the distribution 
F(E). As time proceeds, it is truncated from the left by the 
step-like DExp. Moreover, the location of the maximum of 
the total integrand varies significantly and hence the shape 
becomes quite skewed. On the contrary, the total integrand 
remains similar in shape to the initial distribution:

where:

                                             and Es and Ew are functions of 

         time (t)

Energy is now rescaled by                      . So the problem becomes:

		  (4)

		  (5)

For linear ramp temperature T = mt:

Wide distribution case
In this case, the initial distribution is much wider than DExp. 
To tackle this, the limit dyw <<1 is considered. In this limit, 
DExp jumps from zero to one near y = ys, as given previously 
(Howard, 1981; Vand, 1943; Pitt, 1962; Suuberg, 1983) and 
been approximated by the step-function. 
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Eq. (1) is rewritten in the form:

or

		  (6)

where:

Note that in the first integral, the integrand is the initial 
distribution multiplied by function which is very small 
everywhere but in a neighbourhood of size yw around the 
point y = ys. Therefore, this integrand can be approximated 
by expanding the initial distribution.

Expanding  the  term                                                  with the 

help of Taylor series about y = ys:

or 

Substituting                       , we get: 

Each of the integrals arising from a term in the Taylor 
series can be integrated separately to get the result for the 
first order reaction (n = 1) as:

	

		   (7)

The values of coefficient Mn (n = 0, 1, 2, 3…) need only 
to be evaluated once, since they are independent of any 
parameters. The first few values are:

M0 ≈ -0.5772 M1 ≈ -0.98906 M2 ≈ -1.81496 M3 ≈ -5.8903

The values of the remaining coefficients are evaluated 
by integral:

Similarly, Eq. (7) for the nth order reaction is invoked. 
After simplification, we have:

 

Each of the integrals arising from a term in the Taylor 
series can be integrated separately to get the result for the 
nth order reaction (n ≠ 1): 

		   (8) 

The first few values of Pn, Qn, Rn coefficients are:

P0 ≈ -0.36788  P1 ≈ -0.23576  P2 ≈ -0.17273  P3 ≈ -0.13607
Q0 ≈ -0.56767  Q1 ≈ -0.35150 Q2 ≈ -0.25250 Q3 ≈ -0.19642
R0 ≈ -0.68326 R1 ≈ -0.41102 R2 ≈ -0.29061 R3 ≈ -0.22387

The values of remaining coefficients are evaluated by 
the integrals as: 
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Narrow distribution case
The approach in this study is focused on the same case of 
narrow distribution, but is incongruent from the approach of 
Bender and Orszag (1978) by incorporating the simultaneous 
change in the behaviour of the initial distribution F(E). 
The term DExp is analogous to the method of the moving 
maximum for Laplace problems (Bender and Orszag, 1978). 
The method used by Bender and Orszag (1978) is to take the 
maximum of the total integrand by keeping the maximum 
of the initial distribution fixed. Here, the present approach 
provides results which are applicable to the wide range of 
operating parameters, since the maximum of integrand 
varies along with time.

Assume that s < RT for the linearly ramp temperature. 
Formally, the limit corresponding to the narrow distribution 
is 1 << syw .  The value of ye of y is evaluated, where the 
function g(y) given in Eq. (5) is at an extremum by finding 
the point where g(ye) = 0. Hence:

It is necessary to find ye that would satisfy the Eq. (5):

Finally, the solution is given by: 

A Taylor series expansion g(y) about ye, truncated after 
quadratic terms, gives:

The second derivative of g”(y) is obtained as:

The leading behaviour of ν in Eq. (5) is:

This may also be written as: 

		  (9)

Note: Applicability of Laplace method has failed in case 
of the nth order DAEM, as function h’(ye) does not possess the 
real values of ye    b ∈ N. 

Application of biomass
The thermogravimetric data is obtained with the help 
of thermogravimetric analysis and differential thermal 
analysis in the presence of inert atmosphere of nitrogen. 
The experimental results have been used in the process 
of obtaining the nth order Rayleigh DAEM prediction 
through the asymptotic approximations. Table 1 shows the 
chemical composition of pine needles, which is obtained 
through the ultimate analysis of samples of pine needles. 
The derived results of the paper have been implemented 
in the process of obtaining the nth order Rayleigh DAEM 
prediction. It is demonstrated in Fig. 6 that the nth order 
Rayleigh DAEM provided good fit with the experimental 
data.

Table 1	 Chemical composition of pine needles

C 
(%)

H 
(%)

N 
(%)

O 
(%) S (%) Ash 

(%)
H.H.V* 

(kJ·kg-1)
V.M** 

(%)

53.7 5.21 0.61 32.13 0.22 4.72 19.5 70.1

 ** Volatile matter, * Higher heating value

In this study, the relevant parameters of biomass pyrolysis 
are determined. The effect of the frequency factor (k0) 
parameter on the numerical result is presented in Fig. 1. 
According to these curves, the increases in the value of k0 
lead the curves towards left. The observed decrease in the 
slope after inflexion indicates the increase in conversion 
rate increases as the increase in the frequency factor has 
been encountered. The influence of the upper limit (E∞) of 
dE integral on the numerical results is shown in Fig. 2. The 
observation reveals that in the initial phase of pyrolysis 
reaction, the remaining mass proportion ν must be close 
to one, whereas in Fig. 2, it is observed that the remaining 
mass fraction is less than 1 for E <39.4 kJ·mol-1. With an 
increase in the value of E, the inflexion point approaches to 
zero, the mass fraction curves show asymptotic behaviour, 
and the releasing of volatile contents become saturated 
or maximized. When the values over 84.04 kJ·mol-1 are 
used for E∞, the results deviate drastically. The results are 
found to be corresponding to the thermoanalytical data 
for the range of 39.4 ≤ E∞ (kJ·mol-1) <84.04. Therefore, the 
value 61.72 kJ·mol-1 can be used for the upper limit of the 
dE integral. The effect of heating rate on numerical results 
is illustrated in Fig. 3, where it can be seen that remaining 
mass fraction curves are shifted down the temperature 
scale with an increase in the heating rate (m). The influence 
of the scale parameter of Rayleigh distribution on the 
numerical result is depicted in Fig. 4. The increment in the 
value of scale parameter (β) causes the increases in the 
slope of mass fraction curves. Moreover, the temperature 
scale is levitated with an increase in the value of β. At the 
value β =10, the results are found to be more accurate and 
closely proximate to each other. The effect of the reaction 
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order (n) values on the numerical results is shown in Fig. 
5, where it is observed that increase in n values causes 
ν curves to lead toward the right direction. 

The effect of limit imposed on the width of DExp, 
yw, and the significance of time dependant maximum 
on the numerical results is depicted with the help of 
narrow distribution in Fig. 7 and Fig. 8. Relatively, narrow 
distribution has shown convergence for the increased 
values of frequency factor. The remaining mass fraction 

curves are shifted towards the left with an increase in the 
value of k0. The influence of the upper limit of dE is shown 
in Fig. 7(b). For the value of E∞ > 130 kJ·mol-1, the ν curves 
are close to one. With the increase in the value of E∞, the 
whole integrand proceeds similar to DExp. The results 
have shown accurate approximation for E∞ ≤123.8 kJ·mol-1. 
Variation in numerical results with the change of heating 
rate is illustrated in Fig. 8(a). The remaining mass fraction 
curves lead towards the left with an increase in heating 

 
 

Fig. 1	 The effect of frequency factor (k0) on the numerical results (m = 10 °C·min-1, T0 = 293 K and β = 13)
a) the first order, b) the nth order, n = 10.5

a)                                                                                                                               b)

  

Fig. 2	 The effect of the upper limit of dE integral on the numerical results (k0 = 250 min-1, m = 10 °C·min-1, T0 = 293 K and β = 13)
a) the first order; b) the nth order, n = 10.5

a)                                                                                                                               b)

  

Fig. 3	 The effect of heating rate (m) on the numerical results (k0 = 250 min-1, m = 10 °C·min-1, T0 = 293 K and β = 13)
a) the first order, b) the nth order, n = 10.5

a)                                                                                                                               b)
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rate. However, the effect of heating rate on the results 
obtained with the help of narrow distribution is similar to 
that of wide distribution for the first order and nth order. An 
increase in the value of the scale parameter causes the ν 
curves to shift up the temperature scale. Furthermore, the 
accurate results have been obtained for the lower values of 
the scale parameter of Rayleigh distribution. On the other 
hand, the results obtained by the symmetrical distribution 
functions (Cai et al., 2006; Dhaundiyal and Singh, 2016 a; 
Dhaundiyal and Singh, 2017; Dhaundiyal and Tewari, 2017) 

for the upper limit of activation energies E∞ (kJ·mol-1) are 
very close to the range of activation energies derived for 
the asymmetrical function, Rayleigh distribution. In case 
of another asymmetric function, Weibull distribution, the 
obtained value of activation energies differ from Rayleigh 
distribution through appreciable margin (Cai and Liu, 2007; 
Dhaundiyal and Singh, 2016 b). So, it is not necessary that 
the outcome of two asymmetrical functions may exhibit 
the same behaviour with the skewness of thermoanalytical 
data.

  

Fig. 4	 The effect of the scale parameter of the Rayleigh distribution (β) on the numerical results (k0 = 250  min-1, m = 
10 °C·min-1, T0 = 293 K and β = 13)
a) the first order, b) the nth order, n = 10.5

a)                                                                                                                               b)

 

 

Fig. 5	 The effect of reaction order (n) on the numerical 
results (k0 = 250 min-1, m = 10 °C·min-1, T0 = 293 K 
and β = 13)

  

Fig. 7	 a) The effect of frequency factor (k0) on the numerical results (narrow distribution)
b) The effect of upper limit of dE integral on the numerical results (m = 10 °C·min-1, T0 = 293 K and β = 69)

a)                                                                                                                               b)

Fig. 6	 Comparison between the experimental data and 
the nth order Rayleigh DAEM prediction
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Conclusion
The results have been obtained for different limits imposed 
on the numerical results with the help of asymptotic 
expansion. In order to find the parametric values for the 
numerical solutions of the non-isothermal nth order DAEM 
by means of Rayleigh distribution, the value 61.72 kJ·mol-1 
can be used as the upper limit of the outer dE integral. 
The change in the values of heating rate, frequency 
factor, reaction order, and the scale parameter of Rayleigh 
distribution affects only the form of remaining mass 
fraction curves. The obtained results are a comprehensive 
overview of finding the boundary values for the relevant 
parameters of biomass pyrolysis. Some parameters are 
drastically varied with the change of the distribution type. 
The effect of DExp has also been studied, which provided 
us significant information about the upper cut-off limit for 
activation energies. For E∞ >123.8 kJ·mol-1, the solution has 
shown the exponential behaviour. The results are validated 
with other distribution function, and it has been found that 
the asymmetrical function, Rayleigh function, provided the 
most promising outcome for the non-isothermal condition, 
which is very close to the behaviour of symmetrical function. 
Although, it can be concluded that the range of activation 
energies obtained for the Rayleigh function is wider than 
that of Gaussian distribution for the isothermal condition 
(Dhaundiyal and Singh, 2017). On the comparative basis, the 
solution of the nth order reaction DAEM converged for the 
higher reaction orders than that of other distribution types 
(Dhaundiyal and Singh, 2016 a; Dhaundiyal and Singh, 2016 
b; Dhaundiyal and Singh, 2017).
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Fig. 8	 a) The effect of heating rate (m) on the numerical results (k0 = 2.4e +10 min-1, T0 = 293 K and β = 69)
b) The effect of the scale parameter of Rayleigh distribution on the numerical results (k0 = 2.4e + 10 min-1, T0 = 293 K 
and m = 10 °C·min-1) (narrow distribution)
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