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Nowadays, one of the most important tasks of the national 
economy of Ukraine is to develop new competitive 
equipment for manufacturing of cattle feed that would be 
efficiently mixed. Therefore, the challenge is to study the 
dynamics of extruder design while processing the feed 
grain with a mixture by-products from grain production and 
minerals.

The quality of a final product, especially the density 
of packaged components of a wafer, its homogeneity, 
structure, etc., largely depends on the dynamics of motion 
of bulky loads (wheat, peas, corns) in the working area of 
an auger machine. Therefore, to form the bulky loads into 
wafers, it is necessary to study the dynamics of motion of 
an extruder working body. The problems of moving of bulky 
loads along the different surfaces were solved on the basis 
of several different principles, from the material points 
system motion along the surface (Vasylenko, 1960; Blehman 
and Dzhanelidze, 1964; Ganiev and Ukrainskyi, 1975) 
to continuum (Stots’ko et al., 2002; Stots’ko et al., 2001; 
Subach, 1991; Subach, 1996) of null (similar to liquid) or 
finite stiffness (similar elastic body). Therefore, the dynamic 
processes in bulky loads are insufficiently studied. Firstly, 
a large number of differential equations of motion (usually 
nonlinear) should be analysed. Secondly, it is difficult to 
generalise the choice of hypotheses of interaction between 
individual points of the system due to individual properties 
of bulky loads. The modern scientists (Stots’ko et al., 2002; 
Stots’ko et al., 2001; Subach, 1991; Subach, 1996) carried 
out the observations of the continuum, based on its integral 
indicators. Such consideration of bulky loads allowed the 
developing of mathematical models of dynamics of working 
body motion in bulky loads. However, the qualitatively 
different processes were noticed during the motion of bulky 
loads through a modernised auger screw. 

The objective is to define the dynamic process and 
especially to develop dependencies for comprehensive 
assessment of the entire spectrum of forces, system 
parameters and boundary conditions.

In order to define the dynamics of the system under study, 
the general principles of developing of mathematical 
models of the dynamics of mechanical systems should be 
applied (Andronov et al., 1981; Babakov, 1965).

The periodic disturbances influence the right end of 
an elastic auger screw (Figure 1). Therefore, to study the 
dynamics of a system model, the non-resonant and resonant 
cases should be considered.

In the proposed system model, the displacement of 
bulky loads is defined by means of an elastic working body. 
In order to calculate the mathematical model, it is necessary 
to analyse the motion of continuum along the entire working 
area. Thus, the one-dimensional elastic body, along which 
the continuum travels, should be considered as an analytical 
model. For this body, the centre of gravity movement of 
a section with the coordinate x in random time t is clearly 
defined by the function u(x, t). Therefore, the force of inertia

of a specified element equals dm , where dm represents 

the mass of a specified element. The mass is equal to the 
sum of the masses of continuum dm1 and the elastic body 
dm2, that is dm = dm1 + dm2.

Therefore, dm1 = r1(x)dx, dm2 = r2(x)dx, r1(x) and r2(x) 
represent the volume weight referring to continuum and 
the elastic body. Elastic properties of the auger screw model 
under study are depicted by applying the quasi-linear 
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law of elasticity s = Ee + mf(e,  ), where  s represents the 
normal tension in a cross-section of the system model, e 
and  represent the relative deformation and its rate; mf (e, 

) represents a feature that indicates the deviation of elastic 
model material properties from the linear law; m represent 
a small parameter indicating a fractional deviation from the 
specified properties of the linear law. In this case, the values 
of internal forces S and S + dS can be written as:

		  (1)

		  (2) 

Figure 1A–B	 Analytical model ‘extruder elastic auger working 
body’
1 – shaft; 2 – spiral groove; 3 – coil spring; 4 – cylindrical 
body; 5 – loading hopper; 6 – unloading zone; 7 – 
nut; 8  – calibration holes; 9 – handle, – weight 
of a selected element;  – normal reaction;  – 
resistance; – inertia of relative motion of selected 
element with a screw spiral;  – force acting on the 
right end of a selected element from the side of the 
cut off part of elastic screw;  – force acting on the 
left end of a selected element from the side of the cut 
off part of elastic screw
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The relative deformation for a one-dimensional model of
the elastic body is determined by the dependence 

e  =  , where A is the area of its cross section. This

statement is considered in the above correlations. In order 
to pass the vector of correlation into its scalar form, it is 
necessary to consider the kinetostatics equation for the 
specified element:

		  (3)

However, as the continuum travels with the relative 
velocity V along the elastic body of specified element, 
the inertial force of continuum can be represented by the 
equation:

		

Thus, the differential equation of the dynamics of 
a system ‘continuum – elastic auger screw’ can be written as:

		  (5)

		

To improve the structure and uniformity of continuum, 
the right end of the elastic spiral auger screw undergoes the 
periodic disturbance of motion, in particular, it performs 
harmonic oscillations. To present them in the mathematical 
model of the process, it is necessary to define the boundary 
conditions for the Equation 5. The periodic motion of the 
right end should be written using boundary conditions:

	 u(x, t)x = 0 = h sin θ, θ = wt + ϕ	 (6)
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where:
h, w, ϕ – are the steels. Similarly, the boundary condition for 
the left end is written taking into account the fact, that it is 
fixed:

	 u(x, t)x = 1 = 0	 (7)

The formula Ω ≠  is valid for the non-resonant cases; the

formula Ω ≈  (r, s are relatively prime numbers) must be

applied to resonant cases. Based on the above-mentioned 
analytical model, a simple non-resonant case should 
be considered at first. Nonlinear forces and boundary 
conditions cause not only changes in the time of the main 
parameters of wave processes (amplitude a and phase 
ϕ), but also distortion, to a certain extent, in the shape of 
the waves. Thus, according to the basic idea of asymptotic 
methods of nonlinear mechanics, the non-resonant solution 
of disturbance problems allows to represent a mathematical 
model of the working body dynamics in continuum:

		  (8)

	 u(x, t)x = 0 = mh0 sin θ	

	 u(x, t)x = 1 = 0	 (9)

where:

The left side of the above differential equation is linear 
with additional constant coefficients; the right sides of the 
equation (Equation 8) and boundary conditions (Equation 
9) are proportional to a small parameter. Therefore, in order 
to develop the solution of the given problem, the general 
ideas of approximate analytical methods of disturbances 
can be applied (Stots’ko, 2002) in the first consideration of 
asymptotic series:

	 u (x, t) = a(cos (Kx + Ωt + ϕ) - cos (Xx - Ωt - ϕ)) +
	 + eU (a, x, f, θ), f = Ωt + ϕ	 (10)

where:
the function U (a, x, f, θ) should be 2p that is alternating 
in phases of the own and forced oscillations, that is, f, θ, 

and should meet the boundary conditions arising from 
Equation 9:

	 U (a, x, f, θ)x = 0 = h0 sin θ 	 (11)

U (a, x, f, θ)x = 0 = 0

In addition, the changes in the time of amplitude and 
phase of the wave process are caused by the resistance 
and non-uniformity of mass distribution along the working 
body (auger screw), and by the variable speed of bulky loads 
motion in relation to an elastic helical spiral. The influence 
of the above factors on the laws of changes in the time of 
amplitude and phase of the wave process is analysed below.

Unidentified laws of changing the parameters a and f 
are studied in the correlations:

		  (12)

where:
the unknown right parts A1(a) and B1(a) are located in such 
a way that the asymptotic representation (Equation 10) with 
an accuracy to the size of order satisfies the Equation 8 with 
the boundary conditions described in Equation 9

By means of differentiation of the Dependence 10 by the 
variables t and x, the following formula is deduced:

		

		  (13) 

If we insert in the initial equation with the above-
mentioned values instead of the function u (x, t) and its 
derivatives, we will get the linear differential equation that 
links the unknown parameters  and the function U1 (a, 
x, f, θ):
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where:

In addition, in this equation, the function U (a, x, f, θ) 
must meet the boundary conditions described by the 
Equation 11. Therefore, the resulting solution of Equation 7 
can be found (Stots’ko et al., 2001) in the following set of 
functions:

		  (15)

Let us consider the function as a solution of 
differential equation:

		  (16)

This function satisfies the boundary conditions:

		  (17)

Then, as results from Functions 15, 16 and 17, the 
function  is a solution of the differential equation:

		   (18)

and it should meet the boundary conditions:

		  (19)

Based on Functions 16 and 17, the function 
can be easily derived:

		   (20)

This allows the developing of the right side of the 
differential Dependence Equation 18:

		   (21) 

In order to determine the unknown functions  and 
 from the differential Dependence Equation  18, it is 

necessary to determine the additional conditions of the 
function . It means that the function should not 
expand in Fourier series of the first modes φ:

		   (22)

The physical meaning of dependencies is as follows: the 
amplitude of oscillatory process of a system ‘continuum  – 
elastic auger screw’ coincides with its first mode. 
Simultaneously, the conditions described by Function 
22 allow obtaining of correlations, which define the laws 
changing the amplitude and oscillation phase of the object 
under study in the non-resonant case.

		

		   (23)

In the given differential equation, the properties of its 
right part are considered in the Dependence Equation 18:

			 
		   (24)

According to the dependencies described by Function 
16, in the first non-resonant case, the small periodic 
disturbances do not influence the laws changing the 
amplitude and frequency of the dynamic process. The 
laws explaining the deviation of elastic properties of an 
auger screw by means of the linear law of external and 
internal friction determine this process. The influence of 
these factors can be observed in the dependence of natural 
oscillations frequency on the amplitude and rate in time. 
The influence of periodic disturbance in the non-resonant 
cases can be observed in changing the wave form; the 
periodic disturbance is defined by functions and  

. The first function is known (see Dependence 
Equation 18); in accordance to Equations 16, 17 and 20, the 
second function can be written as:

		   (25)
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where:
{Xn (x)} represents a complete system of functions that 
satisfies boundary conditions described by the Equation 17. 
Such system of functions can be represented as {Xn (x)} =

 It is a rule that the first modes of oscillation

mainly influence the dynamic process. Therefore, in the 
Representation 25, it is sufficient to apply only some of the 
first members of the function expansion. It is not difficult to 
solve this problem. In particular, if we consider only the first 
members of the function expansion, we will get:

U00s (a) = w2h0,    U01c (a) = 0,     U0c (a) = 0

		  (26)

where:
Dn is the function expansion coefficients, g(x) represents the 
specified system of functions. The above system of linear 
equations determines the unknown coefficients U00c (a), …, 
U210 (a).

To define the main parameters of screw extruders, it is 
necessary to consider the peculiarities of their designs, the 
technology of production and the performance. In order 
to determine the volumetric productivity of elastic screw 
extruder, it is necessary to define the area of passage section 
and the coefficients determined experimentally for different 
types of grain materials.

Based on the model of dynamic system, the analytical 
dependences are developed and the semi graphical 
dependence Q = f(D, h) is deduced for the determination of 
the performance.

The method for determination of extruder volumetric 
productivity (Figure 1) depends on the geometrical 
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Figure 2	 Dependence of the performance on regular 

geometric parameters of extruder working body

 
Figure 3	 Dependence of the performance on the change 

of a pitch of extruder working body

 
Figure 4	 Dependence of the performance on the change 

of the screw channel depth of extruder working 
body 

Figure 5	 Distribution of equivalent stresses along the 
surface of the working body
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Conclusions
According to theoretical results, the graphical dependences 
present the technique of developing the approximate 
analytical solution of the dynamic model of a system 
‘extruder elastic auger working body’. The technique is 
based on:

–– the main provisions of the wave theory of motion;
–– the principles of single-frequency oscillations in 
non-linear mechanical systems;

–– the application of the main ideas of asymptotic 
methods of non-linear mechanics to the mechanical 
systems under study.

The developed technique is based on mathematical 
modelling. This technique allows determining of the 
operational load of elastic working body by means of the 
main technological parameters and rheological properties 
of the continuum.
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parameters of the working body. This method is based on the 
calculation of stiffness and strength parameters of working 
body design. The working body was made of compound 
steel 40X with strength limits of 620MPa (Vasylenko, 1960; 
Stots’ko et al., 2001). The calculations showed that the 
stress arising during the transportation of the continuum 
reaches 370 MPa (Figures 5–7). The Figure 7 shows that if the 
corresponding loads are applied to the extruder working 
body, the maximum deformations occur at the end of an 
auger spiral and they are within 7.45 10-4, as the last turn of 
an auger is the most loaded.

 

Figure 6	 Distribution of equivalent placements along the 
surface of the working body 

Figure 7	 Distribution of equivalent deformations along 
the surface of the working body
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