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Abstract

Diabetes Mellitus is a metabolic disorder that affects the ability of the human body to properly utilize and regulate

glucose. It is pervasive world-wide yet tenuous and costly to manage. Diabetes Mellitus is also difficult to model

because it is nonlinear, dynamic and laden with mostly patient specific uncertainties. A neuro-fuzzy model for the

prediction of blood glucose level in Type 1 diabetic patients using coupled insulin and meal effects is developed.

This study establishes that the necessary and sufficient conditions to predict blood glucose level in a Type 1 diabetes

mellitus patient are: knowledge of the patient’s insulin effects and meal effects under diverse metabolic scenarios

and the transparent coupling of the insulin and meal effects. The neuro-fuzzy models were trained with data collected

from a single Type 1 diabetic patient covering a period of two months. Clarke’s Error Grid Analysis (CEGA) of the

model shows that 87.5% of the predictions fall into region A, while the remaining 12.5% of the predictions fall into

region B within a four (4) hour prediction window. The model reveals significant variation in insulin and glucose

responses as the Body Mass Index (BMI) of the patient changes.
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1.0 Introduction 

Diabetes is described as a chronic disease that occurs either when the 

pancreas does not produce enough insulin or when the body cannot 

effectively use the insulin it produces (World Health Organization, 2013). 

Diabetes Mellitus (DM) is estimated to affect about 415 million people 

worldwide (that is 1 in 11 adults) (International Diabetes 

Federation, 2016).  In Africa, Nigeria is the worst hit, with over 4 million 

people with diabetes (International Diabetes Federation, 2013). This 

alarming number is on the fast increase daily and in 2012, an estimated 

1.5 million deaths were directly caused by diabetes (World Health 

Organization, 2014). A projection on the global mortality and burden of 

Diabetes Mellitus (DM) reveals that 80% of the deaths associated with the 

disease occur in the middle- and low-income countries (Mathers and 

Loncar, 2006). WHO projects that DM will be the 7th leading cause of 

death in 2030 (World Health Organization, 2011). 

 

Diabetes Mellitus is of different types however, the most common are 

Type 1, Type 2 and Gestational DM. In Type 1 Diabetes Mellitus (T1DM) 

the pancreas undergoes an autoimmune attack by the body itself and is 

rendered incapable of making insulin (Melissa, 2012). Type 2 diabetes 

mellitus is characterized by insulin resistance, which may be combined 

with relatively reduced insulin secretion (Shoback, 2011). Gestational 

DM is detected during pregnancy and occurs in about 2 to 5% of all 

pregnancies. Poorly controlled BGL inflicts damaging effects to major 

organs of the human body.  Direct medical implications of overly raised 

BGL include diabetic ketoacidosis and nonketotic hyperosmolar coma. 

Long term damages include: Retinopathy, Neuropathy, Nephropathy and 

Heart diseases which are associated with diseased small and large blood 

vessels as the case may be. 

Presently, there is no cure for diabetes mellitus. This metabolic disorder 

can only be managed/controlled using oral medication or insulin, 

depending on the type of diabetes. Proper management of blood glucose 

level (BGL) in T1DM cannot be achieved without regular measurement. 

The invasive method of measuring blood glucose is the clinically 

acceptable means of measuring blood glucose. The finger strip meter and 

the continuous glucose meter are the most common and they require 

access to the blood or interstitial body fluid respectively. BGL in T1DM 

is affected by exogenous insulin, meal, exercise, stress etc. The amount of 

insulin required in T1DM to correct elevated BGL, depends on the type 

of insulin used and on the sensitivity of the individual to the insulin. The 

amount of carbohydrate required for one unit of insulin is given by the 

Insulin to Carbohydrate Ratio (ICR). The ICR of a patient may change 

due to; the type of food consumed, body mass index, hormonal balance 

and fitness level. Exercise is important in improving the lives of T1DM 

patients as it increases the permeability of glucose in peripheral tissues 

(Charles, 2002; American Council of Exercise, 2013).  Although regular 

activity is beneficial for all patients, vigorous exercise can cause major 

disturbances in blood glucose. The glycemic response depends on the 

type, intensity and duration of   the activity, as well as the circulating 

insulin and glucose counter-regulatory hormone concentrations (Michael 

and Bruce, 2006). 

 

T1DM patient do not produce insulin hence normal BGL cannot be 

maintained. Most patients have vague idea of how they expect their BGL 

to vary after a meal, exercise or insulin injection. Though this is not to be 

relied upon as patients have slumped into episodes of hypoglycemia or 

hyperglycemia, it paints a bright picture of a possibility to predict BGL in 

DM. Hence the need to use an NFN to capture the trend in BGL variation 

and patient specific responses as it relates to specific activities (e.g. 

exercise, insulin, and meal) that affect BGL.  

 

The idea of predicting BGL based on past blood glucose values was 

suggested by Bremer and Gough (Bremer, and Gough, 1999). They 

identified the statistical dependence of glycemic data in both diabetic and 

non-diabetic individuals. Sparacino et al., (2007) predicted BGL using 

first order AR model with time-varying parameters, identified by 

recursive least squares (RLS) with a constant forgetting factor. They 

achieved 20-25 minutes’ prediction of hypoglycemic threshold ahead in 

time. Shanthi et al., (2010) blood glucose level prediction model combines 

the use of AR as a linear aggregation of previous glucose values and a 

moving average model that considers previous variations in blood 

glucose. They obtained maximum RMSE of 0.9-, 2.7- and 4.2mg/dl 

within the prediction horizon of 10-, 20- and 30 minutes, respectively. 

Stahl and Johansson (2009) presented a log-normalized linear model 

based on subspace-based identification and the GTFM-Wiener model for 

BGL prediction. However, they did not meet the 9mg/dl accuracy target 

within the two-hour prediction window. Ahmed and Mahmud (2013), 

developed a PID controller as an artificial pancreas whose outputs are 

based on the history and rate of change of the error signal. Their results 

revealed that the response of the PID controller is not acceptable since the 

BGL has an oscillation, causing a drop in BG level below the basal level.  

 

Zarita et al., (2009) combined Principal Component Analysis (PCA) and 

Wavelet Neural Network (WNN) with Gaussian wavelet in predicting 

BGL in a single diabetic patient. The Gaussian WNN predictive model 

resulted in a RMSE of 0.0450-, 0.0348-, 0.0330-, 0.0170 mmol/dl for the 

morning, afternoon, evening and night predictive period, respectively. 

Scott et al., (2010) proposed BGL predictive model using feed forward 

three-layer neural network with a predictive horizon of 75mins, and back 

propagation training algorithm. The overall error of the prediction model 
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using the patient specific model and the general neural network model are 

7.9% and 15.9% respectively. Clarke’s Error Grid Analysis (CEGA) show 

that 95.1% and 69.8% of the prediction falls in region A for the patient 

specific and general neural network model, respectively. Neuro-Fuzzy 

Networks have seen more application in the prediction of the onset of 

diabetes and in fuzzy logic controllers for artificial pancreas. Deutsch et 

al., (1990) suggested that due to the high variability and uncertainty of the 

observed blood glucose data a qualitative means of pattern recognition 

will be more suitable for analysis and pattern recognition. Ghevondian et 

al., (2001) developed a Fuzzy Neural Network Estimator (FNNE) to 

predict the onset of hypoglycemia using heart rate and skin impedance as 

system inputs.  The model revealed that hypoglycemia leads to increased 

heart beat by approximately 21bpm and reduced skin impedance by 

approximately 111ohms for T1DM patients. Moshe et al., (2013) 

investigated logic based artificial pancreas revealing superior 

performance in the reduction of nocturnal hypoglycemia and tighter blood 

glucose control. Ahmed and Mahmud (2013) developed a fuzzy logic 

algorithm for implementing an artificial pancreas. In their result, the 

response of this controller in steady state kept blood glucose concentration 

almost at the basal level, although it had a little overshoot before the 

steady state. 

 

Juan and Chandima (2016) proposed a personalized blood glucose 

predictor based on time-series model of historical glucose measurements, 

pooled panel data regression and pre-clustered personalized regression. 

Their best performance was a 43-cluster personalized regression that 

achieved a Root Mean Square Error (RMSE) of 27.458 mg/dl and a 

correlation coefficient (R2) of 0.8883.  Hidalgo et al., (2017) proposed the 

use of a variant of grammatical evolution model and a tree-based genetic 

programming model that uses a three-compartment model for 

carbohydrate and insulin dynamics. The model achieved 90% of the 

prediction within regions A and B of CEGA, with 5 – 10% falling into 

regions D (serious error) and 0.5% in region E (very serious error). 

Kyriaki et al., (2018) explored the combination of Autoregressive models 

with exogenous inputs and pharmacokinetic compartment models to 

predict blood glucose. Clarke’s Error Grid Analysis of the model showed 

that 53.84% of the predictions were in region A in the 4-hour prediction 

window. 

2.0 Coupled Insulin and Meal Effect Neuro-Fuzzy Network Model 

2.1 Model Assumptions 

The following assumptions are made in formulating the model 

1)  There is no production of insulin by the T1DM patient.  

2) The stress level, activity level, hormonal balance, fat mass index and 

lean body mass of the patient are fixed and do not affect the Neuro-

Fuzzy Network (NFN) training data collected. 

3) The effect of the change in age during the period of investigation is 

insignificant. 

 

 

2.2 Model Formulation 

In other to create patients’ awareness to their unique body metabolism a 

neuro-fuzzy model is formulated. This is based on the proposition that the 

necessary and sufficient conditions to predicting BGL in a T1DM patient 

are knowledge of the patient’s: 1) Insulin Effects 2) Meal Effects and 3) 

Transparent coupling of the Insulin and Meal Effects. Insulin Effect refers 

to the change in BGL for specific metabolic indices because of injected 

insulin defined by neuro-fuzzy weights (feature extracts). In the same 

vein, meal effect refers to the change in BGL for specific metabolic 

indices because of ingested meal defined by neuro-fuzzy weights (feature 

extracts).   Combinations of physiological states that affect BGL 

variations in T1DM patients define metabolic scenarios. Metabolic index 

defines specific metabolic values of the physiological states that make up 

the metabolic scenario, for example Body Mass Index (BMI) of 22.12. 

 

The control variables for the model are: 

1) State Variable: Measured BGL �(�) in mg/dl 

2) Input Variables: Insulin ��, Meal ��, in units (IU) and serving spoon 

(SS) respectively. 

3) Sampling Time: The sampling time (∆�) is the time between 

successive measurements of the blood glucose level which is one (1) 

hour. 

4) Output: Predicted BGL �(� + 1) mg/dl 

5) k is the discrete time index 

6) Patient’s Specifics(∆�): Injection site, Body/Fat Mass Indices, Lean 

Body Mass, Other Illness etc. 

 

Blood Glucose Level (BGL), �(�) 

The wide range of variation of BGL in a diabetic patient poses a major 

bottle neck to NFN training. Hence it is necessary to normalize the BGL. 

For this research the range of BGL is between 40 to 600 mg/dl since the 

normal range in healthy individuals is between 70 and 130 mg/dl and the 

immediate consequences of hypoglycemia (deficiency of glucose is the 

bloodstream) is more dangerous than that of hyperglycemia (excessive 

glucose in the bloodstream).  

 

 �(̅�) =  
�(�)

��� (�(�))
            (1)  

 

Insulin Injection,  �� 

Insulin effect is modeled as a function of insulin injection ��, current 

BGL, sampling time and patient’s specifics. This captures the uniqueness 

of the patient’s reaction to injected insulin. The injected insulin �� is a 

scalar function � of the insulin type T and quantity Q injected. 

 

 �� =  �(�,�)              (2) 

 

Given that �� is injected, the insulin effect on the BGL �(�)�� given by 

the function �� is 



Orieke et al., 2019                                  A coupled insulin and meal effect neuro-fuzzy model. 

 
4 | This journal is © The Nigerian Young Academy 2019                                Annals of Science and Technology 2019 Vol. 4 (1) 1-15 
 

 

 �(� + 1)�� ∝  ��(��,�(�),∆�,∆�)   

 �(� + 1)�� =  ����(��,�(�),∆�,∆�)     (3) 

 �(̅� + 1)�� =
�(���)��

��� (�(���)��)
            (4) 

 

Meal Intake,  �� 

Meal effect is modeled as a function of meal intake, current BGL, 

sampling time and patient’s specifics. The ingested meal �� is a scalar 

function � of the meal type M and quantity Q ingested 

 

 �� =  �(�,� )                      (5) 

 

Given that �� is consumed, the meal effect on BGL �(�)�� given by the 

function �� is 

 

 �(� + 1)�� ∝  ��(��,�(�),∆�,∆�)  

  

 �(� + 1)�� =  ����(��,�(�),∆�,∆�)      (6) 

 �(̅� + 1)�� =
�(���)��

��� (�(���)��)
             (7) 

 

 

 

 

 

 

Fuzzification of State and Input Variables 

BGL variation is fuzzified using the Trapezoidal Membership Function 

(MF) while insulin, insulin effect, meal and meal effect are fuzzified using 

the Triangular MF as given in equations (8) and (9) respectively.  

��(��; �,�,�,�) =

⎩
⎪
⎨

⎪
⎧

0,      �� ≤ �
����

���
,          � < �� ≤ � 

1,          � < �� ≤ � 
����

����
,          � < �� ≤ �  

0,     �� > �

            (8) 

 

Where �� is the in situ variable of interest,  �,�,� are projections of the 

vertices of a trapezium to its base (representing the in situ values of ��), 

from left to right. 

��(��; �,�,�) =

⎩
⎪
⎨

⎪
⎧

0,      �� ≤ �
����

���
,          � < �� ≤ �  

����

����
,          � < �� ≤ �  

0,     �� > �

             (9) 

 

Where �� is the in situ variable of interest,  �,�,� are projections of the 

vertices of a triangle to its base (representing the in situ values of ��), from 

left to right. 

The MFs for the state and input variables are given in Table 1   

 

Table 1: In situ State and Input Variables Fuzzification Ranges 

State Variable Min Max Hypoglycemic Normal Hyperglycemic 

BGL(mg/dl) 40* 600** 40, 40, 66, 72 66, 72, 120, 138 120, 180, 600, 600 

Input Variable Min Max Type Low Medium  High 

Insulin(��) (IU) 0 40 Biphasic Human 

Insulin 

0, 0, 10 0, 10, 20 10, 40, 40 

Insulin Effect (�(�)��) 

k = 1, 2, 3,4 

0 -120 Biphasic Human 

Insulin 

0,0,-60 0,-60,-120 -60,-120,-120 

Meal (��) Min Max Type Small Medium Large 

Meal(��) (SS) 0 5 Rice 0, 1,  3   1, 3, 5 3, 5, 5 

Meal Effect  (�(�)��) 

k = 1, 2, 3,4 

0 180 Rice 0, 0, 90 0, 90, 180 90,180, 180 

N/B: unit of meal size = serving spoon (SS);  Units of Insulin and  Meal Effect =  mg/dl 

*  Hypoglycemic BGL set to avoid prolonged stay of the patient in the hypoglycemic range 

**  Maximum Hyperglycemic BGL that can be measured by the One Touch glucose meter used for the experiment 

 � = {�|̅��(�)̅}  ��� � ∈̅ �                   (10) 

 

Where X is the universe of discourse and ��(�)̅ is the degree of 

membership of object � ̅in the fuzzy set � and it is a real number that lies 

between [0,1]. Each of the control variables represents a universe of 



Orieke et al., 2019                                  A coupled insulin and meal effect neuro-fuzzy model. 

This journal is © The Nigerian Young Academy 2019                                Annals of Science and Technology 2019 Vol. 4 (1) 1-15 | 5 
 

discourse. The control variables are each fuzzified to have a three-member 

fuzzy set (set 1, set 2 and set 3). Hence the fuzzification process is 

generically represented in equation (11). The span of each fuzzy set is 

dependent on the nature of the universe of discourse and its members.  

 

 � ∈ {���1,���2,���3}             (11) 

 

The fuzzification of the BGL is given in Fig 1. 

Formulation of the T-S Model Rule Bases 

The Takagi-Sugeno Neuro-Fuzzy Network (T-S NFN) for the 

investigation of insulin, meal and insulin/meal effects are modeled as a 

discrete piece-wise linear system with discrete time variable � such that, 

  

The insulin effect consequent part of the T-S model  

 

Fig 1:    Fuzzification of in situ BGL 

 

rule base is modeled as a function of proportionality 

 

         �(̅� + 1)�� ∝  ��(��,�(̅�),∆�,∆�)            (12) 

 

The corresponding consequent part of the meal effect rule base is; 

 

         �(̅� + 1)�� ∝  ��( ��,�(̅�),∆�,∆�)          (13)  

 

The meal/insulin effect which represents the coupling of the meal and 

insulin effects is; 

 

�(̅� + 1) ∝  ���(̅�),   �(̅� + 1)��,�(̅� + 1)���       (14) 

 

where � = [1,2,… ,�] and N is the number of samples taken. 

 

A separate rule base is generated for each investigation; hence there are 

three (3) rule bases, RB1, RB2 and RB3 for the insulin effect, meal effect 

and insulin/meal effect respectively. RB1 and RB2 are composed of 9 

rules each while RB3 is composed of 27 rules. The rules represent 

different experiences of the T1DM patient. Given that the maximum 

discrete time of the input variables’ effect on BGL variation is z, then the 

jth rule is of the form: 

 

BGL VS Insulin Rule Base (RB1) 

Rj: IF 

 �(�)  is ��
� AND �� is ��

�  

THEN 

FOR k = 0, 1, … , z 

�(̅� + 1) =  ����(̅�) +  ��� ��(��,�(̅�),∆�,∆�)  

�(̅� + 1)�� =   �(̅� + 1) −  �(̅�)                          (15) 

 

Where  ���,��� ��� ����� ��� ����� �������� ������������ 

 ��������� �� �ℎ� ������ �� ��� ,  �= 1,2,… ,9;   � = fuzzy variable;  

��� =  ∑ �����
�
��� ;  ��� =  ∑ �����

�
���  

 

BGL VS Meal Rule Base (RB2) 

Rj: IF 

 �(�)  is ��
� AND �� is ��

�  

THEN 

FOR k = 0, 1, … , z 

�(̅� + 1) = ����(̅�) +   ��� ��(��,�(̅�),∆�,∆�)  

�(̅� + 1)�� =  �(̅� + 1) −  �(̅�)            (16) 

 

Where ���, ���  ��� ����� ��� ����� �������� ������������ 

��������� �� �ℎ� ������ �� ��� , �= 1,2,… ,9; � = fuzzy variable;  

��� =  ∑ �����
�
��� ;  ��� =  ∑ �����

�
���  

�� =  
��

∑ ��
�
���

;     ∑ �� = 1�
��� . 

 

BGL VS Insulin/Meal Rule Base (RB3) 

Rj: IF 

 �(�)  is ��
� AND �(� + 1)�� is ��

� AND �(� + 1)��  is ��
�  

THEN 

FOR k = 0, 1, … , z 

�(̅� + 1) = ��̅(̅�) +  ���(̅� + 1)  

��(�) = ��̅(̅�) +  ���(̅� + 1)                  (17) 

 

Where ��,��,��,�� ��� �������� ���� ��������� ��������,   �(̅� +

1) = ��(̅� + 1)��,�(̅� + 1)���
�
,   

 �= 1,2,… ,27,  �  =  fuzzy variable. 

 

Given a current state vector �(�) and an input vector � the T-S fuzzy 

model infers �(̅� + 1) as; 

 

 �(̅� + 1) = ∑
��(���(̅�)� ���̅(���)

∑ ��
��
���

��
���   

      

 ��(�) = ∑
��(���(̅�)� ���̅(���)

∑ ��
��
���

��
���           (18) 

 

 �� = ������
(���)

��
�(�,��) is the minimum of the MF for the fuzzy rule j, 

and ��
�(�) is the MF of the fuzzy term ��

� for control variable �,  �=

1,2,… ,27, � is the total number of input and state variables.  

 

The overall fuzzy system model can be simplified as 

 

40   72   120   138   180   600 

mg/dl 0 

1 

��(�)̅ 

Hypoglycemia Normal  Hyperglycemia 

  66 
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 �(̅� + 1) = ��̅(̅�) +  ���(̅� + 1)   ��(�) = ��̅(̅�) +  ���(̅� + 1)           (19) 

 

Where � =̅ ∑ ����
��
��� ;      �� = ∑ ����

��
��� ;    � =̅ ∑ ����

��
��� ;      �� =

∑ ����
��
���  �� =  

��

∑ ��
��
���

;     ∑ �� = 1��
��� ; 

 

The overall system is nonlinear since � ̅ is a function of ��  and ��  is a 

function of �(̅�) the state variable.   

  

Since the system output is the same as the future state (i.e. predicted 

BGL):  

 

 ��(�) = �(̅� + 1)           (20) 

 

 

 

 

Hence, the j-th rule for RB3 simplifies to  

 

Rj: IF 

 �(�)  is ��
� AND �(� + 1)�� is ��

� AND �(� + 1)��  is ��
�  

THEN 

FOR k = 0, 1, … , z 

 �(̅� + 1) = ��̅(̅�) +  ���(̅� + 1)           (21) 

 

 

 

 

 

 

 

Figure 2a: Insulin Effect Based NFN Model for the prediction of BGL in T1DM Patients  
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Figure 2b Meal Effect Based NFN Model for the prediction of BGL in T1DM Patients  

Figure 2c: Couple Insulin and Meal Effect Based NFN Model for the prediction of BGL in T1DM Patients
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Fig 3: Flow Chart of the forward/back propagation of training data set in T-S NFN 

  

Parameter Identification  

In identifying the parameters ���,���,���,���,� ̅ and �� , the fuzzy neural 

network is trained using least square error function and back propagation 

algorithm. Hence the three (3) rule bases are formulated in the form; 

BGL VS Insulin Rule Base (RB1) 
Rj: IF 

 �(�)  is ��
� AND �� is ��

�  
THEN 
FOR k = 0, 1, … , z 
 �(̅� + 1) =  ����(̅�) +  ���  

 �(̅� + 1)�� =  �(̅� + 1) −  �(̅�)            (22) 

 
BGL VS Meal Rule Base (RB2) 
Rj: IF 

 �(�)  is ��
� AND �� is ��

�  
THEN 
FOR k = 0, 1, … , z 
 �(̅� + 1) =  ����(̅�) +  ���   

 �(̅� + 1)�� =  �(̅� + 1) −  �(̅�)               (23) 

 

 

BGL VS Insulin/Meal Rule Base (RB3) 

Rj: IF 

  �(�)  is ��
� AND �(� + 1)�� is ��

� AND �(� + 1)��  is ��
�  

THEN 

FOR k = 0, 1, … , z 

�(̅� + 1) = ����(̅�) +  ����(̅� + 1)�� +  ����(̅� + 1)�� + ���   

                                      (24) 

 

The weights ��� ,…, ��� are weights of the NN which is trained using the 

input-output data collected from the T1DM patient. They represent the 

vague experiences of the patient as he/she carries on his/her day to day 

activities. More so, the trained weights ��� and ��� represent insulin effect 

on BGL while the trained weights ��� and ���  represent meal effect on 

BGL. 

 

2.2 Prediction of Blood Glucose Level   

Let the NFN trained weights for patient’s specific meal/insulin effect 

feature extraction be ��   

Let the inputs (BGL, insulin effect, meal effects and bias) on which 

prediction is based be  [����,����,����,�]. 

Given that there are ′�′ rules, let the result of the triggered rules because 

of the input be 

 

Target 

�(� + �) = ��(�)[���(�),����] 

�(�(�)) =  ����(�)� 

�� = ���(�(�(�))
�
) 

�(�) =
�

�
(�(� + �) − �)� 

k-th training data 

Rule Base 

Normalization 

Implication Cost Function 

Fuzzification 

�(�) =
��

∑ ���
���

 

 ���� (�) 

 � 

Update Neural Network 

Weights 

�(�) < ����� 

Yes 

No 
Backpropagate Error 

min
�

�(�) 

End 

   Start 

���(�) 
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  �� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
�������
�������
�������

���
⋮

�������
�������
�������

��� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                (25) 

 

Hence the predicted output �� is given as 

 

  �� = ����                      (26) 

 

Choice of Training Scenario  

The metabolic activities of T1DM patients are affected by their general 

state of health. Thus, defining the indices of the general state of health of 

the patient as metabolic scenarios, different training windows are built. 

These metabolic scenarios span a myriad of indices which include stress, 

exercise, injection site, body mass index, fat mass index etc. The training 

windows are chosen to capture the contributory effect of the metabolic 

indices to the variation in blood glucose level in T1DM. 

Robustness and flexibility of the coupled insulin and meal effect BGL 

predictive model, lies in its modularity. This is achieved using insulin and 

meal effect rule bases (RB1 and RB2) that span the metabolic scenarios. 

Insulin/meal rule base (RB3) transparently couples RB1 and RB2 making 

RB3 independent of the specifics of the insulin and meal variables, but on 

their apparent effects. Hence, RB3 is quite robust and flexible and spans 

the metabolic scenarios that have been used in the training. As a result of 

this design, RB3 learns the diverse experiences of the T1DM patient while 

RB1 and RB2 are updated as new metabolic scenes arise.    

 

2.3    Results, Observations and Discussions 

The insulin, meal and insulin/meal effect models were implemented using 

MATLAB 2012a. A 31-year-old male T1DM patient, who has been 

diabetic for 17 years was recruited for this study with the approval of 

Lagos University Teaching Hospital Research and Ethics Committee. 

Patient’s BMI ranged between 22.42 to 23.55. The training dataset was 

gathered under normal living condition to capture patient’s real-life 

experience. Blood glucose readings were taken using a One Touch blood 

glucose monitor. Patient’s exogenous insulin injection site is the thigh. 

Polished rice was considered in this study for meal effect investigation 

because it is the most staple food in Nigeria. Every reference to rice in 

this study specifically refers to polished rice. 

 

Figures 4a to 4h show the differences in insulin and meal effect of the 

T1DM patient for different body mass indices. Figures 4a and 4b show 

drops in BGL for the metabolic index of BMI 22.42 and 23.32 

respectively, when 10IU of Biphasic Human Insulin was administered.  

The average rate of BGL drop was 36.25mg/dl per hour for metabolic 

index of “BMI 22.42” while it was 32.5mg/dl per hour for metabolic 

index of “BMI 23.32” from a hyperglycemic BGL of 180mg/dl. This 

shows that the rate of BGL response to insulin increases with decreasing 

BMI. More so, figures 4c and 4d show drops in BGL for the metabolic 

index of BMI 22.42 and 23.32 respectively, when 30IU of Biphasic 

Human Insulin is administered.  The average rate of BGL drop is 

63.75mg/dl per hour for metabolic index of “BMI 22.42” while it was 

52.5mg/dl per hour for metabolic index of “BMI 23.32”, from a 

hyperglycemic BGL of 280mg/dl. Figures 4a and 4c show that at constant 

BMI the average rate of drop in BGL increases as the dose of administered 

insulin increases. 

Comparing Figures 4e and 4f show BGL rising at an average rate of 

45mg/dl per hour for the “no meal/ BMI:23.32” condition and at of 

33mg/dl per hour for the “One(1) Serving Spoon(SS) of rice/BMI:23.32” 

condition. The absence of food and insulin in the blood stream result in 

significant rise in BGL as given by the positive gradient of 45mg/dl per 

hour. This can be attributed to internal glucose production. Hence, it is 

not advisable for a T1DM patient to skip medication. Figures 4g and 

4h show the Meal Effect for “Three (3) SS of rice/BMI:23.32” and “Five 

(5) SS of rice/BMI:22.42” conditions respectively.  The average rise in 

BGL is 45mg/dl per hour for the “Three (3) SS of rice/BMI:23.32” 

condition while it is 60mg/dl per hour for the “Five (5) SS of 

rice/BMI:22.42” condition. This shows that BGL response to meal has a 

positive gradient.  It is obvious from the findings that insulin and meal 

effects change as the body mass index of the investigated T1DM patient 

change. 

 

Coupling the obtained insulin and meal effects to predicting BGL 

variations showed promising results in reproducing the same effect as 

seen in the training data. It also extrapolates future responses. The training 

data was collected for a period of two (2) months. A stratified holdout 

procedure with captured dataset randomly split into 70% for training and 

30% for testing was used in this study. The NFN T-S model was trained 

for 100000 epochs, with a neural network weight adjustment step size of 

0.03. The performance of the NFN T-S model on BGL prediction was 

assessed using new sets of measurements that were not used during 

training. The performance of the NFN T-S model is summarized in Table 

2. 

 

The Clarke’s Error Grid Analysis (CEGA) of the performance of the NFN 

T-S model in predicting BGL in the T1DM patient is given in Figure 5. 

87.5% of the predictions fall into region A, while the remaining 12.5% of 

the predictions fall into region B within the 240 minutes prediction 

horizon. No predictions fall into regions C, D and E hence; all the 

predictions are within the clinically acceptable range. 

 

Table 3 shows performance comparison of the coupled insulin and meal 

effect neuro-fuzzy model with previous predictive models. 
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a) 10IU  Biphasic Human Insulin (BMI: 23.32)

 
 
 
b) 10IU Biphasic Human Insulin (BMI: 22.42)

 

c) 30IU Biphasic Human Insulin (BMI: 23.32)

 
 
 
d) 30IU Biphasic Human Insulin (BMI: 22.42)
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e) No Insulin/Meal (Sedentary Lifestyle) (BMI: 23.32)

 
 
 
g) Three (3) SS of Rice (BMI: 23.32)  

 

f) One(1) SS of Rice (BMI: 23.32)

 
 
 
h) Five (5) SS of Rice  (BMI: 22.42) 

 
 

Fig 4: Plots of insulin and meal effects at different metabolic indices 
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Table 2: Performance Analysis of NFN T-S model on BGL prediction under different conditions 

Day 1 Day 2 Day 3 Day 4 

BMI: 23.32 BMI: 23.32 BMI: 22.42 BMI: 22.42 

Insulin: 30IU Insulin: 10IU Insulin: 30IU Insulin: 30IU 

Meal: 3  Meal: 1  Meal: 1  Meal: 5  

IBGL: 123 IBGL: 210 IBGL: 301 IBGL: 231 

MBGL PBGL MBGL PBGL MBGL PBGL MBGL PBGL 

190 193.2 229 216.8 266 270.6 286 288 

115 128.3 175 199.2 219 218.7 272 248.7 

77 86.1 187 174.7 103 133.4 217 189.9 

52 45.6 152 148.8 42 48.8 125 90.9 

IBGL: Initial BGL(mg/dl) is BGL before administration of insulin/meal;      MBGL: Measured BGL(mg/dl) is hourly measured 
BGL after administration of insulin/meal;      PBGL: Predicted BGL(mg/dl) is NFN predicted BGL;  Meal(Serving Spoons);  1 
Serving spoon of rice= 50g 

  

 

 

Figure 5: Clarke’s Error Grid Analysis of the performance of the Coupled 

Insulin/Meal Effect  NFN  BGL predictive model 

 

3.0 CONCLUSION 

The model developed establishes the fact that BGL variations in T1DM 

patients can be decoupled into manageable entities of feature extracts 

(neuro-fuzzy network weights) describing the insulin and meal effects for 

specific metabolic scenarios. The transparent coupling of the insulin and 

meal effects can predict BGL variations for both known and 

uninvestigated scenarios. The feature extracts defining the insulin and 

meal effects depend on the prevailing metabolic indices which include; 

body mass index, activity level, stress level, injection sites etc. However, 

the transparent coupling of the insulin and meal effects is unaware of the 

prevailing metabolic indices.  

 

The achievements made by the NFN T-S model in predicting BGL on 

limited training show very positive indication that predicting BGL 

variations for T1DM patients using neuro-fuzzy network is viable. Its 

performance on limited training is comparable to the achievements seen 

in the Auto Regressive, Compartmental (State Space), Support Vector 

Regression and Artificial Neural Network Model. The introduction of the 

concept of insulin and meal effect for diverse metabolic scenarios 

provides a novel means to explaining the variability in BGL experienced 

by T1DM patients. This will further enhance patients’ awareness to how 

their day to day activities affect their BGLs.  Robustness and flexibility of 

the model lies in its modularity. This is achieved through the use of RB1 

and RB2 that span the metabolic scenarios. Hence, RB3 which is the 

coupling of RB1 and RB2 is quite robust and flexible spanning the 

investigated metabolic scenarios. As a result of this design, RB3 learns 

the diverse experiences of the T1DM patient while RB1 and RB2 are 

updated as new metabolic scenes arise. 
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Contributions to Knowledge 

 

1. This study established that glucose/insulin dynamics of a Type 

1 diabetic patient can be decoupled into manageable entities of 

neuro-fuzzy feature extracts describing the insulin and meal 

effects for specific metabolic scenarios. 

 

2. Furthermore, this study established that coupling of the insulin 

and meal effects can effectively predict blood glucose 

variations in T1DM patients. 

 

 

For further research work, it is recommended that clinical investigations 

be carried out for more metabolic conditions which include different 

meals, exercise levels, stress levels, sites of insulin injection, meal and 

insulin effect offset etc. It is also recommended that more training data 

should be collected to enhance the performance of the NFN T-S based 

BGL prediction model. 
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