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ABSTRACT: 
The positioning accuracy of single frequency precise point positioning (SFPPP) attributes 
mainly to the ionosphere error, which strongly affects GNSS signals. When GNSS signals 
pass through the various ionosphere layers, they will be bent and their speed will be changed 
due to dispersive nature of ionosphere. To correct the ionosphere error, it is common to use 
Klobuchar ionosphere model or Global Ionosphere Maps (GIM). However, Klobuchar can 
deal with only about 50% of the Ionosphere effect and global Ionosphere maps are often 
inadequate to describe detailed features of local ionosphere because of limited precision and 
resolution.  

In this paper, an enhanced local ionosphere model was developed relying on modeling of 
measurements from a dense Egyptian permanent tracking GNSS network in order to achieve 
high precision ionosphere delay correction. The performance of the developed enhanced 
Egyptian ionosphere model (EIM) was verified through multi-constellations SFPPP accuracy 
for static and kinematic modes.  

For static mode, 24 hours multi-constellations datasets collected at three selected stations, 
Alexandria, Cairo, and Aswan, in Egypt on February 27, 2017, to investigate the performance 
of the developed local ionospheric model in comparison with the Klobuchar, GIM and 
ionosphere free models. After session time of half an hour, the results show that the 
performance of static SFPPP based on the developed Egyptian ionospheric map (EIM) 
achieved a comparable accuracy WRT using ionosphere free model. While using EIM, 
achieved an improvements of (38%, 28%, and 42%) and (32%, 10%, and 37%) for accuracy 
of latitude, longitude, and altitude in comparison with using Klobuchar and GIM models, 
respectively 

For kinematic mode, datasets of 2 hours of observations with 1 second sampling rate were 
logged during vehicular test; the test was carried out on the ring road of the city of Cairo, 
Egypt, on September 16, 2017. After half an hour of kinematic SFPPP data-processing, the 
performance of using Egyptian ionospheric map (EIM) for ionosphere delay correction, 
achieved an improvements of three dimension coordinates of (83%, 47%, and 62%) and 
(57%, 65%, and 21%) with respect to using Klobuchar model and GIM model, respectively. 
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1. INTRODUCTION 
It is well known that dual-frequency, geodetic-quality GPS receivers are often used both in 
static and kinematic applications for high-accuracy point positioning. Dual-frequency receiver 
can deal with ionosphere delay error using the so called ionosphere-free linear combination of 
both GNSS frequencies (L1 and L2) (Seeber, G., 2003). However, using single-frequency 
GPS receivers in similar applications creates a challenge because of difficulty of handling the 
ionosphere, and other measurement error sources.  

Meanwhile, the majority of mass-market GNSS users are operating single-frequency 
receivers due to the low costs. Consequently, the single-frequency PPP technique has received 
much attention from GNSS community to develop a cheap alternative to differential 
positioning technique, to provide comparable positioning accuracy and to significantly expand 
the usability of this technique in a myriad of applications where the size and cost of the GPS 
unit is an issue (see e.g. Øvstedal, 2002; Héroux et al., 2004; Chen and Gao 2005; Le and 
Tiberius 2006; Simsky 2006 Gao et al., 2006; Beran 2008; Bock et al., 2009; van Bree and 
Tiberius, 2011; Odijk et al., 2012). 

The greatest challenge for single-frequency PPP is the treatment of ionospheric delay error 
which can reach tens of meters at zenith (Klobuchar 1996). The ionosphere is a shell 
of electrons and electrically charged atoms and molecules that surrounds the Earth, stretching 
from a height of about 50 km to more than 1,000 km. It exists primarily due to ultraviolet 
radiation from the Sun (Hargreaves, 1992). Moreover, the ionosphere is highly unpredictable 
and its condition depends mainly on geographic location, time of the day, season of the year, 
and solar activity. The free electrons in ionosphere layer exert severe perturbations on the 
propagation of microwave signals transmitted continuously by GNSS satellites. These 
Perturbations may occur to the direction of propagation, to the velocity of propagation and to 
the signal strength. Moreover, the ionosphere is a dispersive medium, and that therefore the 
phase velocity (propagation of the carrier) is not the same as the group velocity (propagation 
of the codes). Consequently, ionosphere influences have to be determined directly by 
measurements and/or by modeling, and they have to be considered within the adjustment 
process (Seeber, G., (2003). 

 Actually, several methods are used to eliminate the ionosphere errors. For example, 
GNSS satellites broadcast the parameters of the Klobuchar ionosphere model for single 
frequency users. The Klobuchar model was designed to minimize user computational 
complexity and user computer storage as far as to keep a minimum number of coefficients to 
transmit on satellite-user link. These parameters model the effect of the ionosphere on the 
GNSS signal but can account only for about 50% of the total effect (Klobuchar 1987). 

In 1998, IGS has started a working group to develop global ionospheric gridded data 
representing the total electron content over the whole globe. The vertical TEC values (VTEC) 
and DCBs, in the IONospheric Exchange (IONEX) format (Schaer et al., 1998), are obtained 
from seven analysis centers (IAACs) (Roma, David et al., 2017). The ionospheric delay is 
corrected using the daily combined IGS Final GIM, which is accurate to 2 �8 TECU (1 TECU 
corresponds to a delay of 0.16 m on L1 frequency) (Hernández-Pajares et al. 2009). For more 
information about the GIM, refer to the IGS website (http://www.igs.org).  However, global 
TEC maps have limited precision and resolution in some areas like North of Africa that there 
are no IGS stations in Egypt which in role affected the accuracy of using IGS GIM product in 
Egypt, as shown in figure 1.  
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Figure 1. Global distribution of IGS stations 

To deal with the holes of the first GIM computation stage existing in the North Africa and 
over the Oceans resulting from a shortage of GNSS stations in North Africa, an optimum 
spatial-temporal interpolation technique was developed to cover these holes (Krankowski and 
Hernandez-Pajares, 2016). Moreover, due to the lack of GPS stations over the equatorial, 
North Africa and Atlantic ocean in IGS network, the produced Global Ionospheric maps 
(GIMs) have poor effect for mitigating ionospheric error for precise positioning (Mostafa 
RABAH et al, 2018). 

Consequently, local ionosphere model is required to provide high precision ionosphere 
delay correction. The obtained local ionosphere model typically relies on modeling of 
measurements from the permanent tracking stations which known as Egyptian virtual 
reference stations (VRS), in order to achieve high precision. The proposed ionosphere maps 
are generated on a daily basis using data from about 40 GNSS stations along Nile valley and 
its Delta.  The Targeting temporal resolution is two-hours and spatial resolution of 0.5° and 
0.5° in longitude and latitude, respectively. The derived Egyptian ionosphere maps (EIMs), 
was validated as mitigation of the ionospheric errors in comparison with Klobuchar model 
and the Global Ionospheric Maps (GIMs). Also, we tried to evaluate the performance of 
SFPPP supported by EIM for different applications. 

2. MATHEMATICAL SINGLE FREQUENCY GNSS PPP MODEL
Considering the multi-GNSS observations including GPS, GLONASS, Galileo and BeiDou, 
the mathematical model for single frequency GNSS PPP can be written as (Abd Rabbou and 
El-Rabbany, 2015): 
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Where G is GPS system, j is other global navigation system (GLONASS, Galileo and 
Beidou); &'(��� and &')�  are satellites clock error, for GPS and the other global navigation 
systems respectively, lumped with the ionosphere-free differential code bias, which can be 
obtained from the IGS-MGEX (Montenbruck et. al., 2014);�&*+,- is the ionospheric delay 
component in meters; &*./,0 is the tropospheric delay component in meters; 1(2  and 132 are a 
bias terms, for GPS and the other global navigation systems respectively, representing the 
combined effect of differential code bias of the satellite, as shown in Table 1: ISB is the inter-
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system biases; 4(  and 43 are relevant system noise and un-modeled residual errors for GPS the 
other navigation systems respectively. 
Table 1. GNSS single frequency observations processed and differential code biases corrections 
applied.

GNSS�system�
Observations�used�in�

SF�Processing�
Observations�processed�in�
satellite�clock�estimation�

Bias�term�B�

GPS� C1C�(C/A)�and�L1C� C1P�and�C2P� 56��767+
899

879:899 56��7�9

GLONASS� C1P�and�L1P C1P�and�C2P�
899

879:899 56��7�9��

Galileo� C1X�and�L1X�(E1)� C1X�and�C5X�
8;9

879:8;9 56�67<6;<��

BeiDou� C2I�and�L2I� C2I�and�C7I� 8=9
899:8=9 56�69�6=���

In our single-frequency GNSS model, the GPS receiver hardware delay >(/  is lumped to the 
receiver clock error and the combined receiver clock bias is considered as a single unknown 
in our estimation filter. As a result, the ISB for each GNSS system is given by: 

?@13 � �&( � &3! � ABCD,EE                                                                  (5) 

Where�ABCD,EE, FG the GPS/other global navigation system (GLONASS, Galileo and 
Beidou) system time offsets, respectively, which result from the differences in the system 
time scales. These time offsets will exist if the broadcast ephemeris of each system is used. 
However, since the precise satellite clock corrections from MGEX are used, which are 
referred to the GPS time, the time offsets will disappear in Equations (5) (Fei Guo et. al., 
2016).  

The differential code biases DCBs can be obtained from the IGS MGEX archive (Wang et 
al 2016; Montenbruck et. al., 2014). The UNB3 tropospheric model, consisting of the 
Saastamoinen vertical propagation delay model and Niell mapping function, is used to 
account for the dry component of the tropospheric delay (Leandro et al.  2008). The existing 
models are used to account for the effects of ocean loading, Earth tide, carrier-phase windup, 
sagnac, relativity, and satellite antenna phase-center variations (Kouba 2009). Considering the 
above corrections, the final mathematical model for single frequency GNSS PPP can be 
simplified to: 

H(��� � I�J/ � K(2�L � �M/ � N(2�L � �O/ � P(2�L � &(+,- � QROS& � T�&U/� � V(W                              (6) 
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Y(���� � I�J/ � K(2�L � �M/ � N(2�L � �O/ � P(2�L � &(+,- � QROS& � T�&U/� � Z( �� 4(W                      (8) 

Y)��� � X�J/ � K32�L � �M/ � N32�L � �O/ � P32�L � &3+,- � QROS& � T�&U/� � Z3 �� T�?@13! � 4)W          (9) 

where [� and����are the corrected pseudorange and carrier phase measurements, respectively;  
G is GPS system, j is other global navigation system (GLONASS, Galileo and Beidou); J/, M/ 
and O/ are the unknown receiver coordinates; K2, N2 and�P2 are the satellite coordinates 
obtained from the final IGS-MGEX orbital products and corrected for the effect of earth 
rotation during signal transit; As indicated above, local ionospheric model (EIM) is used to 
account for the ionospheric delay (&(+,-�\]^�&3+,-�_�in comparison of effect of other models. The 
wet troposphere delay (QROS&) is less predictable and, thus, it is considered as unknown 
parameter by the standard SFPPP algorithm in the estimation process as (QR) is the wet 
mapping factor and (OS&) is the wet component of the tropospheric delay; ��̂`a is receiver 
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clock error lumped with the GPS receiver hardware delay as stated in Equations (6) to (9);�bc 
and �c are are relevant system noise and un-modeled residual errors dumped by additional 
ionospheric residuals; A is the ambiguity term. 

3.  METHODOLOGY OF DRIVING LOCAL IONOSPHERE MODEL  
A single-layer model which is based on the corresponding mapping function is used to model 
the ionospheric Total Electron Content (TEC) using the geocentric latitude and the sun-fixed 
longitude of the ionosphere pierce point (IPP). These  model has the advantage over Taylor 
series expansions, to be well suited for regional and for global models (Schaer, 1995). 

The slant total electron content (STEC) is estimated from GNSS dual-frequency 
observations considering smoothed pseudo-range based geometry-free �d� as follow  

�d� � �deD f g �7e7h i 7
899 �� 7899j � �k6 ��56�
 ��56���  (10) 

 �k6 ���� 879�899
deDfg�7e7h�l879�m�899�n

�����d� ��56�
 ��56���                                      (11)   

Where (56�
_ o�56��� are differential code bias for receiver and satellites, respectively. 
Commonly, the ionosphere is assumed to be concentrated in a thin layer at altitude H, as a 
result, the STEC can be translated into the vertical total electron content (VTEC) using the 
modified single-layer model (MSLM) as used in CODE VTEC products by defining a mapping 
function (MF) 

pq��r� � stuvwxsuyz �� {
{|} �uyz ��~r���                                                                 (12) 

��k6 � ������� �k6                                                                           (13) 

Where v is the satellite elevation angle, R is the earth’s radius, and H is the attitude of the 
ionosphere thin layer (normally the approximate peak height of the F2 layer). R is set to 6,371 
km. H and � can be set by users. Commonly, they are defaulted as H = 506.7 km and a = 
0.9782, which are consistent with the values used by the CODE group. Adjusted spherical 
harmonic function, with just degree and order of (5), are used in establishing the national 
ionospheric model. These spherical harmonic function are applied to simulate the VTEC as 
E(�, �) which  can be expressed as follows (Schaer 1999): 

��k6 � k���_ �� � �� � �����uyz��������� stu�� ����� uyz������e������e (14)  

Where � is the geocentric latitude of the ionosphere pierce point (IPP), � = � - �0 is the sun-
fixed longitude of the IPP: �  and �0 are the longitude of the IPP and the apparent solar time, 
respectively, \�� and ��� are the regional ionosphere model coefficients,�[�� are normalized 
Legendre polynomials. Substituting Equation (11) and (12) into Equation (13), the following 
expression can be obtained: 

��k6 � � � �����uyz��������� stu�� ����� uyz������e������e           
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where amn , bmn , DCBr  and DCBS are the estimated unknown parameters. The area of study 
defines the order of spherical harmonics expansion. Commonly, for Egyptian region, 5th 
order is sufficient. The set of the ionosphere coefficients will be assumed every 2 h to be 
consistent with GIM model, for one GPS station; there are more than 20,000 measurements 
every day (epoch time 30 sec). Thus, the number of observations is much more than the 
number of unknown parameters. According to the theory described above, the DCB and 
ionosphere coefficients can be estimated from GPS dual frequency observations by the least 
squares (LS) method. However, due to the singularity of Equation (15), additional constrain 
should be added to separate the satellite and receiver differential code biases. Traditionally, 
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     RMS map snapshot at                RMS map snapshot                    RMS map snapshot       
     Feb 27, 2017, 00:00:00 UTC       Feb 27, 2017, 02:00:00 UTC       Feb 27, 2017, 04:00:00 UTC  

 
     RMS map snapshot                     RMS map snapshot                      RMS map snapshot                

Feb 27, 2017, 06:00:00 UTC        Feb 27, 2017, 08:00:00 UTC          Feb 27, 2017, 10:00:00 UTC 

    RMS map snapshot at                RMS map snapshot                    RMS map snapshot       
   Feb 27, 2017, 12:00:00 UTC         Feb 27, 2017, 14:00:00 UTC      Feb 27, 2017, 16:00:00 UTC 

    RMS map snapshot at               RMS map snapshot                   RMS map snapshot 
   Feb 27, 2017, 18:00:00 UTC       Feb 27, 2017, 20:00:00 UTC      Feb 27, 2017, 22:00:00 UTC                    

Figure 5.  RMS maps snapshots covering both the daytime and nighttime periods 
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4. SINGLE FREQUENCY PPP TESTS AND RESULTS 
As said before, the main target of this work is to evaluate of SFPPP supported by EIM. 
Consequently, the positioning accuracy of SFPPP based on EIM was examined in all 
applications modes, static and kinematic, in comparison with other ionosphere models. The 
results are shown and commented in the next sections.

4.1. Static Single Frequency PPP Tests and Results 
Multi-constellations 24 hours datasets were collected at three selected stations in Egypt at 
different latitudes to cover the country namely: Alexandria, Cairo, and Aswan on February 
27, 2017, as appeared in Figure 6, while table 2 shows the coordinates of these stations. These 
data sets are used to evaluate the performance of SFPPP based on the developed Egyptian 
ionospheric map (EIM), in static mode.  

The average results show that, the performance of SFPPP based on the developed 
Egyptian ionospheric map (EIM) achieved a comparable accuracy WRT that of ionosphere 
free model and an improvements of (38%, 28%, and 42%) and (32%, 10%, and 37%) for 
accuracy of latitude, longitude, and altitude in comparison with SFPPP with Klobuchar 
model, and GIM model, respectively, after session time of half an hour of static datasets. 
Figure 7 shows SFPPP positioning accuracy for station of Cairo, while Figure 8 shows the 
RMSE for latitude, longitude and altitude of Klobuchar, GIM and EIM models for that 
station. 

.Figure 6. The three selected GNSS stations. 
 

Table 2. Coordinates of three selected stations in Egypt 

 

Station Name Latitude Longitude Up
ALEX 31  12  14.1622 N 29  54  16.9802 E 66.851 m
CARO 30  01  55.7181 N 31  12  55.0524 E 75.579 m
ASWN 24  06  25.7835 N 32  54  07.1222 E 112.658 m
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model, and (32%, 10%, and 37%) for accuracy of latitude, longitude, and altitude in 
comparison with GIM model, after session time of half an hour. 

For kinematic mode, Local ionosphere model (EIM) showed improvements of (83%, 47%, 
and 62%) for accuracy of latitude, longitude, and altitude in comparison with Klobuchar 
model, and (57%, 65%, and 21%) for accuracy of latitude, longitude, and altitude in 
comparison with GIM model, after session time of half an hour. 
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