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ABSTRACT. The problem of integer or mixed integer/real valued parameter estimation
in linear models is considered. It is a well-known result that for zero-mean additive
Gaussian measurement noise the integer least-squares estimator is optimal in the sense of
maximizing the probability of correctly estimating the full vector of integer parameters.
In applications such as global navigation satellite system ambiguity resolution, it can be
beneficial to resolve only a subset of all integer parameters. We derive the estimator
that leads to the highest possible success rate for a given integer subset and compare
its performance to suboptimal integer mappings via numerical studies. Implementation
aspects of the optimal estimator as well as subset selection criteria are discussed.
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1. INTRODUCTION

We study a system of linear or linearized observation equations in the form

y = Aa + η, (1)

with a ∈ Z
n the vector of unknown integer parameters, which are linked to the vector

of observations y ∈ R
q via the full-rank matrix A ∈ R

q×n. The noise vector η ∈ R
q

is assumed to follow a zero mean Gaussian distribution with covariance matrix Q . The
estimation of a is usually decomposed into two steps (Teunissen, 1993). In the first
step the integer property of a is simply disregarded and the so called float solution â is
computed via a standard linear least-squares estimation

â =
(
ATQ−1A

)−1
ATQ−1y . (2)

This float solution â is a minimal sufficient statistic, i.e., it contains the same information
about the unknown a as the observation y itself. The second step, which takes into
account the integer property of a , can therefore be based on â instead of y . From the
law of error propagation we know that â follows a Gaussian distribution:

â ∼ N (a ,Qâ) with Qâ =
(
ATQ−1A

)−1
. (3)
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In global navigation satellite system (GNSS) applications, only some of the unknown
parameters are integer valued, i.e., the observation model is of the form

y = Aa +Bb + η, (4)

with b ∈ R
p the vector of real valued unknowns such as incremental receiver coordinates

or instrumental and atmospheric delays and B ∈ R
q×p. The measurement vector y

usually contains code and carrier phase measurements, and a are the carrier phase integer
ambiguities. The estimation of a and b can now be decomposed into three steps, where
the first one is again the float solution â and b̂ from a linear least-squares estimation[

â

b̂

]
=

([
AT

BT

]
Q−1

[
A B

])−1 [AT

BT

]
Q−1y . (5)

The float solution is Gaussian distributed as[
â

b̂

]
∼ N

([
a

b

]
,

[
Qâ Qâb̂

Qb̂â Qb̂

])
(6)

and delivers a minimal sufficient statistic. In the second step the float solution â is used
to resolve some or all of the elements of a as integer values. The motivation to do so is
usually to improve the precision of the estimate of b compared to b̂. Thus, the correlation
between â and b̂ is utilized in the third and final step to correct b̂ for the resolved integers.
In GNSS positioning with short observation time spans, ambiguity resolution can improve
the position accuracy by roughly two orders of magnitude compared to the float solution,
depending on the chosen subset of ambiguities and given that the estimated integers are
correct. The performance analyses of partial ambiguity resolution (PAR) techniques in,
e.g., Verhagen et al. (2011), Odijk et al. (2014), Nardo et al. (2016), and Brack (2016)
show that PAR can be very beneficial for obtaining both fast and reliable positioning
results.

The focus of this contribution is on how to find an integer estimate for a certain
subset of integer parameters based on Qâ and the realization of â , which applies to
both discussed observation models. The integer fixing takes place either in the original n
dimensional parameter space of a or after the reparameterization

â ′ = Zâ , Qâ ′ = ZQâZ
T, (7)

where Z ∈ Z
n×n and abs (detZ ) = 1, such that Z−1 is also an integer unimodular ma-

trix. Applying such a transformation does not affect the outcome of a search for closest
n dimensional integer grid points in the metric defined by Qâ (Agrell et al., 2002), thus
leaving the result of integer least-squares (ILS) unchanged. It does, however, fundamen-
tally change the problem of partial integer fixing, irrespective of the integer mapping that
is used. Common choices of Z for PAR in the context of GNSS are widelaning techniques
for ambiguities on multiple frequencies (Hatch, 1982) or decorrelation/reduction transfor-
mations (e.g., Jazaeri et al., 2014). Let the set of indexes that correspond to the integer
parameters that are resolved as integers and kept as float values be given by I and Ī,
respectively (with I ∪ Ī = {1, . . . , n}, I ∩ Ī = ∅). All parameters with an index in I are
fixed to integers via the mapping S(·):

ǎ ′ = S
(
â ′

)
, S(·) : Rn �→ Z

|I|. (8)
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Note that generally only a subset of the integer parameters is resolved, i.e., the integer
solution ǎ ′ is of dimension |I| instead of n, where |I| denotes the cardinality of the set I.
The goal is now to design the mapping function S(·) such that the probability of a correct
integer estimate P (ǎ ′ = Z Ia) is as large as possible for the given index set (subscripts
I are used to select all entries of a vector/rows of a matrix with index i ∈ I). If system
model (4) is employed, the float solution b̂ is then corrected for the fixed integers

b̌ = b̂ −Qb̂â ′I
Q−1

â ′I

(
â ′I − ǎ ′

)
, (9)

with Qb̂â ′I
= Qb̂âZ

T
I and Qâ ′I

= Z IQâZ
T
I .

The remainder of this paper is organized as follows. In Section 2, we generalize the class
of integer estimators as introduced in Teunissen (1999) such that it is capable of partial
integer estimation. Two simple but suboptimal examples of partial integer estimators are
given in Section 3. This raises the question of which estimator to prefer. We introduce the
estimator that leads to the highest probability of correct integer estimates in Section 4 and
prove its optimality. In Section 5, some computational aspects of the optimal estimator
are studied, and criteria for selecting the integer subset in GNSS applications are given
in Section 6. A comparison between the optimal and suboptimal estimators is presented
in Section 7. For the sake of notational simplicity, â and ǎ will be used instead of â ′ and
ǎ ′ in Sections 2–5 and 7.

2. PARTIAL INTEGER ESTIMATION

The problem is to determine an integer estimate of the parameters aI with the a-priori
defined index subset I based on the realization of the float solution â , i.e., to define
a mapping S(·) : Rn �→ Z

|I|. The probably most intuitive approach is to only consider
the part âI of the float solution â , which lies in the subspace that corresponds to the
parameters that are to be resolved as integers, and to apply an integer estimator such
as ILS to âI . This implies that only the information âI is used for computing the
integer estimate whereas â Ī is not, meaning that the parameters a Ī that are not resolved
as integers are treated as if they were conceptually real valued. According to the system
models (1) and (4), the parameters a Ī are, however, integers, which should not be ignored
when defining the partial integer mapping.

The most general approach is to assign a subset Sz ⊂ R
n to each integer vector

z ∈ Z
|I|, which implicitly defines the integer mapping S(·):

Sz = {x ∈ R
n | z = S (x )} , ∀z ∈ Z

|I|. (10)

With these regions the integer estimator (8) can be explicitly written as

ǎ =
∑

z∈Z|I|

sz (â) z , with sz (â) =

{
1 if â ∈ Sz

0 else.
(11)

The constraints that have to be imposed on the construction of the regions Sz have been
formulated in Teunissen (1999) for |I| = n, i.e., for the case that the full set of integer
parameters is resolved. For the general case in which an arbitrary set I of integer param-
eters is resolved, the criteria that have to met when defining an integer mapping scheme
are slightly different. The following three properties seem reasonable to be possessed by
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the regions Sz , as will be explained thereafter:

(i)
⋃

z∈Z|I| Sz = R
n

(ii) Int (Sz ) ∩ Int (Su) = ∅, ∀z ,u ∈ Z
|I|, z �= u

(iii) SvI = S0 + v , ∀v ∈ Z
n.

(12)

The first two conditions state that the regions Sz have to cover the space R
n without

gaps and overlaps, meaning that the (partial) integer mapping S(·) leads to a unique |I|
dimensional integer estimate for any float solution â ∈ R

n. The third condition states
that if the float solution â is shifted by an arbitrary integer vector v ∈ Z

n, then the
integer estimate for the subset I has to be shifted by vI . This implies that the regions Sz

are translated copies of each other for any integer shift in the directions that correspond
to the subset I, and that the regions Sz are invariant for any integer shift in the directions
that correspond to the subset Ī. In other words, if any entry of the float solution â that
is to be resolved is shifted by an arbitrary integer, then the integer solution is shifted by
the same amount. On the other hand, if any entry of the float solution â that is not
resolved is shifted by an arbitrary integer, this must not affect the integer solution of the
subset to be resolved.

For any non-empty set I there are two possible outcomes of a partial integer estimator:
Either the integer mapping was correct or incorrect. The probability of a correct integer
estimate ǎ is given by

P (ǎ = aI) =

∫
SaI

pa(x )dx , (13)

with pa(x ) the probability density function (pdf) of â . The failure rate follows as

P (ǎ �= aI) = 1− P (ǎ = aI) . (14)

3. EXAMPLES OF PARTIAL INTEGER ESTIMATORS

As already mentioned in Section 2, one possible approach to estimate the subset I of
integers from â is to apply ILS to the partial float solution âI , i.e.,

ǎparILS = argmin
z∈Z|I|

‖âI − z‖2QâI

, (15)

where QâI
follows from selecting the entries that correspond to âI from Qâ . The pull-in

regions Sz of this estimator are given by

Sz =
{
x ∈ R

n | ‖x I − z‖2QâI

≤ ‖x I − u‖2QâI

, ∀u ∈ Z
|I|
}
, ∀z ∈ Z

|I|. (16)

Essentially, this estimator considers a reduced |I| dimensional space and resolves the full

vector of integers (which is then of dimension |I|) in that space. As ILS is optimal in the
sense of maximizing the success rate for estimating the full vector of integer parameters
(Teunissen, 1999), this estimator seems to be a reasonable choice. It does, however, com-
pletely neglect the fact that the parameters a Ī are integers as well, since the computation
of the integer solution (15) is independent of â Ī .

This leads us to a different approach, which is to compute the full n dimensional ILS
solution a∗ and to select those entries from a∗, which correspond to the subset I:

ǎ fullILS = a∗I , with a∗ = argmin
v∈Zn

‖â − v‖2Qâ
. (17)
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Accordingly, the regions Sz of this estimator are given by the union of all pull-in regions
of the full n dimensional ILS estimator that correspond to an integer v ∈ Z

n with vI = z :

Sz =
⋃

v∈Zn|vI=z

{
x ∈ R

n | ‖x − v‖2Qâ
≤ ‖x − u‖2Qâ

, ∀u ∈ Z
n
}
, ∀z ∈ Z

|I|. (18)

This estimator takes the integer property of a Ī into account, but ILS in combination with
a selection of entries of the resulting n dimensional integer vector is no longer optimal.

Depending on the order, the two approaches (15) and (17) may be identical when using
sequential conditional rounding, also referred to as integer bootstrapping (BS) (Babai,
1986; Blewitt, 1989; Teunissen, 1998), instead of ILS. Both approaches are identical, if
ILS is replaced by simple component wise rounding.

4. MAXIMIZING THE SUCCESS RATE

The estimator that resolves the a-priori defined subset I of a with the highest possible
probability of correct integer estimates P (ǎ = aI) (13) within the class of partial integer
estimators (12) is given in the following theorem.

Theorem: Let I be the subset of integer parameters to be resolved and let the partial
integer estimator ǎopt for aI be given by

ǎopt = argmax
z∈Z|I|

∑
v∈Zn|vI=z

exp

(
−
1

2
‖â − v‖2Qâ

)
, (19)

where the float solution â follows the Gaussian distribution N (a ,Qâ), then

P (ǎopt = aI) ≥ P (ǎ = aI) (20)

with ǎ any partial integer estimator as defined in (11), which meets the criteria (12).

The proof is as follows. Let the regions S̄u , ∀u ∈ Z
|Ī|, be arbitrary regions that fulfill

the properties of the pull-in regions Sz (12) for the index set Ī instead of I, and let the
regions Rv , ∀v ∈ Z

n, be defined as Rv = SvI ∩ S̄v Ī
(this implies that Rv , ∀v ∈ Z

n, cover
R

n without gaps and overlaps and are integer translated copies of each other for any
integer ∈ Z

n). The pull-in regions Sz can be written as Sz =
⋃

v∈Zn|vI=z Rv . With pa(x )

the Gaussian pdf of the float solution, the pull-in regions S∗z of the optimal estimator (19)
for the index set I are given by

S∗z =

{
x ∈ R

n |
∑

v∈Zn|vI=z

pv (x ) ≥
∑

v∈Zn|vI=u

pv (x ), ∀u ∈ Z
|I|

}
. (21)

Then, ∑
v∈Zn|vI=aI

pv (x ) ≥
∑

u∈Z|I|

∑
v∈Zn|vI=u

pv (x )su(x ), ∀x ∈ S∗aI , (22)

with su(·) the indicator function of an arbitrary partial integer estimator for subset I
with pull-in regions Su . We integrate both sides of (22) over the subset R∗a = S∗aI ∩ S̄a Ī

of S∗aI , where S̄a Ī
is arbitrary within the above mentioned constraints:

∑
v∈Zn|vI=aI

∫
R∗a

pv (x )dx ≥
∑

u∈Z|I|

∑
v∈Zn|vI=u

∫
R∗a∩Su

pv (x )dx . (23)
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The coordinate transform y = x + a − v leads to (we make use of pv (x + c) = pv−c(x )
and (iii) from (12))

∑
v∈Zn|vI=aI

∫
R∗

2a−v

pa(y)dy ≥
∑

u∈Z|I|

∑
v∈Zn|vI=u

∫
R∗

2a−v∩Su+aI−vI

pa(y)dy . (24)

Since the regions R∗v do not overlap, the sum of integrals on the left side of (24) can be
written as a single integral over the region

⋃
v∈Zn|vI=aI

R∗2a−v =
⋃

v∈Zn|vI=aI
R∗v = S∗aI .

On the right side of (24) we notice that all terms have in common that vI = u , i.e.,
Su+aI−vI = SaI and constant for all terms of the sums. The only quantity that depends
on the argument of the sums are the non-overlapping R∗2a−v . We can therefore again
replace the sum of integrals with a single integral. Since the two sums simply represent a
sum over all n dimensional integer vectors, the region of integration is

⋃
v∈Zn R

∗
2a−v∩SaI =

R
n ∩ SaI = SaI , and we finally have∫

S∗aI

pa(y)dy ≥

∫
SaI

pa(y)dy . (25)

Comparing (25) to (13) shows that the left and right side of (25) are the probabilities of
correctly resolving aI for the two estimators defined by S∗aI and SaI , which concludes the
proof.
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â1 − a1

â
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â1

â
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Fig. 1. Regions Sz for a two dimensional example; first row: I = {1}, second row:
I = {2}; left: partial ILS, center: full ILS + selection, right: optimal; the corresponding
integer solutions are indicated in blue; the regions of successful ambiguity resolution are

marked in gray.

If I corresponds to the full set of integers, the Theorem reduces to the optimality
property of ILS, since the sum then only contains one term. Figure 1 shows a two
dimensional example with I = {1} in the first row and I = {2} in the second row, i.e.,
only the first/second integer is resolved. The boundaries of the regions Sz , which lead
to different integer values according to (11), are shown for the two suboptimal strategies
from Section 3 and the optimal integer mapping. The first column corresponds to partial
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ILS, i.e., ILS is applied to âI (15), the second column to full ILS followed by a selection
of entries (17), and the third column to the optimal strategy (19). Each region leads to a
different but unique one dimensional fixed solution ǎ , indicated by the blue dashed lines.
The gray regions lead to correct integer estimates ǎ = aI .

5. COMPUTATION OF THE OPTIMAL ESTIMATOR

In this section we discuss the problem of how to implement the optimal partial integer
estimator (19) for any index set I that is not the full set (for |I| = n, (19) reduces to
a standard ILS problem). An equivalent formulation of the optimization problem (19) is
given by

ǎopt = argmin
z∈Z|I|

∑
v∈Zn|vI �=z

exp

(
−
1

2
‖â − v‖2Qâ

)
= argmin

z∈Z|I|
C(z ), (26)

with C(z ) the cost function as defined in (26). The minimization of this cost function
over the set Z

|I| can be solved via search (and shrink) as follows. The cost function
C(z ) is initialized with, e.g., z = a∗I as C(a∗I) = d, where a∗ is the n dimensional ILS
solution. The goal is now to find all integer candidates z ∈ Z

|I| with C(z ) ≤ d. The
integer candidate with the minimum value of the cost function C(·) is the optimizer of
(26). This search strategy can be combined with a shrinking of the search space, i.e.,
whenever a valid integer candidate z is found, the value of d is reduced to C(z ). The
search for integer candidates z ∈ Z

|I| can be formulated as a tree-search problem, as the
cost function can be written as

C(z ) =

|I|∑
i=1

ci(z1, . . . , zi), (27)

where ci(z1, . . . , zi) are non-negative additive increments that only depend on all entries
of z up to level i. They are given by

ci(z1, . . . , zi) =
∑

v∈Zn|
vIi �=zi

vI1=z1,...,vIi−1
=zi−1

exp

(
−
1

2
‖â − v‖2Qâ

)
, (28)

with Ii the ith element of the index set. That is, the sum in (26) for computing C(z ) can
be built up by adding new terms in each level. The possible values at level i follow from
ci(z1, . . . , zi) ≤ d−

∑i−1
j=1 cj(z1, . . . , zj).

Since the evaluation of C(z ) in (26) comprises a sum over infinitely many integer
vectors v , it cannot be computed exactly but has to be approximated, i.e., the integer
vectors v have to be chosen from a finite set instead of Zn. This finite set is defined such
that all integers, whose contribution to the sum is too small, are omitted. This results in
the set Θλ

â of integers, which lie within an ellipsoidal region centered around â , i.e.,

Θλ
x =

{
v ∈ Z

n | ‖x − v‖2Qâ
< λ2

}
. (29)

The larger the value of the size parameter λ of Θλ
â is chosen, the closer the approximation

will be to the exact value of C(z ). The same problem arises in the computation of
the best integer-equivariant estimator, where a good choice for λ was found from the
condition P (‖â − a‖2Qâ

< λ2) = 1 − α with a small value of α (Teunissen, 2003). Since2005
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‖â − a‖2Qâ
follows a central χ2 distribution with n degrees of freedom, the value of λ can

be determined.

The evaluation of (28) includes a search for integer candidates in Θλ
â in each level

i = 1, . . . , |I|. In order to save computational complexity, one should first search for all
integers v ∈ Θλ

â and store them together with exp(−1
2
‖â − v‖2Qâ

). Irrespective of the
chosen parameterization in (7), this first search should be carried out after applying a
decorrelation transformation, which makes the search more efficient. The search for the
optimal solution ǎopt ∈ Z

|I| is then performed by simply selecting candidates from that
list when evaluating (28).

6. CRITERIA FOR SELECTING THE INTEGER SUBSET

In GNSS applications, there are two criteria that the user is interested in when selecting
the subset I of integer parameters to be resolved (Verhagen et al., 2011): The precision of
the estimate b̌ (9) that he can expect after resolving a ′I , and the reliability of the integer
estimate ǎ ′ (8).

Under the assumption that all ǎ ′ in (9) were resolved to their correct integers, b̌ is
Gaussian distributed with mean value b and the conditional covariance matrix

Qb̂|â ′I
= Qb̂ −Qb̂â ′I

Q−1
â ′I
Qâ ′I b̂

(30)

for the given subset I. The probability of an incorrect ambiguity estimate ǎ ′ directly
tells us how much confidence we can put in the presented statistics of b̌. If this failure
rate is sufficiently small, the user can employ Qb̂|â ′I

from (30) to evaluate which precision

he can expect from the estimate b̌ after the algorithm that he chose determined the
transformation Z and index set I. If the user application requires a certain minimum
precision of b̌, (30) can be used to decide, whether a specific subset I is useful for the
application or not. Since

Qb̂|â ′I
� Qb̂|â ′J

, ∀J ⊆ I, (31)

where � is defined in terms of positive-definiteness, we know that once we have found an
index set I that does not lead to the required precision of b̌, all subsets of I cannot reach
that precision as well and do not have to be considered.

The reliability can be measured with the probability P (ǎ ′ = a ′I) of a correct integer
estimate ǎ ′, cf. (13). As mentioned above, this success rate is important, since the
precision as given by (30) is only valid given that ǎ ′ = a ′I , otherwise b̌ can have large
errors. Unfortunately, the success rate for both the optimal partial integer estimator and
the two presented suboptimal schemes cannot be computed in closed form. One can,
however, evaluate lower bounds on the success rate for a given index set I and fixing
scheme and decide on whether or not to resolve a certain subset of integers based on these
bounds. For the partial ILS strategy (15), which applies ILS to the reduced float vector
âI , we can use the standard success rate bounds of ILS, but in the reduced space. It is
clear, that the lower bounds are also valid for the optimal partial integer estimator. The
analysis in Verhagen et al. (2013) shows that the success rates of integer BS are a tight
lower bound for the ILS success rates if a prior decorrelation function is used. The idea
of using BS success rates for selecting the subset I with a given reliability constraint was
introduced in Teunissen et al. (1999) and used for PAR in, e.g., Khanafseh and Pervan
(2010), Verhagen et al. (2011), Odijk et al. (2014), and Nardo et al. (2016). Generally,
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the subset selection process includes the evaluation of success rate and/or precision (30)
for different subsets I, before one of them is selected. A very simple method to choose I
is to use a truncated version of the sequentially computed BS success rate, which keeps
adding ambiguities to the set I until the resulting success rate drops below a user defined
threshold.

If the difference between the easy-to-compute BS success rates and the success rates
of the presented partial integer estimators is small, we can use the BS success rates to
decide whether or not a certain subset I of integers can be reliably resolved, without
being too conservative. In the following a numerical comparison of this difference is pre-
sented for simulated single epoch dual frequency L1/L2 single baseline GPS positioning
examples, where the satellite constellation is used as seen during GPS week 1,815 with
an elevation cutoff angle of 10◦. We consider 145 different epochs in the area of Munich,
Germany. The standard deviation of the undifferenced measurements in zenith direction
is assumed as 25 cm for code and 3mm for phase observations, to which the elevation
dependent exponential weighting function from Euler and Goad (1991) is applied. The
between receiver (residual) differential ionospheric delays are modeled as zero mean addi-
tive Gaussian random variables with standard deviations of 0− 3 cm in zenith direction.
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Fig. 2. Success rates of partial BS versus the actual success rates of partial ILS (left),
full ILS + selection (center), and the optimal scheme (right); each figure shows 68,000

data points.

Figure 2 shows the analytic success rates Ps,parBS of partial BS against the success
rates Ps,parILS of partial ILS, cf. (15), Ps,fullILS of full ILS + selection, cf. (17), and
Ps,opt of optimal partial integer fixing, cf. (19), which are computed via Monte Carlo
integration. For each positioning case, the success rates are evaluated for all subsets I
except I = {1, . . . , n}, which lead to a precision of⎡

⎣σE

σN

σU

⎤
⎦ ≤

⎡
⎣2 cm2 cm
6 cm

⎤
⎦ , (32)

where σE, σN, and σU are the standard deviations of the coordinate estimates in the local
east, north, and up frame that follow from Qb̂|â ′I

. That is, each data point in the figures
corresponds to a different combination of measurement epoch, ionospheric uncertainty,
and ambiguity subset. All partial integer fixing schemes are applied in the LAMBDA
decorrelated space (Teunissen, 1995). Figure 2 shows that the success rates of partial BS
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are a tighter lower bound for partial ILS than for the optimal estimator, which implies
that Ps,opt is in general noticeably larger than Ps,parILS. Also, the BS success rates seem to
work well as a lower bound for full ILS + selection, although they cannot be guaranteed
to be a lower bound.

7. OPTIMAL VS SUBOPTIMAL PARTIAL INTEGER ESTIMATION

In Section 5 it was explained, how the optimal partial integer estimator as derived in
Section 4 can be implemented. One might, however, be interested in using one of the
simpler partial integer estimators (15) or (17) from Section 3, which only require an ILS
solution, such as it is provided by, e.g., the LAMBDA method (Teunissen, 1995). If
the sum in the computation of the optimal estimator (19) is simply approximated by its
maximum term, (19) becomes equivalent to selecting entries of the full ILS solution, i.e.,
to (17). Furthermore, we can analyze (19) for the case that â is of very high precision.
A constant factor does not change the result of (19), thus

ǎopt = argmax
z∈Z|I|

∑
v∈Zn|vI=z

exp
(
−1

2
‖â − v‖2Qâ

)
∑

u∈Zn exp
(
−1

2
‖â − u‖2Qâ

) = argmax
z∈Z|I|

∑
v∈Zn|vI=z

wv (â). (33)

With wv (â) = 1

1+
∑

u∈Zn|u �=v exp(− 1

2σ2 (‖â−u‖2G−‖â−v‖2G))
, where the factorization Qâ = σ2G

is used, it follows that limσ→0wv(â) = 1, if ‖â − v‖2G ≤ ‖â − u‖2G , ∀u ∈ Z
n, and

limσ→0 wv(â) = 0, else. Since the ILS solution does not depend on σ for the above
factorization, this means that wa∗(â) = 1, with a∗ the n dimensional ILS solution, and
wv (â) = 0, ∀v ∈ Z

n \a∗. Accordingly, the sum in (33) will reach its maximum, if the full
ILS solution is contained, and the optimal partial integer mapping becomes identical to
selecting entries of the full ILS solution (17).
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Fig. 3. Difference between success rates of the optimal partial integer estimator and
partial ILS (left), and full ILS + selection (right); each figure shows 68,000 data points.

These arguments in favor of selecting entries of the full ILS solution over partial ILS
are verified for the numerical examples from Section 6. Figure 3 shows the difference
between the success rates of the optimal scheme and partial ILS/full ILS + selection.
While partial ILS loses up to 15% in terms of success rate compared to the optimal fixing
scheme, full ILS + selection performs close to optimal for all examples.
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Table 1. Average computation times of the search algorithms for partial ILS, full ILS +
selection, and the optimal estimator.

Partial ILS Full ILS + selection Optimal
Search for integer candidate(s) 0.056ms 0.059ms 0.446ms
Search for integer solution − − 1.970ms
Total search time 0.056ms 0.059ms 2.416ms

In order for the optimal partial integer estimator to be used in real time GNSS ap-
plications, its computation time must be sufficiently small. Table 1 shows the average
computation times of the search algorithms required to find the integer estimates for the
above numerical examples. The timing was done using Matlab implementations on a
standard desktop computer. Partial ILS and full ILS + selection only require the search
for a closest integer candidate, which is slightly faster for partial ILS due to the smaller
dimension of the search problem. For the optimal scheme, all integer candidates within
Θλ

â (29) have to be found instead of only the best candidate, which causes a longer time
for the candidate search (a value of α = 0.001 was used to determine the size param-
eter λ of Θλ

â). As explained in Section 5, a second search is required to determine the
integer solution ǎopt from these candidates. Although the average total search time of
the optimal partial fixing scheme is clearly larger than the ones of the two suboptimal
estimators, it is still well within the real time requirements for GNSS applications. It
is noted that these timing results of course strongly depend on the employed hardware
and implementation and should therefore only be seen as a rough indicator for the order
of magnitude that can be expected for the computation time. Additional complexity re-
sides in the LAMBDA decorrelation transformation that was applied before the search
algorithms, which is identical for all three methods.

8. CONCLUSIONS

In this contribution a class of estimators for resolving a subset of integer parameters was
defined. The optimal estimator for an arbitrary subset was derived for additive Gaussian
noise, where optimal means that no other estimator of this class can reach a higher
probability of correct integer estimates. This optimal estimator can be implemented by
means of two consecutive searches. Numerical examples showed that for GNSS ambiguity
resolution a very good suboptimal strategy is to compute the full dimensional ILS solution
and to select those components thereof, which correspond to the given subset. The success
rates of this strategy are close to optimal, while only the computation of an ILS solution is
required. An application of this strategy is given in Brack and Günther (2014) and Brack
(2015), where the subset of integers is not a-priori fixed but depends on the realization of
the float solution. Usually one would then have to (iteratively) compute multiple integer
estimates for different subsets and test them for acceptance. With this strategy, however,
only a single integer solution – the full ILS solution – is required, which enables more
efficient partial integer estimation schemes.
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