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Abstract: We present estimated values for the global elastic parameters ),( 22 lh  derived from 
the analysis of Satellite Laser Ranging (SLR) data. We analyse SLR data for LAGEOS 1 and 
LAGEOS 2 and for two low satellites, STARLETTE and STELLA, collected over a period of 
2.5 years, from January 1 2005 to July 1 2007, from 18 globally distributed ground stations. 
The adjusted final values ),( 22 lh  for all satellites are compared. A major discrepancy between 
the two solutions was only found for the Shida number 2l . Computations were performed 
using GEODYN II NASA/GSFC software. 

The following analysis is the continuation of our research published in Jagoda and 
Rutkowska (2013); that analysis was conducted separately for the two low satellites, STELLA 
and STARLETTE (separately for STELLA and separately for STARLETTE) whereas in this 
study we present the results of determining h2 and l2 parameters obtained from the joint 
observation of the STELLA and STARLETTE satellites  (STARLETTE + STELLA) and 
joint observation of high satellites: LAGEOS 1 and LAGEOS 2 (LAGEOS 1 + LAGEOS 2). 
The combination of the observation aims at an increased stability of the estimates and reduced 
errors of the means of the parameters being determined. 

Key words: SLR data, Love and Shida numbers, Earth elasticity 

1. GLOBAL GRAVITY FIELD AND LOVE NUMBERS THEORY  

The gravitational and tidal  potential outside the Earth at point ),,( ��rP in a rotating frame 
can be expanded into a series of spherical harmonics (Eanes et al. 1983).  
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where: 
EarthGM            - gravitational parameter for the Earth, 

ea        - radius of the Earth, 
)(sin�nmP       - associated Legendre functions, 

nmnm SC ,  - unnormalized geopotential coefficients, 

nmnm SC  ,     - unnormalized corrections of geopotential coefficients, 
mn,   - index of degree and order of the spherical harmonics. 
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The tide force caused by the Sun and the Moon and other celestial bodies tries to deform the 
equipotential surfaces of the Earth’s gravity field, elongating their shape in the direction of the 
resultant force exerted by the configuration of all celestial bodies. The tides of the visco-
elastic Earth change the gravitational potential of the Earth and thus cause displacement of the 
Earth’s mass and additional accelerations acting on the satellite leading to additional 
perturbations of the orbit. The solid tide induced free space potential is most easily modelled 
as variations in the normalized correction of geopotential coefficients nmnm SC  ,  (Eanes et 
al. 1983), where nmk  is the potential Love number of degree and order ( mn, ).  
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where: 
EarthR  - equatorial radius of the Earth, 

jR  - distance from geocenter to the Moon and the Sun, 

jj �,�  - geocentric latitude and east longitude (from Greenwich) of the Moon and the 
Sun. 
The unnormalized coefficients nmnm SC ,  given in expression (1) can be computed very simply 
by the summation of the coefficients of the gravitational potential of the Earth for selected 
model and unnormalized corrections of geopotential coefficients nmnm SC  , .  
The normalized geopotential coefficients are related to the unnormalized coefficients by (Petit 
and Luzum 2010): 

 nmnmnmnmnmnm SNSCNC �� ,  (3) 
where Nnm is normalization coefficient: 
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Corrrespondingly, the normalized correction of geopotential coefficients are related to the 
unnormalized by: 

   nmnmnmnmnmnm SNSCNC �� ,         (5) 

The Earth is a deformed visco-elastic body. The point on the Earth surface's before and after 
deformation defines the model of elastic deformability and can be represented by a 
combination of Love numbers. The Love number h  represents the ratio of the radial 
displacement of the element of mass of the elastic Earth to the corresponding displacement for 
a liquid Earth. The Love number h  is equal to 0 for the hypothetical solid Earth but equal to 1 
for the liquid Earth. For the real elastic body, .10 �� h  The much smaller Shida number l  
represents the ratio of the transverse displacement of the element of mass of the crust to the 
displacement for the hypothetical liquid Earth. For the elastic Earth, .10 �� l  

The Earth’s shape changes as a response to variations of the tide generating potential. The 
tidal displacement of the Earth mass results in oscillations of station positions which changes 
the distance  between the laser system and the satellite position  for epoch it . This has a great 
influence on the observation equation (7) and solution accuracy. 
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In approximation, when nominal values 2h  and 2l  are used combined to all degree 2 tidal 
terms, vector displacements in terms of the station position are given by following formulae 
(Diamante and Williamson 1972): 
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where: 

jGM         - gravitational parameter for the Moon (j=2) or the Sun (j=3), 

jR̂         - the unit vector from the geocenter to the Moon or Sun, 
rr,ˆ               - the unit vector from the geocenter to the station and the magnitude of that  

                           vector, 
2h         - nominal second degree Love number,  

2l               - nominal second degree Shida number. 
 
The second degree Love and Shida numbers are determined using Satellite Laser Ranging 
(SLR) data. From a given set of laser observations, a set of satellite orbit parameters and 
geophysical parameters are calculated using the least squares method. The least squares 
solution selects the estimated unknowns that minimize the sum of the squares of the 
calculated observation residuals. 

This method permits the geodetic and geophysical parameters of the Earth to be 
determined from the LAGEOS 1, LAGEOS 2, STARLETTE and STELLA orbital arcs given 
by expression (1) and tide correction of station position given by expression (6). The 
computations are performed in two parts. In the first part, six parameters determining the 
position and velocity of the satellite at initial epoch, atmospheric drag coefficients DC  for low 
satellites, radiation pressure coefficients RC  must be found for each orbital arc low and high 
satellites. In the next part, unknowns ( 22 ,lh ) are added: and all unknowns are adjusted in a 
common solution.  

Knowledge of the partial derivatives described in Rutkowska and Jagoda (2010) allows 
( 22 ,lh ) to be adjusted using observation equation (7) in an iterative process.  
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  where: 

'            - corrections for satellite position, velocity and other unknowns connected  
                    with the satellite orbit (coefficient of the solar radiation pressure,  
                    atmospheric drag, range biases, accelerations) and the station positions,  
                    velocities, where n  is the number of estimated unknowns, 

2h  - correction for the Love number 2h , 

2l         - correction for the Shida number 2l ,  

&v             - correction for observation, 
)( CO �           - SLR observation minus computed distance from station to satellite,

&                    - SLR distance measurement. 
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2. SATELLITES DESCRIPTION AND MEASUREMENT DATA 
Modern SLR systems have a measurement accuracy of about 1 cm or better, which allows the 
technique to contribute to a broad range of applications in geodesy and geodynamics. In this 
study, we carry out a sequential analysis of Love numbers estimation using two high SLR 
satellites: LAGEOS 1 h=5860 km, LAGEOS 2 h=5620 km and two low SLR satellites: 
STARLETTE h=810 km and STELLA h=800 km. Also other space geodetic techniques are 
capable of determining Love and Shida numbers, for example: Gubanov and Kurdubov 
(2012), Krasna et al. (2013) for VLBI; Yuan and Chao (2012) for GPS; Ray et al. (2005) for 
Altimetry. 
 
 
 
 
 
 
 
 
 
Figure 1a. The view of spherical satellites          Figure 1b. The view of spherical satellites  
            LAGEOS 1 and LAGEOS 2.                           STARLETTE and STELLA. 
 
All satellites are spherical and have an inclination equals to: 109.84( (LAGEOS 1), 52.64( 
(LAGEOS 2), 49.8( (STARLETTE), 98.6( (STELLA). The  satellites are depicted in Figures 
1a and 1b.  

The satellite laser measurements for above described satellites were taken from the world 
database Crustal Dynamics Data Information System (CDDIS) and the EUROLAS Data 
Center (EDC). We analysed SLR data collected over a period of 2.5 years, from January 1, 
2005 to July 1 2007. The distribution of the normal points  per arc for LAGEOS 1 and 
LAGEOS 2 can be seen in Figure 2, for STARLETTE and STELLA in Figure 3. The number 
of normal points for LAGEOS 1, LAGEOS 2 and STARLETTE per arc is approximately the 
same, for satellite STELLA mean value of number of normal points is significantly smaller.  
The raw SLR data for all satellites have been compressed  from the SLR stations in to normal 
points  based on 2 min intervals for LAGEOS 1 and LAGEOS 2 and on 15 sec intervals for 
STARLETTE and STELLA. Because of atmospheric refraction, all normal points whose 
elevation was lower than 15 degrees were rejected in the solution. Description of normal 
points estimation in detail  is given in Torrence et al. (1984) and  Smith et al. (1991).  
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Figure 2.  The number of normal points for LAGEOS 1 and LAGEOS 2 used in the solution. 

The database of normal points was processed in 30-day batches; in total 30 orbital arcs per 
satellite were used in analyses beginning from 01.01.2005. The horizontal axis gives the 

numbers of the orbital arcs. 
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Figure 3. The number of normal points for STARLETTE and STELLA used in the solution.  

The database of normal points was processed in 7-day batches; in total 132 orbital arcs per 
satellite were used in analyses beginning from 01.01.2005. The horizontal axis gives the 

numbers of the orbital arcs used in solution. 

The database of normal points was processed in 30-day batches for LAGEOS 1 and 
LAGEOS 2 and 7-day batches for STARLETTE and STELLA (because the orbits of low-
flying satellites - STARLETTE and STELLA are strongly influenced by perturbing forces, 
such as the irregularities of the gravity field, atmospheric drag, solid earth tides and ocean 
tides).   

A subset of the satellite  laser  stations  providing  observations  were  selected;  these 18  
stations have known high quality data and their coordinates have been determined at the 1 mm 
level for each cartesian component in ITRF2008  (Altamimi et al. 2011). These coordinates 
have been determined from SLR  measurements  conducted  continuously  for  many  years. 
The Grasse and Shanghai stations are included in the solution in spite of the short time 
interval of their measurements (Grasse-until May 7, 2005, Shanghai-until April 14, 2005), the 
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first in view of the high accuracy of normal points, the second because of its localization 
which improves configuration uniformity. The stations Yarragadee and Hartebeesthoek are 
very important in the solution because they are located in the Southern Hemisphere and 
improve the network configuration uniformity.   

The weights for the stations were computed from the formula  2/1 stmW � , where stm  is 
the measurement accuracy for each station separately. In our solution laser range standard 
deviations of normal points taken from CDDIS file of data were adopted as Stm . The mean 
values in units of two way time with a 1 picosecond granularity from 45 to 150 were obtained 
for the stations; they were computed for each arc independently. Generally, the data weight 
values for the observations are rather small, it can be due to an optimistic accuracy of our 
solution. Standard deviations for two way time intervals for each station are presented in 
Table 1. 
 
Table.1 Standard deviations for two way time intervals for each station. 

Site name Standard deviations for two 
way time intervals (ps) 

Riga 100 
Fort Davis 94 
Yarragadee 61 
Potsdam 124 
Simosato 138 
Graz 57 
Greenbelt 55 
Monument Peak 73 
Shanghai 149 
Hartebeesthoek 63 
Borowiec 116 
Grasse 98 
San Fernando 110 
Herstmonceux 94 
Changchun 112 
Mount Stromlo 53 
Matera 48 
Wettzell 118 

3. DESCRIPTION OF PERFORMED ANALYSIS 
The solution was computed employing the software GEODYN II NASA/GSFC (McCarthy et 
al. 1993). The satellite orbits are computed using an 11th order predictor-corrector Cowell’s 
method for the numerical integration of the satellite equations of motion in rectangular 
coordinates (Maury and Brodsky 1969). A step size of 100 seconds was used for satellites 
LAGEOS 1 and LAGEOS 2, and 15 seconds for STARLETTE and STELLA. The forces that 
perturb the satellite orbit needed to be modelled as accurately as possible.

The force model used in GEODYN II takes into account the following perturbations in the 
satellite motion, in line with IERS Conventions 2010 (Petit and Luzum 2010): 
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) inhomogeneity of the Earth's gravity field,  
) the gravity fields of the Sun and Moon, 
) the gravity fields of the planets (Venus, Mars, Jupiter, Saturn), 
) changes of the Earth gravity field induced by polar motion, 
) changes in the Earth gravity field as a result of the ocean tide, 
) changes in the Earth gravity field as a result of the Earth tide, 
) direct solar radiation pressure coefficient RC  estimated for each arc, 
) atmospheric drag coefficient DC  and MSIS 86 model (Hedin 1997), solved five 

values per week for STARLETTE and STELLA only (in our solution we analyzed 
two cases. In the first case we estimate five values per week for DC  and in the second 
case seven values per week. Adding two unknowns to determine for each arc will 
increase by 240 unknowns in the whole adjustment. Greater number of unknowns 
caused a decrease in the value of (O-C), but also increasing the value of the error 
estimated unknowns. Therefore, estimated  of the five values per week for DC  
appears to be optimal),  

) Earth albedo, 
) Yarkowsky thermal drag, 
) relativistic effects. 

The gravitational potential of the Earth given by expression (1) changes with satellite 
altitude. For low satellites as STARLETTE and STELLA 80x80 spherical harmonics are used 
when modeling the orbit with an accuracy of 1-2 cm, but for high satellites such as LAGEOS 
1 and LAGEOS 2 we use the spherical harmonic expansion 20x20 in line with Zelensky et al. 
(2008). The CSR gravity field model TEG4 (Tapley et al. 2002) was adopted. The 
perturbations caused by the third bodies – Moon, Sun and the planets Venus, Mars, Jupiter, 
Saturn – on the satellite orbit are computed using planetary positions for each SLR 
observational epoch derived from the JPL ephemeris DE200. Empirical accelerations in 
along-track, cross-track and radial directions were adjusted. 

The numerical values for the precession-nutation model IAU 2000 have been adopted to 
computations shown in IERS Conventions 2010 (Petit and Luzum 2010).  

The pole tide, polar motion ),( pp yx  and UT1 {EOP05C04(IAU2000A)}, ocean loading 
deformation and atmospheric pressure loading deformation model (Pavlis et al. 1998) were 
used in the solution. The center-of-mass correction equal to 25.1 cm for LAGEOS and equal 
to 7.5 cm for STARLETTE and STELLA were added to the laser ranging data. The values of 
the center of mass corrections are taken from CDDIS data base for analysed satellites and 
stations. For our study, nominal values 2h  = 0.6078, 2l  = 0.0847 IERS Conventions 2010 
(Petit and Luzum 2010) were adopted as preliminary. 

The study were performed in two parts, an overview of the parts is summarized in the 
block diagram shown in Figure 4. 
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Figure 4. Diagram of the adjustment of the global elastic parameters 22 , lh . 

In the first part, the following unknowns were adjusted. The state vectors determining the 
position and velocity of the satellite at initial epoch, the light pressure coefficients and 
accelerations in along-track, cross-track and radial directions were adjusted for each 30-day 
orbital arc for LAGEOS 1, LAGEOS 2 and 7-day arc for STARLETTE and STELLA. In this 
step the random and systematic components of residuals (O-C) were analyzed. The outlier 
normal points that have a residual that exceeds three times the RMS of fit were removed. The 
range biases for network were analyzed in a way similar to that shown in Rutkowska and 
Noomen (1998). Agreement of the force model fit for two successive arcs was investigated 
from overlap. In our solution for selected 12-hour overlaps for LAGEOS 1 orbit, differences 
of satellite positions on the level of a few millimeter in radial direction and a few centimeter 
in along track and cross track direction were computed and shown in Figure 6 and Figure 7. 
The differences between satellite positions estimated from two successive arcs are directly 
proportional to the length of overlap. Because of limited size of the paper we selected some  
results which represent the entire solution appropriately. 
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Figure 5. The RMS of the post-fit residuals for satellite LAGEOS 1 (in the second part). 

 

Pre-processing analysis of normal points taken from 
CDDIS and EUROLAS for: 
LAGEOS 1, LAGEOS 2, STARLETTE, STELLA 

                                             First Part 
Orbit adjustment with highest quality using GEODYN II software  

                                          Second Part 
Orbit and Love numbers 22 , lh  adjustment in combined solution 
and results analysis using GEODYN II software 
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Figure 6. Overlaps (12-hour) between two orbits  for LAGEOS 1 for day (19.05.2005). 

Differences of satellite positions on the level of a few millimeters in radial direction and a few 
centimeters in along track and cross track direction were computed. 
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Figure 7. Overlaps (12-hour) between two orbits  for LAGEOS 1, for day (13.08.2006). 

Differences of satellite positions on the level of a few millimeters in radial direction and a few 
centimeters in along track and cross track direction were computed. 

The adjusted light pressure coefficients separately for each arc are at the level of 1.125-1.141 
for LAGEOS 1 and LAGEOS 2. 

The adjustment was performed in an iterative process with convergence criterion 
{RMS )(k -RMS )1( �k }<0.01cm, where )(k  is the number of the iteration. 

In our solution Keplerian elements for the initial epoch are converted into cartesian 
components (initial state vector). Satellites orbits are calculated by numerical integration of 

six equations: 2
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dx . This solution allows the RMS of the post-fit 

residuals and RMS of satellite position at the initial epoch of arc to be estimated, as shown in 
Figure 5 for LAGEOS 1 and in Figure 8 for STELLA. 

The RMS of the post-fit residuals and RMS of satellite position are computed from the 
following expressions; 

RMS of the post-fit residuals=
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where: 
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ni ......2,1�  - successive number of normal point, 

ZYX mmm ,,  - errors of satellite positions in Cartesian coordinate system estimated from 
diagonal elements of covariance matrix. 

Values of the post-fit residuals RMS calculated in the second part (see Figure 4) are 1-3 mm 
less than values for the RMS calculated in the first part (see Figure 4). 

These values for RMS of the post-fit residuals for LAGEOS 1 and LAGEOS 2 (in the 
second part) are at the level of 1.2-1.9 cm, mean value is equal to 1.56 cm for LAGEOS 1 and 
1.52 cm for LAGEOS 2. This is shown in Figure 5. Values of the RMS errors of satellite 
positions (in the second part) computed at initial epoch are at the level of 1.1-2.5 cm for both 
satellites, the mean value is equal to 1.49 cm for LAGEOS 1 and 1.64 cm for LAGEOS 2. 
Due to the limited size of this paper, results are only shown for one low satellite (STELLA) in 
Figures 8-11. The RMS errors of the post-fit residuals (in the second part) are at the level of 
1.5-2.9 cm, mean value is equal to 2.46 cm. Similar order of the post-fit residuals RMS can be 
observed for STARLETTE. 
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Figure 8. The RMS errors of the post-fit residuals for satellite STELLA (in the second part) 

are at the level of 1.5-2.9 cm, mean value is equal to 2.46 cm. 

For  the low satellites such as STELLA and STARLETTE it is necessary to estimate the effect 
of the perturbation caused by the resistance of the atmosphere (atmospheric drag) and the 
solar radiation pressure with high accuracy as the changes in the direct solar radiation 
pressure scaling coefficient RC  are in the range of 1.1-1.3 (Figure 9) and the changes in the 
atmospheric drag coefficients DC  are in the range 1.5-3 (Figures 10-11). These values scale 
the density model of the atmosphere and the solar radiation pressure in time. 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Solar radiation pressure coefficient computed for STELLA (one value for each arc 
in first part). 
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Figure 10. Atmospheric drag coefficient computed for STELLA (five values per week in first 

part). 
 
 
 
 
 
 
 
 
 

Figure 11. Atmospheric drag coefficient computed for STELLA (five values per week in first 
part). 

After convergence of  this first part, in the second part Love numbers are added and  
unknowns are determined in the combined solution for all  the above described parameters. 
In the second part, the sequential method (including a few steps) was adopted for our solution. 
In the first step, the elastic parameters were adjusted for two orbital arcs. In subsequent steps, 
arcs 3 and further were included one after the other using this sequential method. In each step, 
the parameters were adjusted once again, enabling the convergence and stability of two 
solutions to be observed, the first based on LAGEOS 1 and LAGEOS 2 data and the second 
on STARLETTE and STELLA data. The results of this analysis are shown in Figures 12-13 
for 2h  and 2l , separately.  

The set of two orbital arcs of the Love and Shida numbers differ significantly from their 
final values. Adding consecutive monthly (for LAGEOS1 and LAGEOS2) or weekly (for 
STELLA and STARLETTE) intervals allows to observe a slow convergence towards the final 
quantities. 

The reason for this is that the stability of each solution and convergence for LAGEOS 1 
and LAGEOS 2 has been attained after an interval of 2 years. This is shown in Figures 12-13 
for LAGEOS 1 and LAGEOS 2 for common solution. In the common analysis of 
STARLETTE and STELLA data the estimated final Love numbers 2h  and 2l  are equal to 
0.6132* 0.0023 and 0.0483 * 0.0100 respectively. Estimation of the Shida number 2l  was 
unsuccessful for the low satellites. The discrepancies for Shida number between the high and 
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low solutions were found to be on the level of 50% of the value, and on the level of fifty times 
the formal error. 

The discrepancies between estimated Love numbers 2h  and 2l  in our solution and other  
independent solutions, derived by SLR, VLBI and altimetry as well as theoretical solutions 
are shown in Rutkowska and Jagoda (2010). 
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Figure 12. The sequential solution for the Love number 2h  based on data for LAGEOS 1 and 

LAGEOS 2 in the common adjustment. Stability of  the estimated parameters 2h  and their 
errors becomes visible at about  the 17-month time interval and does not change over the next 

twelve months. The final value of the Love number is equal to 0.6146* 0.0006. 
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Figure 13. The sequential solution for the Shida number 2l  based on data for LAGEOS 1 and 

LAGEOS 2 in the common adjustment. Stability of the estimated parameters 2l  and their 
errors becomes visible for about 21-month time interval and does not change over the next 

nine months. The final value of the Shida number is equal to 0.0883* 0.0003. 
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Figure 14. The sequential solution for the Love number 2h  based on data for STARLETTE  
and STELLA in the common adjustment. Stability of the estimated parameters 2h  and their 
errors becomes visible at about 14-month time interval and does not change over the next 

sixteen months. The final value of the Love number is equal to 0.6132* 0.0023. 

4. CONCLUSIONS 
We used SLR tracking data for high satellites LAGEOS 1, LAGEOS 2 and low satellites 
STARLETTE and STELLA to determine the elastic parameters  2h  and 2l   of the Earth in two 
separate solutions. Based on  analysis of two solutions, we conclude that: 

In the common analysis of LAGEOS 1 and LAGEOS 2 data the estimated final Love 
numbers 2h  and 2l   are equal to 0.6146* 0.0006 and 0.0883 * 0.0030 respectively. 

In the common analysis of STARLETTE and STELLA data the estimated final Love 
numbers 2h  and 2l   are equal to 0.6132* 0.0023 and 0.0483 * 0.0100 respectively. 

The discrepancy between the estimates in the common solution for high satellites 
LAGEOS 1 and LAGEOS 2 and in the common solution for low satellites STARLETTE and 
STELLA is equal to 0.23% for parameter 2h . Because this discrepancy is on the level of the 
formal error, in our evaluation the measurements for low satellites can be used in support of 
the solution obtained on the basis of high satellites. An exception is Shida number 2l , because 
the discrepancy of high and low solutions and with nominal value shown in Petit and Luzum 
(2010)  are on the level of 50% .  

Based on data for LAGEOS 1 and LAGEOS 2, stability of  the estimated elasticity Earth 
parameters 2h  and their errors becomes visible at about  the 17-month time interval and does 
not change over the next twelve months. But based on data for STARLETTE  and STELLA, 
stability of the estimated  elasticity Earth parameters 2h  and their errors becomes visible at 
about 14-month time interval and does not change over the next sixteen months.  

The error of estimated Love number based on data for  STARLETTE  and STELLA is 
about four times greater than the error estimated for LAGEOS 1 and LAGEOS 2 data. 
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