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ABSTRACT. The presented algorithms of computation of orbital elements and positions of 
GLONASS satellites are based on the asymmetric variant of the generalized problem of two 
fixed centers. The analytical algorithm embraces the disturbing acceleration due to the second 
J2 and third J3 coefficients, and partially fourth zonal harmonics in the expansion of the 
Earth’s gravitational potential. Other main disturbing accelerations – due to the Moon and the 
Sun attraction – are also computed analytically, where the geocentric position vector of the 
Moon and the Sun are obtained by evaluating known analytical expressions for their motion. 
The given numerical examples show that the proposed analytical method for computation of 
position and velocity of GLONASS satellites can be an interesting alternative for presently 
used numerical methods. 
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1. INTRODUCTION   
According to GLONASS news section (http:\www.glonass-ianc.rsa.ru/en/) on 8th December 
2011 the GLONASS constellation has reached the number of 24 operating satellites, 
providing 100% coverage of the Earth’s surface. The availability of GLONASS satellites has 
brought two significant benefits to geodetic applications of global positioning systems. 
Firstly, the solution from GLONASS could be employed as an independent verification of 
GPS solution to improve the quality control. Secondly, GPS and GLONASS observations 
could be combined directly, and as a result the geometry of observed satellites could be 
enhanced by increasing the number of available satellites.  

The GPS broadcast ephemerides employ a set of Kepler-like parameters to determine the 
satellite position. Therefore the algorithm of computing the GPS satellite position is 
completely different. The GPS broadcast ephemerides are updated hourly and are nominally 
valid for two hours either side of their specified reference time. In presented paper motion of 
the GLONASS satellite is described using osculating elements of the intermediate, non-
Keplerian (Eulerian) orbit. This intermediate Eulerian orbit corresponds to the exact solution 
of the generalized problem of two fixed centers. Taking into account that L. Euler was the 
first  who  investigated  the  problem  of  two  fixed  centers  and  reduced  it  to  quadratures, 
E.P Aksenov (1977) suggested in that case referring to it as Eulerian motion. Elements of the 
intermediate orbit are called Eulerian elements.  Such a choice of orbital elements allows us to  
include the most significant perturbing forces into the satellite’s intermediate motion. The 
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intermediate  orbit  of  the  satellite  is  based  on solving the generalized problem of two fixed 
centers which fully takes into account the influence of the second J2 and third J3 zonal, and a 
major part of the fourth zonal harmonic of the expansion of the Earth’s gravity potential.  

The equations of motion of the satellites in the generalized problem of two fixed centers 
are integrable in quadratures.  After inversion of quadratures the Cartesian coordinates of a 
satellite are related to orbital parameters and time by transcendental relationships, which 
include Jacobi’s elliptic functions. So, to simplify calculations E.P. Aksenov (1977) has made 
expansions of all obtained relations into series in terms of powers of two small parameters �2 
and ��, where � = c/p, p = a(1– e2) is semi-parameter of the orbit, a is semi-major axis and e 
is eccentricity of the non-Keplerian (Eulerian) intermediate orbit. For  near-Earth’s satellites  
� < 1/30. For GPS and GLONASS satellites this parameter is less than 1/100. This made it 
possible to reduce the formulae of the theory of Eulerian motion to trigonometric form. The 
parameters of motion similar to Keplerian elements were taken as arbitrary constants of 
integration. The elegance of derived formulae is emphasized by the fact of their precise 
inversion into formulae of Keplerian motion, if small parameters  �, �, are let to be zero.        
E. P. Aksenov (1977) derived all formulae of the theory to an accuracy of order �4 and �4. 
Various methods of integration of the equation of satellite motion are described in              
V.G. Demin’s  monograph (Demin, 1970), and E.P. Aksenov’s monograph (Aksenov, 1977).  

2. FORMULATION OF THE PROBLEM   
Positioning of GLONASS satellites based on broadcast ephemerides differs in several aspects 
from that of GPS. The GLONASS broadcast ephemerides provide initial conditions every 30 
minutes. They contain coordinates and velocities of the satellite (state vector) in Earth-
centered, Earth-fixed ECEF (PZ-90.02) coordinate frame and the lunar-solar accelerations. 
According to GLONASS Interface Control Document (ICD 2008), in order to obtain satellite 
coordinates at a time different from that reference time, the satellite’s equations of motion 
have to be numerically integrated. The GLONASS-ICD force model is recommended for only 
a time period of 15 minutes either side of the broadcast ephemerides reference time. A full 
description of the format and information contained in the GLONASS navigation message 
can be found in (GLONASS-ICD, 2008).  

Let Oxyz be a rectangular geocentric coordinate system in which the origin falls at the 
center of mass of the Earth. The principal axis x points towards the vernal equinox. The xy
plane coincides with the equatorial plane, and the Oz axis is directed along the Earth’s 
rotation axis. The differential equations of motion for the GNSS satellite may be written in the 
form (Aksenov et al., 1963).  
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where the function U is given by the equation 
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G is the gravitational constant, M is the mass of the Earth, and 1i � 	 .  
The constants c and �  are strictly associated with the J2 and J3 (Aksenov et al., 1963) 
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where ae is the equatorial radius of the reference ellipsoid. 

The function U possesses two important properties. First, with an appropriate selection of 
c an � it provides a good approximation to the gravitational potential of the Earth. The 
function U will differ from the gravitational potential by terms of the second order in the 
flattening. Secondly, the equations of motion with the force function U can be integrated in 
quadratures. These two properties enable us to construct intermediate orbits for the satellite 
that will be closer to true orbits than unperturbed Keplerian orbits would be (Aksenov et al., 
1963). 

3. A COMPARISON OF THE EULERIAN AND KEPLERIAN ORBIT ELEMENTS 
ON THE EXAMPLE OF GLONASS SATELLITE   
Six independent parameters are required to describe the motion of a satellite around the Earth. 
The non-Keplerian (Eulerian) intermediate satellite orbit in the generalized problem of two 
fixed centers can simply be described by the following classical elements: a is the semi-major 
axis, e is eccentricity, i (s=sini) is inclination, �0 is the argument of perigee, �0 is the 
longitude of ascending node and M0 is a mean anomaly at the epoch t0. Eulerian elements are 
very useful for visualizing a given orbit in space. The above parameters are reduced to 
corresponding Keplerian elements, for c = 0 and � = 0 (Aksenov, 1977). Knowing from 
broadcast ephemerides the geocentric position and velocity vectors r(t), v(t), and using the 
formulae of the generalized problem of two fixed centers we can obtain to each epoch t 
osculating Eulerian (and in the case c = 0, � = 0, also Keplerian) elements: a(t), e(t), i(t), 
�0(t), �0(t), M0(t) (Aksenov, 1977). An example of formulae for calculation of intermediate 
orbital elements and computation of the GLONASS satellite  position is provided  step by step 
in  our previous paper (Góral and Skorupa, 2012). Given the six elements, it is always 
possible to uniquely calculate the position and velocity vector of the satellite.  

The following figures (Fig. 1a, 2a, 3a, 4a, 5a) show the osculating Eulerian elements as a 
function of time: a(t), e(t), i(t), �(t),�(t) over a time interval of one day for GLONASS 
satellite GLN 15, calculated at 48 time epochs from 0h 15m to 23h 45m (2015-01-13). For 
comparison in figures 1b,...,5b, the same Keplerian orbital elements are presented. 
Additionally, in Fig. 6a and Fig. 6b, respectively the osculating Eulerian and Keplerian mean 
motion are given.                 

   

       Fig. 1a. Osculating Eulerian semi-major axis of the      Fig. 1b. Osculating Keplerian semi-major axis of the 
          satellite GLN 15 during one day (2015-01-13).              satellite GLN 15 during one day (2015-01-13). 
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  Fig. 2a. Osculating Eulerian eccentricity ot the               Fig. 2b. Osculating Keplerian eccentricity of the 
         satellite GLN 15 during one day (2015-01-13).               satellite GLN 15 during one day (2015-01-13). 
  

    Fig. 3a. Osculating Eulerian inclination of the                Fig. 3b. Osculating Keplerian inclination of the 
         satellite GLN 15 during one day (2015-01-13).               satellite GLN 15 during one day (2015-01-13). 
 

       Fig. 4a. Osculating Eulerian argument of perigee         Fig. 4b.  Osculating Keplerian argument of perigee 
                  of the satellite GLN 15 during one day                         of the satellite GLN 15 during one day 
                  (2015-01-13).                                                                (2015-01-13). 
  

   Fig. 5a. Osculating Eulerian longitude of  ascending     Fig. 5b. Osculating Keplerian longitude of ascending 
                node of the satellite GLN 15 during one day                  node of the satellite GLN 15 during one day 
                (2015-01-13).                                                                   (2015-01-13). 
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    Fig. 6a. Osculating Eulerian mean motion of the               Fig. 6b. Osculating Keplerian mean motion of the 
          satellite GLN 15 during one day (2015-01-13).                satellite GLN 15 during one day (2015-01-13). 

In the Keplerian elements a(t), e(t), i(t), �(t) we see very pronounced short-period 
perturbations with the period of one satellite revolution or smaller, most of them caused  by 
the Earth’s oblateness. In Eulerian elements a(t), e(t), i(t), �(t), �(t) we see the result of 
removing effects caused  by the Earth’s oblateness. Moreover, one can see that the amplitude 
of Eulerian osculating element a(t) is about twenty times smaller than one for Keplerian 
element and about ten (for e(t) and  i(t)) times smaller than one for Keplerian osculating 
elements. 

One example of results of computation Eulerian and Keplerian elements at the epoch t0 = 12h 
45m 00.0s UTC are presented in Table 1. 

Table 1.  Orbital elements of the GLONASS satellite GLN15 at epoch t0 = 12h 45m 00.0s UTC 

Item Words [units] Eulerian elements Keplerian elements 
1 a [km] 25507.518483 25509.534901 
2       e 0.048457897602 0.0481908815 
3 i [deg] 65.789924999 65.79138160 
4 �0 [deg] 341.90868955 348.64651746 
5 �0 [deg] 334.45700346 334.45626261 
5 M0 [deg] 20.98443758 14.24681024 

One can see quite a difference between the Eulerian and Keplerian angular elements �0 and 
M0 , while their sum �0+M0 does not differ that much. 

4. IMPACT OF THE LUNAR-SOLAR PERTURBATION ON THE POSITION AND 
VELOCITY OF THE GLONASS SATELLITE
In presented paper the solution of the generalized problem of two fixed centers is taken as the 
undisturbed intermediate orbit. In the theory of satellite motions based on the generalized 
problem of two fixed centers the disturbance of the Eulerian orbit is caused primarily by the 
gravitational attraction of the Moon and the Sun. The calculation of the total lunar-solar 
accelerations were obtained according to the formulae given in GLONASS ICD 2008.  

The position of the Sun was calculated with the help of  Fortran library  SOFA (Standards 
of  Fundamental Astronomy) designed by International Astronomical Union and the position 
of  the  Moon  was  calculated  with  the  help  of  simplified  algorithm  based  on  the  paper 
(Van Flandern and Pulkkinen, 1979). Calculated acceleration components of the GLONASS 
GLN 15 due to lunar gravitational perturbation are presented in Fig. 7a, and due to solar 
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gravitational perturbation are presented in Fig. 7b. These lunar and solar accelerations are 
related to the PZ-90.02 reference frame.  

Fig. 7a.  Acceleration  components of the satellite       Fig. 7b.  Acceleration  components of the satellite  
              GLN 15 due to lunar gravitation                                   GLN 15 due to solar gravitation 
              (2015-01-13).                                                                 (2015-01-13).                                                                                      

In Fig. 8 are presented comparisons of the calculated total lunar and solar accelerations (ls) 
from broadcast (lsb) one of the GLN 15 (PZ-90.02 reference frame, 2015-01-13��� ������	��
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Fig. 8. The calculated  lunar and solar accelerations ls and broadcast lsb one  
(in the PZ-90.02 reference frame) of the satellite GLN 15 (2015-01-13): 

  a) for  component , b) for  component, c) for  component. 

5. NUMERICAL EXAMPLES 
First, on the base of broadcast ephemerides the intermediate Eulerian orbital elements of the 
satellite GLN 15 are computed for 48 epochs between 0h 15m to 23h 45m UTC (2015-01-13) at 
30 minutes interval. Based on these orbital elements at epoch ti, forward  (for 30 minutes) at 
epoch ti+1 = ti + 30m positions  and velocities  of the GLN 15 satellite are computed. The total 
lunar-solar accelerations were calculated according to the formulae given in GLONASS ICD 
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2008. The differences  (   )b p b p b px x , y y , z z	 	 	  between position components, obtained from 
broadcast ephemerides (subscript b)  at epoch ti+1 and from predicted position components 
(subscript p)  calculated on the base of Eulerian elements at epoch ti  are given in Fig. 9. The 
differences (   )b p b p b px x , y y , z z	 	 	& & & & & &  between velocity components obtained from broadcast 
ephemerides at epoch ti+1 minutes and from predicted components calculated on the base of 
Eulerian elements at epoch ti are given in Fig. 10.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Differences between the coordinates of the satellite GLN 15 given in navigation file 
and its values predicted forward 30m, on 2015-01-13. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Differences between the velocities of the satellite GLN 15 given in navigation file 
and its values predicted  forward 30m, on 2015-01-13. 

In the next numerical example, on the base of known orbital elements of all (24) 
GLONASS satellites obtained at epoch ti,  forward  for 30m (ti+1) the positions and velocities 
are predicted, and then the results are compared with the corresponding coordinates given in 
the broadcast ephemerides at epoch ti+1, according to the following formulas:  

 2 2 2( ) ( ) ( )b p b p b pd x - x y - y z - z ,� � �                                       (5) 

2 2 2( ) ( ) ( )b p b p b pv x - x y - y z - z .� � �& & & & & &                                       (6) 

The comparison was performed for two variants o calculations. In variant 1 (Fig 11a, 12a), 
the total lunar-solar accelerations were computed according to the formulae given in 
GLONASS ICD 2008. In variant 2 (Fig 11b, 12b), the broadcast lunar-solar accelerations 
were used.  
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           Fig. 11a Distances d between broadcast and predicted satellite positions, obtained  
                         in the first variant of calculations, for all GLN satellites (2015-01-13). 

        Fig. 11b Distances d between broadcast and predicted satellite positions, obtained  
                         in the second variant of calculations, for all GLN satellites (2015-01-13). 

        Fig. 12a  Differences v between broadcast and predicted satellite velocities, obtained  
                        in the first variant of calculations, for all GLN satellites (2015-01-13). 

        Fig. 12b  Differences v between broadcast and predicted satellite velocities, obtained  
                        in the second variant of calculations, for all GLN satellites (2015-01-13). 



113
 

 

 

 

Table 2 shows comparison of the results of the two variants of calculations. 

Table 2. Average values of distances d (eq. 5) and differences v (eq. 6), and the 
corresponding standard deviations, obtained in two variants of calculations. 

Variant of 
calculations 1  2 

d [m]  1.4 1.8 

�d [m]  0.6 0.7 

v [mm/s]  1.3 1.7 

�v [mm/s]  0.6 0.7 

The results presented in Fig.: 9,.., 12b are more accurate than the mean square error of 
broadcast positions and velocities of GLONAS-M satellites, which is about 10 m and 2.3 
mm/s, respectively (ICD-GLONASS, 2008).  

6. CONCLUSIONS 
As result of analyses it was stated that proposed analytical method computation position and 
velocity of GLONASS satellites is an interesting alternative for presently used numerical 
methods. The results presented in this paper show that the proposed analytical method can be 
successfully used in interpolation and prediction of the position of GLONASS satellites.

In summary this paper has presented the expansion of the ICD-GLONASS 2008 algorithm 
of computation of the acceleration components due to luni-solar perturbation.

At present, on the base of the generalized problem of two fixed centers the precise theories 
of motion of Earth artificial satellites and satellites of other planets were developed (Lukyanov et 
al. 2005), (Golikov, 2012). The same papers described the basic stages of the development of 
modern high-precision theories of the motion of planetary satellites that use the intermediate 
orbit from a generalized problem of two fixed centers.

The obtained results open up new prospects for practical applications of the generalized 
problem of two fixed centers. They can be used for analytical studies of the motion not only 
of GLONASS satellite but also GPS and Galileo. 
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