
ARTIFICIAL SATELLITES, Vol. 48, No. 2 – 2013
DOI: 10.2478/arsa-2013-0005

GNSS SIGNAL PROCESSING IN GPU

Petr Roule, Ond�ej Jakubov, Pavel Ková�, Petr Ka�ma�ík, František Vejražka
Czech Technical University in Prague, Faculty of Electrical Engineering

e-mail: roulepet@fel.cvut.cz

ABSTRACT
Signal processing of the global navigation satellite systems (GNSS) is a
computationally demanding task due to the wide bandwidth of the signals and their
complicated modulation schemes. The classical GNSS receivers therefore utilize
tailored digital signal processors (DSP) not being flexible in nature. Fortunately,
the up-to-date parallel processors or graphical processing units (GPUs) dispose
sufficient computational power for processing of not only relatively narrow band
GPS L1 C/A signal but also the modernized GPS, GLONASS, Galileo and
COMPASS signals.

The performance improvement of the modern processors is based on the
constantly increasing number of cores. This trend is evident not only from the
development of the central processing units (CPUs), but also from the development
of GPUs that are nowadays equipped with up to several hundreds of cores
optimized for video signals. GPUs include special vector instructions that support
implementation of massive parallelism. The new GPUs, named as general-purpose
computation on graphics processing units (GPGPU), are able to process both
graphic and general data, thus making the GNSS signal processing possible.

Application programming interfaces (APIs) supporting GPU parallel processing
have been developed and standardized. The most general one, Open Computing
Language (Open CL), is now supported by most of the GPU vendors. Next,
Compute Unified Device Architecture (CUDA) language was developed for
NVidia graphic cards. The CUDA language features optimized signal processing
libraries including efficient implementation of the fast Fourier transform (FFT).

In this paper, we study the applicability of the GPU approach in GNSS signal
acquisition. Two common parallel DSP methods, parallel code space search
(PCSS) and double-block zero padding (DBZP), have been investigated.

Implementations in the C language for CPU and the CUDA language for GPU
are discussed and compared with respect to the acquisition time. It is shown that

52

the GPU implementation was approximately sixteen times faster than the CPU’s
for signals with long ranging codes (with 10230 number of chips - Galileo E5, GPS
L5 etc.).

Paper presented at the "European Navigation Conference 2012",
held in Gdansk, Poland

INTRODUCTION
The aim of our work is to develop a software-defined radio (SDR) receiver of
global navigation satellite systems (GNSS) which utilizes the performance of new
generation graphic processor units (GPUs). The forecasted massive penetration of
these highly parallel digital signal processors (DSP) has motivated us to start
implementation of the most computationally demanding signal processing tasks.
The final goal is to create a multi-frequency and multi-system receiver which will
benefit from all available GNSS systems (GPS, Galileo, GLONASS,
COMPASS,…) and will provide higher accuracy estimates of position, velocity
and time.

The application of such an approach in GNSS has already appeared in the
literature. The GPU-based single-system and single-frequency (GPS L1 C/A)
receiver has been implemented (Hobiger et al. 2010). The CUDA programming
language enhancement was adopted to NVidia GPU. In this paper, we also
implemented the acquisition algorithms using this approach for simplicity, but
investigated the acquisition times of other GNSS signals as well.

The high prospective of GPUs as GNSS signal processors is their high
performance, relatively simple programming, low price and power consumption,
wide availability as GPUs are integrated to PCs, notebooks, PDAs and smart
phones. The main suppliers of that technology include AMD, Intel, NVidia and
ARM. In the future, this technology will likely be broadly integrated into handheld
devices and will autonomously substitute the current third-party DSPs.

The overall receiver architecture would require a suitable front end, analog-to-
digital convertors (ADC) and a communication interface to the host GPU. An
example might be the USB 3.0 interface with sufficient throughput and available
device drivers.

In the first section, we introduce parallel GPU and CPU architectures. In the
second section, we overview the most common parallel methods of GNSS signal
acquisition that are suitable for parallel implementation. Then, we reveal the crucial
implementation issues connected with these methods. Experimental results
comparing the number of steps of all the methods and their acquisition times are
delivered in the last section.

53

1. PARALLEL PROCESSING IN GPU AND CPU
The performance improvement of modern processors is based on the increasing
number of their cores. For exploitation of that performance it is necessary to write
programs with parallel approach. The current PCs can offer two kinds of multi-core
processors. - multi-core CPU (Central Processor Unit) and GPU (Graphic
Processor Unit). The possibility to employ GPU in general purpose computing (not
just for graphic applications) came up a couple of years ago and opened a new way
of adopting multi-core performance on graphic cards to other applications. -
GPGPU (General-purpose computing on GPU)).

The paradigm of effective parallelism of the signal processing tasks comprises
both types of the following decompositions:

� Task decomposition: dividing the algorithm into individual tasks (don’t
focus on data)

� Data decomposition: dividing a data set into discrete chunks that can be
operated on in parallel

Various hardware processors CPU or GPU are generally better suited for some
types of parallelism more than the others. Contradictory examples are shown in the
table below (Mistry et al., 2011).

Table 1. Examples of hardware architectures and their suitability for parallelism
Hardware type Examples Parallelism
Multi-core superscalar
processors

AMD Phenom II
CPU

Task

Multi-core SIMD processors Radeon 5870 GPU Data

This crucial difference between the CPU and GPU hardware architecture is
depicted in Figure 1. Note that CPU has less number of but more powerful
arithmetic logic units (ALUs) and a large cache with control logic, whereas GPU
comprises a large number of relatively simple ALUs with little cache and simple
control logic, thus making GPUs prospective for parallel signal processing with
primitive arithmetic operations such as multiplication, accumulation, discrete
correlation and convolution, FFT, etc.

54

Fig. 1. Comparison of CPU and GPU hardware architectures (Nvidia CUDA,

2011)

A common GPU processor consists of one or more multiprocessors (SMs).

Each multiprocessor is designed for execution of hundreds of threads concurrently.
To manage such a large number of threads, it employs a unique architecture called
SIMD (Single-Instruction, Multiple-Data). Multiprocessor creates, manages,
schedules, and executes threads in groups of 32 parallel threads (for Nvidia
Geforce 9800) called warps. Individual threads composing a warp start together
and register state and are therefore free to branch and execute independently.

The GPU programming is done through an APIs (Application Programming
Interfaces) that has already been developed and standardized. The most general
one, Open Computing Language (Open CL), is now supported by most GPU
vendors. The next one, Compute Unified Device Architecture (CUDA) language
was developed solely for NVidia graphic cards. The CUDA language includes
highly optimized signal processing libraries including efficient implementation of
the fast Fourier transform (FFT).

2. METHODS OF GNSS SIGNAL ACQUISITION
The goal of the GNSS signal acquisition is to estimate the initial PRN code delay m
and carrier frequency offset o that are required for initialization of the carrier and
code tracking loops. The maximum likelihood (ML) estimate of the acquisition
parameters is given:

(1)

where x(k) is the input signal, c(k-m) is the PRN code replica generated in the
receiver, f� describes the frequency step and Ts is the sampling period. The
algorithm searches over o and m where the absolute value of the cross-correlation
function gives maximum.

�
�

�

� ����
�
	

�
� 1

0

2

,

^^
)(*)(maxarg,

N

n

kTofj

mo
semkckxmo

55

�
�

�

��
1

0

/2)()(
N

k

NknjekxnX

The acquisition is the most complicated signal processing task from the
computation point of view. For test implementation and performance investigation
the two common methods were chosen - PCSS (Parallel Code Space Search) that is
algorithmically very simple, DBZP (Double Block Zero Padding), which is based
on the calculation of a large number of short FFTs. Both methods are therefore
suitable for processing in GPU.

Decomposition of the PCSS Method
The PCSS is a method for effective calculation of the circular cross-correlation
function between the input signal and the PRN code replica with a single frequency
offset. The circular cross-correlation is evaluated using FFT (Kai et al., 2007). The
PCSS method is divided in the five following steps (complying with the numbers in
Fig. 2.).

1. Multiplication of the input signal by the signal of the local oscillator
(compensation of the frequency shift residual)

2. FFT of the mixed signal

(2)

3. Multiplication of the input signal spectrum by the complex conjugate of the
replica spectrum

(3)

4. Inverse transform to the time domain

(4)

5. Calculation of the absolute value

)()(* nCnX

� � 2/2*)()(1 mnjenCnX
N

mR
�

56

Fig. 2. Acquisition method PCSS

The green blocks of the algorithm in Fig. 2 can be calculated in advance, hence

they are not considered in the performance analysis.

Decomposition of the DBZP Method
The DBZP (Double Block Zero Padding) method is depicted in Fig. 3. It is a highly
effective method for calculation of the cross-correlation function. The idea of this
method is to divide input signal and PRN code to smaller parts from which the
algorithms calculates the partial linear cross-correlation functions in the frequency
domain. The partial cross-correlation functions are then summed together over the
frequency shift. (Chao-jun Wei et al., 2010).

57

�
�

���

��
k

nicx mkckxm
ni

)()()(*�

�
�

�

���
1

0
)()(

S

i
cxxc iMmm

nin
�

Fig. 3. Acquisition method DBZP

We denote M as the size of a part of the signal, symbol S denotes the number of

the parts. The green part in Fig. 3 can be calculated in advance - not in real time.
The DBZP method is algorithmically given by the following steps:

1. Selection of the parts of the input signal and of parts of the PRN code

(5)

And the transform of each individual part filled with zeros of length M to the
sprectral domain according to (2) where we substitute 2M for N.

2. The multiplication of the spectra of the part of input signal and its complex
conjugated replica parts.

3. Switch to the time domain using IFFT, we obtain the cross-correlation
between i part of input signal and n part of PRN code

 (6)

4. Rearrangement of the results

(7)

� �
�

�

�

�

����
1

0

1

0
)()()()(

S

i

S

i
ii iMkcncandiMkxkx

58

�
�

�

� ���
1

0

2)(
S

n

nMTofj
xc

s

n
enMm

5. Summation of the partial correlation function over the frequency shifts

 (8)

6. Calculation of the absolute value.

3. IMPLEMENTATION ISSUES
This section describes the implementation issues of both methods. In the first
approach, we will not consider the processor overhead and memory operations. We
consider just the number of independent steps required for either acquisition
method. For sequential processing in one core (CPU), the number of independent
steps equals the number of FLOPs (FLoating-point OPerations). In both methods,
only three types of arithmetic operations are involved - FFT or IFFT, complex
multiplication and complex summation.

Concerning the number of steps of the FFT and IFFT, we will consider the
radix 2 butterfly algorithm that is featured with the two independent steps
(multiplication, sum). The FFT with N samples has 3log2N independent steps.

The complex multiplication can be decomposed into two independent steps and
the complex sum can be done in one independent step.

The GPU has a finite number of cores. The number of cores in a processor unit
is a restrictive parameter. The parallel programming approach (OpenCL, CUDA) is
based on the following hierarchy and terminology. A task for one core is called a
thread. The threads are associated to groups called blocks. The size of the blocks is
optional but has to be less than the number of cores of the processor or equal. The
blocks are executed in parallel or consecutively. It depends on the number of cores
of the GPU.

In our preliminary study, we used the GPU NVidia Geforce 9800 with 128
cores with maximum block size of 128 threads. The comparison of the number of
steps for both acquisition methods is depicted in Fig. 4.

59

Fig. 4. Comparison of the number of steps for DBZP and PCSS acquisition
methods (N is number of processed samples)

Fig. 4 shows that the DBZP method requires fewer steps for one satellite than

the PCSS method. But it should be noted that the DBZP method has more
complicated algorithms than the PCSS method. It brings higher processor overhead
and significantly more memory operations.

4. COMPARISON OF EXPERIMENTAL RESULTS
For testing all the methods we used a PC (Personal Computer) with the following
parameters:

Table 2. Description of the PC platform used for the experiment

CPU Intel core 2 duo 2.0 GHz
Graphic card Nvidia Geforce 9800
Memory 3 GB

The algorithms were implemented in the C programming language enhanced by

the CUDA parallel programming language. The CUDA language option provides
the optimized signal processing libraries including efficient implementation of the
fast Fourier transform (FFT). These optimized signal processing libraries were the
main reason why we chose the CUDA language for our first experiments.

Figure 5 shows a comparison of both CPU and GPU times spent on both
acquisition algorithms.

60

Fig. 5. Comparison of acquisition times for DBZP and PCSS methods in CPU

and GPU for 1000 attempts (N is number of processed sample)

In Fig. 5, it is shown that the algorithms in the GPU run much faster than in the
CPU, whereas in the CPU the DBZP method is more efficient (average 50 %), in
the GPU the PCSS method (average 20 %) outperforms the DBZP method. The
reason why the DBZP method is faster than the method PCSS was explained in the
previous chapter. The modern GNSS signals commonly use long PRN codes, for
instance 10 230 or longer. From Nequist sampling theorem number of samples for
code 10 230 chip should be equal to or greater than 20460 sample (this corresponds
to sampling rate 2 samples/code). From Fig. 5, it is apparent that the computational
time of the GPU is approx. 15 times lower for 32 768 samples (sampling rate 3,2)
and even 23 times lower for 65536 samples (sampling rate 6,4) than in the CPU.
All the algorithms computed FFT transformation over 2n samples. FFT computed
over any number of samples have been tested as well but results show that
computation FFT over 2n samples is more effective for CUDA_FFT library.

CONCLUSION
Our preliminary study shows that GPU is very suitable to be employed in GNSS
signal processing. In addition to it, the performance of the GPU is continually
growing, thus in the near future the processing of all the GNSS signals will be
possible. This fact allows us to work on the implementation of the multi-frequency
and multi-system GNSS SDR receiver based on GPU that will meet the
requirements for a real-time operation.

61

REFERENCES
Hobiger T., Gotoh T., et al. GPU based real-time GPS software receiver,GPS

SOLUTIONS (2010), pp. 208-216

Mistry P., Schaa D., et al. OpenCL University Kit, [Cited 20-04-2012], AMD
2011, Available at:
http://developer.amd.com/zones/OpenCLZone/universities/Pages/default.aspx

NVidia: CUDA C, Programming Guide, Version 4.1, 2011, Available at:
http://www.nvidia.com

Kai B. Dennis M. Akos, et al.A Software-Defined GPS and Galileo Receiver,
Boston, Birkhauser 2007

Chao-jun Wei, Song-lin Sun et al. An Enhanced Spectrum Method for GPS Weak
Signal Acquisition, in Proceedings of 2nd IITA International Conference on
Geoscience and Remote Sensing 2010, Qingdao (China), pp. 502-505

T. Hobiger, et al., A real-time GNSS-R system based on software-defined radio
and graphics processing units, Advances in Space Research, Volume 49, Issue
7, 1 April 2012, Pages 1180-1190, 10.1016/j.asr.2012.01.009, 2012.

Received: 2012-07-31,
Reviewed: 2013-01-16, by T. Hobiger,
Accepted: 2013-02-20.

