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ABSTRACT. Following the launch of CHAMP, a new era was born in the gravity field 
determination from satellite observations. Many methods have been proposed and applied for 
the recovery of the Earth’s gravity field from the observations of the satellite missions 
CHAMP, GRACE and GOCE. This paper deals with the Rosborough formulation in gravity 
field modelling. This formulation is derived from the transformation of time-wise 
representation from the orbital into the spherical coordinate systems. Base functions of the 
Rosborough formulation depend on the type of the functional of the gravity field and the 
inclination of the orbit. Unlike the space-wise approach, the Rosborough approach can easily 
deal with both isotropic and non-isotropic functionals. The proposed formulation is 
implemented on the GOCE data in order to show its efficiency. Numerical results show that 
the Rosborough formulation is a powerful and efficient tool in the case of GOCE gradiometry 
data processing. 

Keywords: Rosborough formulation, gravity field recovery, GOCE, gravitational gradient 
tensor. 

1. INTRODUCTION   
The satellite missions CHAMP [CHAllenging Minisatellite Payload; (Reigber et al., 1999)], 
GRACE [Gravity Recovery And Climate Experiment; (Tapley et al., 2004)] and GOCE 
[Gravity field and steady-state Ocean Circulation Explorer; (ESA, 1999)] have opened a new 
era in the global gravity field study of the Earth. These dedicated gravity field missions have 
made significant improvements in our knowledge of the geopotential field of the Earth. 
Besides, benefits from these gravity missions will develop many fields of studies such as 
geodesy, oceanography, geophysics and hydrology. As an example, the GOCE mission has a 
great impact on studies of the interior structure of the Earth, ocean circulation and unification 
of the height systems (Rummel et al., 2002). Huge number of unknowns and observations, 
especially for the latter two missions, makes the estimation of the potential coefficients a 
difficult task. Many authors have developed different representations of the gravity field, and 
consequently different data processing strategies, to solve such a huge system of equations 
(see e.g. Reguzzoni and Tselfes, 2009;  Pail et al., 2010; Xu et al., 2008; Sneeuw, 2000). 

      Basically, there has been a distinction between two different approaches, namely the time-
wise and the space-wise. In the former approach, observations are considered as a time-series 
along the orbit of the satellite, while the latter regards the observations as a function of the 
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spatial coordinates (Rummel et al., 1993). The Rosborough approach is a combination of both 
approaches. 

      In this study, the Rosborough formulation and the gravity field recovery based on this 
formulation is discussed, especially for GOCE data processing.  Rosborough (1986) 
expressed the orbital perturbations of a satellite in the spherical coordinates. The 
transformation that was carried out by Rosborough was the reverse transformation of that of 
Kaula (1966), which means, he again expressed the along-orbit observables in the spherical 
coordinates. The representation derived from this transformation is different from that of the 
spherical harmonic series. Contrary to the base functions of the spherical harmonic series, i.e., 
spherical harmonic functions, the new base functions depend on the functional of the 
geopotential field and also on the characteristics of the orbit of the satellite. The point about 
this transformation is that, due to the expansion of sine and cosine functions in the binomial 
series, cumbersome expressions are derived and their implementation leads to a very slow 
algorithm. Sneeuw (2003) proposed an improved and fast algorithm for the Rosborough 
approach based on the complex notation and without any need for the expansion in the 
binomial series. 

      In this paper, the Rosborough formulation is first introduced. Then, the gravity field 
recovery from this formulation is discussed in section 3. In section 4, the application of this 
approach for GOCE data processing is considered. In section 5, the results of the numerical 
experiments and accuracy evaluation of the Rosborough formulation are presented and the 
achievements are discussed. The summary and conclusions are expressed in the last section. 

2. ROSBOROUGH FORMULATION 
A functional of the gravity field ( ) can be expressed in complex notation as (Sneeuw, 2000): 

 
Where  are complex normalized spherical harmonic coefficients ,  and 
transfer functions  are stated in terms of the normalized inclination function ( ): 

 
and  is the transfer coefficients of the functional . 

Rosborough formulation is obtained from expressing  in terms of spherical coordinates 
( ) (Sneeuw, 2003). According to the definition of  (Kaula, 1966) : 

 
where  is the argument of the latitude,  is the longitude of the ascending node and  is the 
right ascension of the satellite. Now we transform the variables  and  into 
expressions in latitude  and inclination . From spherical trigonometry, it is:  

 
                         

 
From the former, the following equation is obtained (Sneeuw, 2003): 
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where the signs  and  are used for the ascending and descending tracks respectively. 

Substituting last three equations in Eq. (3) gives: 
 

where 

 

 
      Eq. (9) is a stable expression which leads to a fast algorithm. Also, the risk of overflow 
for polar regions and for large  has been taken into account. The difference between this 
expression and the one that was given by Rosborough (1986) shows the advantage of using 
complex notation instead of real one. Substitution of Eq. (8) in Eq. (1) results in Rosborough 
formulation: 

 
new base functions  of this representation are defined using . These new 
base functions depend on the functional of the gravity field, inclination of the orbit and are 
also different for ascending and descending tracks:  

 

 
It should be noted that by applying constant radous approximation, the dependence of  on 
variable  vanishes. Eq. (11) is similar to the spherical harmonic series but with the new base 
functions  that are not orthogonal in general. Therefore the data processing strategy 
in Rosborough approach is very similar to that of the space-wise approach (Sneeuw, 2003).  

3. GEOPOTENTIAL RECOVERY IN ROSBOROUGH APPROACH 
3.1. DATA PROCESSING STRATEGY 
Data processing strategy in the Rosborough approach is similar to that of the space-wise 
approach. In comparison with the space-wise approach, in the Rosborough method the data 
are reduced on two spheres; one for the data on ascending tracks ( ) and one for the data on 
descending tracks (

p
). One can use either ascending or descending observations to recover 

the spherical harmonic coefficients. Alternatively, both ascending and descending 
observations are usually combined into spatially mean and variable parts:  
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  is used in the recovery since it contains the dominant part of the signal while  is the 
nuisance part and is almost zero except for the polar regions.  

      The Rosborough approach has at least two advantages in comparison with the space-wise 
approach, although data processing strategy of these two approaches is almost similar. Firstly, 
the Rosborough formulation is derived from the time-wise representation; therefore, any 
isotropic or non-isotropic functional can be dealt with in this formulation, just as the time-
wise approach. Secondly, distinguishing between the ascending and descending observations 
can be very useful and beneficial in some cases, for instance in the case of the gradiometry 
observation equation of the GRACE satellites (Sharifi, 2006). In Sharifi (2006), it was shown 
that the along-track gradiometry observation equation of the GRACE satellites is different for 
the ascending and descending tracks. He solved the non-isotropic gradiometry equation in an 
iterative strategy based on the Banach’s fixed point theorem using the space-wise approach. 
Also, it was assumed there that the resulting errors due to the differences in the number of the 
ascending and descending observations are hopefully negligible. It is obvious that this      
non-isotropic observation equation can be treated easily and efficiently by the Rosborough 
approach. 

      The data processing scheme in the Rosborough approach is represented in Fig 1. 

3.2. BLOCK-DIAGONAL LEAST SQUARES SOLUTION 
Linear system of equations constructed by Eq. (10) cannot be inverted using ordinary PCs due 
to the huge number of observations and unknowns. After rearranging the parameters 
according to spherical harmonic order , the system turns out to become block-diagonal: 

 
swapping summations in Rosborough formulation according to Eq. (14) and carrying out 
inner summations over k and n, results in a single summation formula with the new 
coefficients which are called lumped coefficients: 

 
with: 

 

 
where  is the spatially mean contribution of the signal and  is the average of the 

 and . Eq. (15) can be interpreted as the finite Fourier series. The lumped 
coefficients  are computed using a Fast Fourier Transform (FFT) along each parallel. 
These lumped coefficients are the quasi-observations of the linear system of equations 
represented by Eq. (16).  
      To estimate the geopotential coefficients, the corresponding linear system of equations is 
inverted by block-wise least squares adjustment. This inversion can be written in matrix 
notation as: 
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where  is the vector of geopotential coefficients according to each spherical harmonic order 
and  is the vector of lumped coefficients:  

 

 

 
Fig. 1. Flowchart of the data processing strategy in the Rosborough approach. 

 

 
where  is the number of latitudinal grid points. Each array of the matrix  is computed by         
Eq. (17) as follows: 

 
where < , > indicates the inner product of two vectors. Vectors   and  are given as: 
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Finally, the geopotential coefficients of the spherical harmonic of order  are obtained by the 
method of least squares: 

 

4. APPLICATION OF THE ROSBOROUGH FORMULATION IN GOCE      
GRADIOMETRY DATA PROCESSING 
GOCE is the first mission that benefits from gradiometry technique. Gravitational 
gradiometry is the measurement of the second derivatives of the gravitational potential. A 
second-order tensor field with 3 3 components, known as gravitational gradient tensor 
(GGT), is formed from these gravitational gradients. The three-axis GOCE gradiometer 
measures the diagonal components , ,  and one of the off-diagonal components  
with high precision, while the other off-diagonal components,  and , are of low 
precision (Rummel et al., 2011). In the framework of High Level Processing Facility (HPF) 
for GOCE mission, three different approaches, namely time-wise, space-wise and direct 
approaches, are implemented to determine the gravity field from GOCE orbit and 
gradiometry data (Pail et al., 2011).  

      In order to apply the Rosborough method, to recover the geopotential coefficients form 
the four high-precision GGT components, the transfer functions, , of these functionals 
should be obtained. Based on the data processing strategy in the Rosborough approach (see 
Fig. 1), the procedure to recover the potential coefficients from gravitational gradients is as 
follows: first, the ascending and descending observations are separated. Then, they are 
mapped onto two spheres separately. After mapping along-track data, the spatially mean 
contribution of each gravitational gradient component is computed. Finally, by substitution of 
the equivalent transfer functions of these GGT components from Table 1 in Eq. (25), the 
spherical harmonic coefficients are retrieved. 
      Note that the only isotropic component is the second radial derivative, . In the next 
section, some numerical experiments are presented in order to show the performance of the 
Rosborough approach for GOCE gradiometry data analysis. 

5. NUMERICAL EXPERIMENTS 
In this section, some numerical examples are constructed in order to evaluate the formulation 
derived before. It has to be noted that the main emphasis of this paper is to show the 
performance and efficiency of the Rosborough formulation in satellite gravity gradiometry, 
and as a proof-of-concept study, this approach is implemented on the GOCE gradiometry 
data. Therefore, other problems such as mapping along-track data on grid points, polar gap 
problem, filtering the coloured noise of the gradiometry data, etc. is not investigated here. 
This study deals with the second part of the Rosborough approach, i.e. the estimation of the 
harmonic coefficients from gridded data on global grids on two spheres. To this end, 
gravitational gradients of disturbing potential are simulated in Local Orbital Reference Frame 
(LORF) using non-singular expression (Petrovskaya and Vershkov, 2006). 
 
 
 
 
 
 
 



45 

Table 1. Transfer functions of the diagonal components of the gravitational gradient tensor 
(from Sneeuw, 2000). 

Gravitational gradient Transfer function 
 

 
 

 
         

     
     Geographic mapping of the spatially mean and variable contributions is illustrated in    
Fig. 2. Due to the sun-synchronous orbit of the GOCE satellite with the inclination of about 

, orientation of the - and -axis in LORF, which respectively coincides with the along-
track and cross-track directions, is different for the ascending and descending tracks. 
Therefore,  and  observations are not identical in the two tracks. The maximum 
variations of the orientation occur at high latitudes. Hence, the spatially variable component 
has its maximum magnitude in polar regions. The second radial derivative  is isotropic. It 
means that the radial direction is identical for the ascending and descending tracks. This fact 
can be seen in Fig. 2 where the spatially variable component of  is zero. 
      In order to assess the accuracy of the Rosborough formulation, the point-wise gravity 
gradients are simulated in LORF with egm96 geopotential model (Lemoine et al., 1998) to 
degree and order 200 on a  global grid and on two separate spheres, one for the 
ascending data and the other for the descending data, both at 250  altitude. The data in this 
ideal simulation are noise-free and both the synthesis as the analysis, is truncated at degree 
200, so there is no aliasing error. Therefore, an error in the estimation of harmonic 
coefficients from diagonal components of the GGT is due to the error in the Rosborough 
formulation and block-wise least squares solution. Since the study of polar gap problem is not 
the topic of this paper, polar gaps are filled in with computed values from egm96 model.  
However, In the case of GOCE real data, polar gap problem can be dealt with an iterative 
solution, where in each iteration step the polar gaps are filled in with pseudo observations 
generated using the gravity field solution of the previous step. The results in terms of error 
degree r.m.s (root mean square) show that the coefficient reconstruction is performed 
perfectly (see Fig. 3). In all the three cases the difference between the reference and estimated 
coefficients is less than  for all degrees, although the geopotential coefficients 
determined from  and  components show a slight increase of error for higher degrees. 
At this step, the space-wise approach was applied on  gridded data of the ideal simulation 
to estimate the potential coefficients. A comparison between the solutions of the two 
approaches from the  component shows that the accuracy of the potential coefficients 
estimated by the Rosborough approach is about two orders of magnitude higher than that of 
the space-wise approach. In order to gain a better view of the accuracy of the coefficients, 
Fig. 4 shows the error distribution coefficient by coefficient. Similar to the error degree r.m.s, 
Fig. 4 reveals that all of the potential coefficients are retrieved with high precision, which 
shows the efficiency of the proposed approach for GOCE gradiometry data analysis. 
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Fig. 2. Spatially mean (left) and variable (right) contributions of the GOCE gravitational 
gradients in the local orbital reference frame. Note the different scales. 

      From the numerical experiment presented above, one can easily conclude one of the 
advantages of the Rosborough approach compared to the space-wise approach, i.e. dealing 
with all the functionals of gravity field, no matter they are isotropic or non-isotropic. Contrary 
to the space-wise approach, which cannot deal with non-isotropic functionals in a direct and 
simple way, Rosborough formulation seems to be a more appropriate strategy for GOCE data 
processing.  

Consequently, another problem that arises from this disadvantage of the space-wise 
approach is in the gridding of along-track data. Generally, two techniques are available for 
the gridding: a local least squares gridding, e.g. using radial base functions or rational 
functions (see e.g. Sharifi, 2006) and a collocation solution.  In the former technique all the 
observations to be interpolated must carry the same spatial information while in the latter 
technique, different functionals may be used as observations and any other functional can be 
predicted; for example, estimating the second radial derivative on grid points from a set of 
observed data  (Reguzzoni and Tselfes, 2009). It is clear that in the case of the 
space-wise approach for GOCE gradiometry data processing, collocation has to be used with 
its numerical heaviness, while the Rosborough method can benefit from both techniques. In 
addition, one has to notice that in the space-wise approach, where all gravitational gradients 
are combined from the second radial derivative on grid points using collocation, the available 
gradiometry data are significantly reduced. These drawbacks of the  space-wise  approach  
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Fig. 3. Error degree r.m.s in  scale: (a) solution of the Rosborough approach for                             

component; (b) solution of the Rosborough approach for  component; (c)  solution                               
of the Rosborough approach for component; (d) solution of the space-wise approach                             

for  component. The solid and dotted curve represents the egm96 model degree                                  
variances and error degree r.m.s respectively. 

 
Fig. 4. Harmonic coefficients in  scale: (a) egm96 coefficients; (b) deviations of the                            

coefficient estimates from egm96, using the  component; (c) deviations of the 
coefficients, using the  component; (d) deviations of the coefficients, using the  

component. 
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motivated us to use Rosborough formulation instead of the space-wise method for gravity 
field modeling form GOCE gradiometry observations. 

      Now let us consider a more realistic simulation with noisy data. A Gaussian white-noise 
with an error r.m.s of , which is realistic after gridding along-track data, was added to 
gridded gradiometry data. Since the gravitational gradients were synthesized up to degree 250 
in this simulation, aliasing was also taken into account. In this new simulation, the 
geopotential recovery is performed using all the diagonal components of the GGT 
simultaneously. It means that the linear system of equations is formed using three 
gravitational gradients ,  and , and a combined solution to degree 200 is obtained. 
The results in terms of error degree r.m.s show that the accuracy of potential coefficients is 
about 3 orders of magnitude less when noisy and aliased data are used instead of the ideal 
data (see Fig. 5). Fig. 6 shows the geoid errors on a regular   grid using both the 
estimated coefficients and those of the egm96. As can be seen, geoid errors are less than 5  
for most points on the Earth. The error does not exceed 25 .  

 
Fig. 5. Error degree r.m.s of the combined solution using noisy and aliased data. The solid 

and dotted curve represents the egm96 model degree variances and error degree r.m.s 
respectively. 

 
Fig. 6. Geoid undulation differences between the combined solution using noisy and aliased                          

data and egm96 model. 

      It should be noted that the results of this simulation do not contain the error of projection 
of the along-orbit observations on a spherical grid. However, this error can be mitigated by an 
iterative procedure, where in each iteration step, the along-orbit observations are reduced 
using the data synthesized from the solution of the previous iteration. From the numerical 
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results of the simulation, it can be concluded that the use of Rosborough formulation seems to 
allow for the reconstruction of the geopotential field up to degree 200 and above with 
sufficient accuracy. 

6. CONCLUSION 
Determination of the Earth’s gravitational field with unprecedented accuracy is now a reality, 
thanks to the GRACE and GOCE missions. Many approaches have been proposed by authors 
for gravity field recovery from dedicated gravity field missions. In this contribution, 
Rosborough approach was investigated. After derivation of the Rosborough formulation, 
application of this representation for GOCE data processing was presented in order to show 
the efficiency of this approach. Numerical results of the simulation show that the potential 
coefficients can be recovered up to degree 200 and above with sufficient accuracy from this 
formulation. 

      Since the Rosborough formulation is the transformation of the time-wise approach from 
orbital into spherical coordinates, it has characteristics of both time-wise and space-wise 
methods. For instance, similar to the space-wise approach, it interpolates the along-orbit 
observations to homogenize the data and makes the numerical solution feasible, or just as the 
time-wise approach, both the isotropic and non-isotropic observables can be dealt with easily 
in this approach. In conclusion, it seems that the Rosborough approach has the potential to be 
used in gravity field recovery, especially for GOCE data processing. 

      As a future research, Rosborough formulation will be applied to the non-isotropic 
gradiometry observation equation derived from GRACE satellites. 
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