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ABSTRACT. On-the-fly ambiguity resolution (OTF AR) is based on a small data set, 
obtained from a very short observation session or even from a single epoch observation. In 
these cases, a classical approach to ambiguity resolution (e.g. the Lambda method) can meet 
some numerical problems. The basis of the Lambda method is an integer decorrelation of the 
positive definite ambiguity covariance matrix (ACM). The necessary condition for the proper 
performing of this procedure is a positive definiteness of ACM. However, this condition is 
not satisfied in cases of very short observation sessions or single epoch positioning if phase- 
only observations are used. The subject of this contribution is such a case where phase-only 
observations are used in the final part of the computational process. The modification of 
ACM is proposed in order to ensure its positive definiteness. An estimator of modified ACM 
is a good ACM approximation for the purpose of performing the LAMBDA method. Another 
problem of short sessions (or a single epoch) positioning is the poor quality of the float 
solution. In this paper, a cascade adjustment with wide-lane combinations of signals L1 and 
L2 as a method of solving this problem is presented. 

Keywords: GNSS data processing, ambiguity resolution, Lambda method 
 
1. INTRODUCTION  
Integer Least Squares Adjustment (ILSA) is the key to high-precision Global Navigation 
Satellite System (GNSS) positioning. The well-known classical approach to ILSA consists of 
three stages (Teunissen, 1995): 

 Float solution  –least squares (LS)adjustment without constraints– all parameters (also 
ambiguities) are real valued 

 Ambiguity Resolution (AR) – search for the best candidates of the integer valued 
ambiguities 

 Fixed solution – LS solution with known constant integer valued ambiguities obtained 
in the second stage. 

Currently, one of the most applied methods of ILSA, is the Least Squares Ambiguity 
Decorrelation Adjustment (LAMBDA) method developed by Teunissen (Joosten, 2001; 
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Joosten  and Tiberius, 2002; Teunisssen, 1995). Teunisssen (1999) proved that LAMBDA 
method is optimal in the sense of maximizing the probability of correct integer estimation.  
In this method, an integer decorrelation transformation is applied before the search for integer 
ambiguities. Although the decorrelation in LAMBDA does not enhance the success rate of 
ILSA it is needed to improve the efficiency of the search process. A decorrelation procedure 
is carried out on the basis of an ambiguity covariance matrix (ACM) obtained from a float 
solution. As expressed in the title, the topic of this paper is OTF AR. It means that ACM for 
the integer decorrelation procedure must be obtained from a float solution of a very short 
session or even from a single epoch observation (Kashani et al., 2005). In this case, ACM is 
not positive definite, if phase observations only are used. This fact causes serious difficulties 
associated with the integer decorrelation procedure. One solution to this problem may be 
addition of code observations, e.g., as in the generalized least squares model proposed by 
Wielgosz (2011). However, that standard approach has some weaknesses. The code 
observations can be severely biased, e.g. due to multipath. Then the phase-only approach 
provides a more robust method. This contribution proposes to use an estimator of modified 
ACM to decorrelation procedure in a case of single epoch positioning. This estimator is in the 
form of a positive definite matrix, characterized by the desirable properties. The single epoch 
solution has the following advantages:  

- No need of solving "cycle slip" problem 
- Independence such a solution from previous epochs solutions 
- An immediate solution in RTK mode- there is no initialization procedure 
- Identical computational process in RTK mode and in static session. 

The proposed approach is one of the methods of ill-posed problem resolution. In the past few 
years the AR, as an ill-posed problem, was presented in a number of papers (Ou and Wang, 
2004; Shen and Li, 2007; Gui and Han, 2007; Li et al., 2010). Most researchers have 
attempted to solve this problem using regularization technique. Ou and Wang (2004) 
regularized the baseline part of the normal equations. Shen and Li (2007) proposed to 
regularize the ambiguity parameters. Gui and Han (2007) regularized baseline and 
ambiguities simultaneously. An interesting method of regularization parameter estimation 
was proposed by Li et al. (2010). In this contribution another method of solving ill-posed 
problem is proposed. An estimator of modified ACM is derived simulating the presence of an 
additional group of observations. Then this matrix is used as the base for LAMBDA method.  
The proposed in this contribution the modified ACM has better properties in comparison to 
the ACM obtained from standard approach. These better properties in the sense of 
decorrelation procedure efficiency imply from special way of the simulated observations 
weighting scheme.  

The next section of the paper contains a description of forming an estimator of modified 
ACM that is positive definite. In Section 3, a simple method of OTF AR is presented.  In this 
method, different linear combinations (LC) of L1 and L2 signals are applied. The process 
consists of consecutive ARs with the Lambda method for LCs with gradually reduced 
wavelengths. A numerical example is given in Section 4. Section 5 presents some results of 
the tests carried out on the basis of real data. In final part of the paper some conclusions are 
formulated. 
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2. AN ESTIMATOR OF THE MODIFIED AMBIGUITY VARIANCE-COVARIANCE 
MATRIX  

 
The observation equation of DD carrier phase reads: 

L+V=AX + BN, 1) 
where: 

 L – vector of DD carrier phase observations in cycles 
 V – residuals vector in cycles 
 A – design matrix for real valued parameters (baseline components) 
 X – vector of real valued parameters [m] 
 B – design matrix for ambiguities 
 N – ambiguity vector in cycles 

It is assumed in this contribution that dimension of A matrix is n×3, where n is a number of 
observations. It means that there are only three real-valued parameters (coordinates). The 
atmosphere parameters are ignored or modelled and embodied in L vector. The LS solution of 
the equations (1) is obtained from the following normal equations:

T T T

T T T

XA PA A PB A PL
NB PA B PB B PL

T TA PA A PB A PLT TT TA PTX PLA P
T T

A PA A PB X PLA PA P
TB PA B PB B PLLT TB PA B PBT TT LB PN B PN B PTN TPT

, 2) 

where P is an observation weight matrix. 
The solution of the equation (2) is: 

1T T T

T T T

X A PA A PB A PL
N B PA B PB B PL

1T TA A PB A PLT TT 1 T1 TX TA PT AA P
T T

A PB A PLAA PA P
NN T A B PB B PLT TA B PB B PLT TTB PB PB PTTBT

, 3) 

Let’s denote:  
1 1T T

XX XN
T T

NX NN

P PA PA A PB
P PB PA B PB

1 1T TA PA A PBT T 1
N

1
XNP PXPP PXX

T T
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NX NNP PNX NP PP PP P  

4) 

It can be easily verified that: 
1

XX XN XX XN
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P P Q Q
P P Q Q

1
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where: 
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(6)

 
(7) 

 
(8) 

 
(9) 

Matrix QNN is an ambiguity covariance matrix that on the basis of (4) and (6) can be 
expressed in the following form: 

11T T T T
NNQ B PB B PA A PA A PB

1

PBT
11 T1

PTT T TBT T TT PA A PBTB PB B PA AT T TT PA A PBPA A PBB PB B PA AB PB B PA A
 10) 

This matrix is the basis of the integer decorrelation procedure in the Lambda method. In the 
case of single epoch positioning, B is an identity matrix (B=I) and the ambiguity covariance 
matrix (10) is obtained as an inverse of the following matrix: 
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1T T
NNaP P PA A PA A P

1 T1
PTTP PA A PT  11) 

However, this matrix is not positive definite and therefore does not satisfy the condition 
required for the LAMBDA method. Nevertheless, matrix (11) can be replaced by its another 
estimator, which is positive definite. It is proposed here to estimate this matrix using 
simulated, additional observations. In this case, the matrix (10) can be expressed in the 
following form: 

11T T T T
NNb 0 0 0 0 0 0 0 0 0 0 0 0Q B P B B P A A P A A P B

1
T P BT T

11 T1
PTT T TBT T TT P A A P BT TB P B B P A AT T TT

0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 0P A A P B0 0 0 0 00 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0B P B B P A A0 0 0 0 0 0 00 0 0 0 0 0
 12) 

where B0, A0 and P0 are the following block matrices: 

 
13) 

Pa is a weight matrix of the simulated, additional observations. It is assumed here that design 
matrix A for simulated observations is the same as for real observations, and B is a null 
matrix for these observations. The weights of simulated observations must be small enough 
so that their impact on the results is negligible. On the other hand, they must assure the 
positive definiteness of the ambiguity covariance matrix. If we assume that the structures of 
the matrices Pa and P are the same, then: 

Pa = cP, 14) 
where c is a positive coefficient less than one (0< c < 1).  
Taking into account (13) and (14) the formula (12) can be rewritten as: 

11T T
NNb

1Q P kPA A PA A P ,where : k
1 c

1 111 1T 1P kPA A PA A P where : kT T
11 T1

PTP kPA A PA A P where : kT T

11
P kPA A PA A P ,where : k

1
P kPA A PA A P where : k

c  15) 
It is proposed here to fix the coefficient c=0.01 (the weights for simulated observations are 
100 times smaller than weights for real data). Hence, the coefficient k equals 0.99. No 
additional, theoretical studies were conducted to prove that this value of c is optimal, but it 
was tested that such value does not significantly affect the results and simultaneously it 
ensures the positive definiteness of the ACM (Cellmer, 2011a,b). It should be noticed, that 
the model (13) is in fact the same as if code observations were used along with the phase 
observations. The one significant difference is a way of the weighting of the simulated 
observations. The nominal standard deviation of code observations is about one hundred 
times lower than the nominal standard deviation of phase observations. Thus, in contrast to 
the model proposed in this contribution, in the standard model, the weights for code 
observations are 10000 times smaller than the weights of the phase observations. The k 
coefficient corresponding to such (standard) solution would be equal to 0.9999. An additional 
advantage of the proposed model is that the code biases will not have an impact on the 
results. 

In summary, the simulation of additional observations is equivalent to the use of the 
coefficient k as in (15). The formula (15) presents the estimator of modified ACM in the case 
of single epoch positioning. This matrix can be applied to the decorrelation procedure in the 
Lambda method. 

 
3. OTF AR USING LAMBDA METHOD IN CASCADE ADJUSTMENT 
In (Cellmer, 2010) it was shown that the graphical plot of the carrier phase LS Objective 
Function is an irregular surface. This is the case especially when the positioning is based on 
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short sessions or on only a single epoch. Also extreme ionospheric conditions have adverse 
influence on the shape of  LS Objective Function (Shagimuratov et al., 2002). Therefore, if 
float solution is not sufficiently close to the true solution, there is high risk of incorrect 
ambiguity fixing. The solution can be found in one of the local minima instead of in the 
global one, where the correct solution is. Therefore the approximate position in carrier phase 
process should be as good as possible. Reliable, approximate position can be obtained using 
Network Code DGPS Positioning (Bakula, 2010). However the accuracy can be still 
insufficient for classic carrier phase processing. Cellmer et al. (2010) proposed to solve this 
problem in MAFA method using cascade adjustment (CA). Cascade adjustment can be used 
as well in the classic approach with the LAMBDA method for AR (Henkel and Gunther, 
2007). Instead of carrier phase data of only the L1 signal, the Linear Combinations (LC) with 
an integer coefficient and long wavelength can be applied. In this approach, the integer 
ambiguities of wide-lane combinations with successively reduced wavelengths are estimated. 
In this contribution, the three LC listed in Table 1 were chosen for the tests (Cellmer, 2009; 
Cellmer et al., 2010). 

   Table 1  Linear combinations of L1 and L2 signals 
LCi,j iL1 + jL2  [m] 
LC-3,4 -3L1+4L2 1.6281 
LC1,-1    L1 – L2 0.8619 

LC10 = L1     L1 0.1903 
 
Analyses of the theoretical properties of these combinations were carried out by Han and 
Rizos (1996), Urquhart (2009), Cocard and Geiger (1992). The computations were 
performed, starting from the LC with the longest wavelength and finishing with the L1 signal 
only. The position from the fixed solution at each stage of CA formed the basis for obtaining 
the float solution in the next stage. The large wavelength of LC simplifies integer ambiguity 
resolution in the first step of cascade adjustment. The a priori knowledge of ambiguities (with 
larger wavelength) from the previous step reduces the probability of wrong ambiguity fixing 
in the subsequent algorithm step. 
 
4. EXAMPLE BASED ON A SINGLE EPOCH 
The test of the presented algorithm was performed based on real data. The input data are 
listed in Tables 2 and 3. In the first row of Table 1, the coordinates of an apriori position are 
placed. This position was obtained using DGPS technique on the basis of code observations 
and one fixed reference station. In the second row, there are coordinates obtained from an 8-
hour session processing using Bernese software (Dach et. al., 2007). These values are 
presented for the purposes of comparison with the single epoch processing results. In the first 
column of the Table 3 there are double-differenced geometric distances computed from 
apriori position coordinates. The second and third columns contain double differenced carrier 
phase observations of the signals L1 and L2. The fourth column contains the design matrix.  
 

Table 2. A priori and ‘true’ coordinates  
 X [m] Y [m] Z [m] 
a priori (DGPS) 3717387.417 1256680.722 5011465.523 
true 3717386.066 1256680.646 5011465.539 
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Table 3 Input data
DD_dist [m] DD_L1[cycles] DD_L2[cycles] A 

   7110.220 
 -21107.951 
  -7214.561 
 -24238.136 
  19892.307 
 -24521.234 

 1306649.802 
  770981.863 
 5449276.945 
 2090537.500 
-2074454.151 
 4636828.079 

   697089.627 
   600050.122 
  4242415.741 
   411839.892 
 -1589927.638 
  2747848.515 

 0.0688   0.2350 -0.0014 
 1.1742  -0.6315  0.1701 
-0.3696  -0.0758  0.7292 
 0.2210  -0.7500  0.1875 
 0.3674   0.7018  0.1726 
 0.6029  -0.7752  0.0857 

 
The weight matrix was obtained as an inverse of the LC DD carried phase covariance matrix:  

P = C-1 (16) 
with the following structure of matrix C: 

(17) 

where: 
 – nominal accuracy of the carrier phase observation (one percent of the   cycle, 
=0.01) 

m – LC noise, dependent on LC coefficients ( , for i, j listed in Table 1) 

The integer ambiguity resolution was carried out with LAMBDA method using the Peter 
Joosten Matlab function (Joosten, 2001). In Table 4, the results of the elaboration for two 
values of coefficient k are summarized. The value of k = 0.99 corresponds to a model 
proposed in this contribution while the value of k = 0.9999 corresponds to a standard model. 
The values ∆X, ∆Y and ∆Z are the residuals with respect to the ‘true’ coordinates at each 
stage of the cascade processing.  
 

Table 4 The results of elaboration 
LC# k=0.99 k=0.9999 

    ∆X             ∆Y           ∆Z     ∆X             ∆Y           ∆Z 
DGPS  1.352  0.076 -0.016  1.352  0.076 -0.016 
LC-3,4 -0.183  0.012  0.444  3.545 -1.483 -2.369 
LC1,-1  0.016 -0.013 -0.055  2.856 -0.868  2.475 
LC1 -0.007 -0.010  0.003  1.585 -1.016  1.925 

The graphical representations of these values are depicted in Fig 1. The horizontal axis on the 
level zero depicts the ‘true’ value of the coordinates. The blue, red and green lines show the 
residuals of the XYZ coordinates referenced to their 'true' values. The plot shows that in the 
case of k=0.99 the solution of the cascade processing finally converges to the correct value 
even though the apriori position is almost 1.5 m away from true position. On the other hand 
the case of k=0.9999 did not give correct solution. . 
 

k=0.99 k=0.9999 

2 2

4 2 2 2 2 2
2 4 2 2 2 2
2 2 4 2 2 2

C m
2 2 2 4 2 2
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2 2
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4 2 2 2

2 2
2 2
2 2 2 4 2 22 2 2 4 2 22 2
2 2 2 2 4 22 2 2 2 4 2
2 2 2 2 2 42 2 2 2 2 4

2 2m i j2 2i j2



87 
 

 

DGPS LC(-3,4) LC(1,-1) L1-3

-2

-1

0

1

2

3

4

Linear Combinations

X
, 

Y
, 

Z
 [m

]

k=0.9999

 

 

X 
Y
Z

 

Fig. 1 The residuals referenced to the ‘true’ coordinates  

5. RESULTS FOR 120 INDEPENDENT EPOCHS 
In order to test the efficiency of the proposed algorithm, the real GPS data of two baselines 
was collected. Test surveys were performed on December 9th, 2008, on 30 km and 10 km 
baselines, with a 30-second sampling rate. Data sets of each baseline consisted of 120 epochs. 
The data was processed according to the proposed approach independently for each epoch. 
The ambiguity covariance matrix was formed according to formula (15), as a basis for the 
decorrelation procedure. Two various values of the k coefficient were tested: k=0.99  
(proposed model) and k=0.9999 (standard model). The “true” coordinates were derived using 
Bernese software based on an 8-hour data set (Dach et.al., 2007). Figure 2 presents the results 
of 120 single epoch sessions processing the 31.2 km and 2.6 km baselines. The blue lines 
depict the linear residuals of the position obtained from single epoch processing, with respect 

to the “true” position from Bernese. The residuals were computed as:  2 2 2
dV X Y Z2 2 2X Y Z2 22 , 

where ∆X, ∆Y and ∆Z are components of the residuals with respect to the "true" position. 
The red lines depict the linear residuals of the a priori position, with respect to the “true” 
position. In most cases, a priori position was farther than 1m from the ‘true’ position. The 
first column includes the results for k=0.99.  There were 87 correct (correct values of the 
ambiguities and linear residuals less than 10 cm) among all 120 solutions (72.5%) in the case 
of 31.2 km baseline. In the case of 2.6 km baseline there were 92 correct among all 120 
solutions (77%). The second column depicts the results for k=0.9999. The results in this case 
are as follows:  38 correct among all 120 solutions (31.6%) for 2.6 km baseline and 11 correct 
among all 120 solutions (9.2%) for 31.2 km baseline. The results show that the proposed in 
this contribution the assumption of k=0.99 is much more advantageous than k=0.9999 (which 
corresponds to the standard model with code observations).
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Fig. 2. The results of single-epoch processing of 31.2 km and 2.6 km baselines 
 

6. CONCLUSIONS 
The Lambda method of AR is based on the ambiguity VC matrix obtained from the float 
solution. OTF AR is performed on the basis of data from short sessions or even in extreme 
case from a single epoch. In such case, the VC matrix is not positive definite. In order to 
perform an integer decorrelation process, an estimator of the modified ambiguity variance-
covariance matrix can be used. In the paper, the formula of such an estimator was derived. 
This estimator of the VC matrix was used in the cascade processing. The results of the tests 
show the usefulness of the proposed solutions. Nevertheless, more theoretical and 
experimental analyses are required in this subject. In the near future it is planned, among 
others, to develop an estimation method of the k coefficient. 
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