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ABSTRACT. The spherical Slepian functions can be used to localize the solutions
of the gradiometric boundary value problems on a sphere. These functions involve
spatially restricted integral products of scalar, vector and tensor spherical harmonics.
This paper formulates these integrals in terms of combinations of the Gaunt
coefficients and integrals of associated Legendre functions. The presented formulas
for these integrals are useful in recovering the Earth’s gravity field locally from the
satellite gravity gradiometry data.
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1. INTRODUCTION

A boundary value problem (BVP) is a way of formulating the mathematical
problems. In BVP a partial differential equation is constructed and solved based on
existing values of the desired function on a specific surface, which are called
boundary values. The solution to a BVP can be presented by an integral formula in
spatial domain. The gradiometric BVPs are the special cases of BVPs in which the
second-order partial derivatives of the desired function are given on the boundary.
The solutions of the gradiometric BVPs are presented by three integral formulas as
well. If we assume that the boundary is a sphere, then the integration should be
performed on its surface. However, if the integration domain is a small part of this
surface, the function will not be recovered correctly and the solution will be biased.
We should look for a method to localize the integrals and reduce this bias.

The gradiometric BVPs are of major importance in satellite gravity gradiometry.
The second-order partial derivatives of the geopotential have more sensitivity to the
Earth gravitational field than the other existing space techniques and the geopotential
coefficients can be recovered to high degrees and orders, say to 300; see for example
Rummel et al. (1993), Koop (1993), Balmino et al. (1998) and (2001) and Albertella
et al. (2002). In the gradiometric BVP three combinations for the partial second-
order derivatives of geopotential are constructed so that tensor spherical harmonics
(SHs) can be used to make some integral formulas for recovering the gravity field;
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see for instance Rummel (1997), van Gelderen and Rummel (2001) and (2002) and
Martinec (2003).

Griinbaum et al. (1982) discussed the problem of finite convolution integral
operator. Spatial localization is an issue for analyzing the satellite altimetry data
lacking a full global coverage. Mainville (1986) was one of the earliest persons who
presented recursive formulas for the integral product of the associated Legendre
functions (ALFs) and used them in processing of the satellite altimetry data. Later on
Hwang (1991) presented another recursive formula for generating the Gaunt
coefficients (Varshalovich et al. 1989) and used them for evaluating of this integral
product and solving a similar problem. Simons et al. (1997) localized the gravity
field of the Venus for studying its tectonic dynamics. Pail et al. (2001) also used
some numerical techniques to orthonormalize the base functions or SHs having a
global orthogonality support for local gravity field determination. Another idea
which is of interest today is the Slepian method (Slepian 1983). In this method the
ratio of the signal energy in the local and global senses is analyzed. The eigenvectors
which maximize this ratio are selected as the orthogonal base functions with a local
concentration. Slepian (1983) presented the method for one-dimensional signals but
later it was generalized to two-dimensions by Albertella et al. (1999), Miranian
(2004) and Wiezorek and Simons (2005) and further developed by Simons et al.
(2000).

Until now most of the studies are related to a spatially restricted integral (SRI)
product of scalar SHs. However, having such a product is not sufficient for localizing
the solutions of the gradiometric BVPs. The spherical Slepian functions in these
BVPs involve the integral products of the vector and tensor SHs. These integral
products are spatially restricted as well. It means that the integration domain is not a
full sphere. This paper will simplify these SRIs in terms of integral of ALFs and
combinations of the Gaunt coefficients.

2 THE GRADIOMETRIC BOUNDARY VALUE PROBLEMS

Let V' ( P ) be a harmonic function satisfying the Laplace partial differential equation
AV (P) =0, where A stands for the Laplacian operator (Heiskanen and Moritz

1967, p. 5). Solution of this partial differential equation outside a sphere with radius
R is:

n+l
0 R n
r0)-3(%) Svan ) (12
where r is the geocentric distance of the point P, v, 1is the SH coefficients of degree

n and order m,

Y, (P)=e"P (1b)

n nm
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is the surface SH, P,, = P, (cos @) is the ALF of degree n and order m and 6 and A

are the co-latitude and longitude of P, respectively. Finally e stands for the
exponential function.

Now we assume that instead of V' (P) we have its second-order partial derivatives
on a sphere with the radius ». Here we use the local north-oriented reference frame
for expressing these derivatives. This frame is defined as a frame whose z-axis is
pointing upwards in geocentric radial direction, x-axis towards the north and the
frame is right handed, it means that y-axis is directed to the west. The derivatives can
construct the well-known gradiometric tensor:

v.(P) V.
V(P)=\V.(P) V,(P) V.(P)|. (lc)
v, (P) V.

This tensor can be decomposed into symmetric and anti-symmetric parts:

Yy

V(P)=V.(P)e. +2, (P)e. +2V, (P)e, + [V (P)-V, (P) (e, e, )+

+2V, (P)e, —%[VU (P)+V, (P)](ex_x +e, ), (1d)

where e, = (ei ®e; ), i,j=x,y,z is the symmetric spherical dyad. If we just consider

the symmetric part of Eq. (1d) which has similar expressions with tensor SHs, we
can write (van Gelderen and Rummel 2001, Martinec 2003, Eshagh 2009a, 2009b
and 2010):

V. (Ple. :%i(m)(mz)(ﬁj’” 3 v, 20 (P), (22)
r

VXZ(P)exﬁVyZ(P)eyz=%§(n+2)(5j Z Voo (2b)
n=1 r
(KX(P)—Vyy(P))(exx—eyy)+2ny(P)exy=%w[ﬁj Z VanLonn (P) - (2€)
where (Zerilli 1970) :
z,)(P)=Y,,(Pk.., (3a)
2 (P)=E,,(Pe.+F,,(P,., (3b)
20)(P)=G,,(P)e xx—eyy)+2Hnm(P)exy. (30)
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In Equations (2a)-(2c) ZSIL (P), Zizrz (P) and ZE;Z (P) are the tensor SHs. In order to
clarify their definitions see Appendix A. Eshagh (2009a, 2009b, 2009¢c and 2010)
presented the functions E,, (P), F,,(P), G,,(P) and H,,(P) in the following

nm

forms:

EV!m (P) = eimﬂ % = eiml {a}?mR@m—l + a:mBl,mH} > (43)
p by Py, +b2 P . (backward mode)
F P — i imA m__ imA > B
i g L T (et
2
G, (P)=e™ [_a L. A j
00 00 sin” 6
=eimﬂ {C;mpn,m—Z +C§man +Cr37mPn,m+2} > (4C)
H,,(P)=_2ime™ i(—?"m ] =
00\ sind
oo \du Py ¥, Py, ¥ P, (backward mode)
=1e r1 2 3 ’ (4d)
dnmPn+1,m—2 +a,nmPnJrl,m +dnmPn+1,m+2 (forward mOde)
The constant coefficients a. , a., , b, , b2, b" b2 will be presented in
Lemmas 1,2 and 3. ¢, ,c2 ,c. ,d) ,d’ , d> ,d" d” and d are (2009b
and 2010):
cim:%(n+m)(n—m +1)(n+m—1)(n—m+2), (Se)
c,fm =m?, (59)
' %(n—m+l)(n—m+2)(n+m)(n—m+3), (5g)
,fm=m(n—m+1), (5h)
d,;:n=%(n+m)(n+m—l)(n+m—2)(n—m+1), (50)
d,, ==m(n+m), (5¢)
1
d3 :d/3: 3 =_. 5h
nm nm c}’lﬂ’l 2 ( )

The fully-normalized versions of these coefficients were given by Eshagh (2008,
2009a and 2010). In Egs. (4b) and (4d) two different formulas were presented. The
formulas involving n - 1 are called backward mode because the degree of the
function in the left hand side of the equations is n. We call the other formulas
involving n +1 forward mode.
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3. SPHERICAL SLEPIAN FUNCTION FOR GRADIOMETRIC
BOUNDARY VALUE PROBLEMS

The idea of Slepian (1983) was to maximize the energy of a signal inside a specific
region using the following ratio:

pp Iree

= 0o — % , , 6
”V”(Z7 J'J‘Vz(Q)dO_ o, C O ()

where | o ||fr and ||e ||i_ are the definition of squared-norms on the surfaces o and o,
0

respectively; O stands for integration point and do is the integration element. In the
spherical domain, these norms are the spatial globalaverage of the squared functions.

We should find in which condition the ratio (6) is maximized and the signal power is
maximal in o, . In order to explain this matter, let Eq. (1a) be the SH expansion of

the signal in o . Similar to Eq. (6) we obtain the spherical Slepian function based on
Eq. (1a):

S S g(H] L e to 0o

m=—n

S S S P

n=0 m=—n

where * stands for the complex conjugate operator. The integral in the denominator
of Eq. (7a) is being taken on o while the one in the numerator is spatially restricted
to o,. According to the orthogonality property of SHs (see Appendix A) the former

case is simplified and Eq. (7a) will change to:

= (R n+l '+l
Z(FJ Z an( j Z vn’m'Dnmn'm’

_ n=0 m=—n m'=—n'

2n+2 )
2
47[2() 2 Vi
n=0 r m=—n

(7b)

where

HY Y, (Q¥o. (7¢)

Since the SHs are just globally orthogonal when we restrict the integral domain to
o, this property is destroyed. If we write Eq. (7c) into a matrix form we have (see

also Kim and Tapley 2000):
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D=| . (7d)

It is straightforward to obtain the eigenvalues and eigenvectors of this matrix. We
select those eigenvalues and eigenvectors which maximize Eq. (7b) as the base
functions for spatial localization of the signal. In a very similar way, we can find the
spherical Slepian functions corresponding to Egs. (2a)-(2c) which are harmonic
expressions of combinations of gradiometric tensor elements in terms of tensor SHs.
The Slepian function based on Eq. (2a) which involves scalar SHs is:

i(n+1)(n+2)(R)M S g(n'+1)(n'+z)(fjm S [[22(0): 20 (0)] do

_ r _ P
n=0 m=-n m'=—n 5

S =

© 2n+6
47[2(n+l)2 (n+2)2 (Rj z v
n=0 r m=-n
(8a)
A spherical Slepian function can be found based on Eq. (2b) based on vector SHs:

© R n+3 © ' R n'+3 N
z;(n+2)[rj AL +2)[rj 3 v [[22(0) 222 (@) o

= , (8b)

0

47> n(n+1)(n+ 2)2 (RJZM mzn_:n Vo,

n=1 r

and for Eq. (2¢) the Slepian function will be:

© n+3 o n'+3 " .
(4 S5 £ v fizio) 22 0)] e

§= - . (8¢)

4ﬁz(n_1)n(n+1)(n+z)(RjM pors

n=2 r

The denominators of Egs. (8b) and (8c) are obtained by taking the global average of
Egs. (2b) and (2¢) considering the norm of tensor SHs; see Appendix A. Three SRIs
are seen in the numerators of Egs. (8a)-(8c). The surface integral of Eq. (8a) is the
SRI product of two scalar SHs. Equations (8b) and (8c) involve the SRI products of
two vector and two tensor SHs, respectively. The solutions of these SRIs are the
most important step of spatially localization of the gravitational signal in the
gradiometric BVPs.

4. THE SPATIALLY RESTRICTED INTEGRALS

In this section we formulate the SRI products of the scalar, vector and tensor SHs. To
do that, the following lemmas are introduced and used in our mathematical
derivations.
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Lemma 1 (Ilk 1983, Eq. Z.1.44):

a(/[;—;m:arllmpn,m—l +a5mPn,m+l H
where
a = (n +m)(;1—m +1) and a’ =-—.

Lemma 2 (Ilk 1983, Eq. Z.1.41):

mpﬂzb1 P +b2: P

Sint9 nm™ n—1,m-1 nm”* n—1,m+1°
where
+ +m—1
pr L m)(n+m 1) andb> =~ m=0
2 2
Note: if m=0,b =b2 =0.
Lemma 3 (Ilk 1983, Eq. Z.1.42):
ml_)%:b”P L bR m# 0
SlIlH nm™ n+l,m nm™ n+l,m+
where
-m+1)(n—-m+2
T Ul )2(” "*2) and b =%.

Note: if m=0, b" =b" =0.

4.1 SPATIALLY RESTRICTED INTEGRAL OF TWO SCALAR
SPHERICAL HARMONICS

The scalar SHs are special cases of tensor SHs and the SRI of two scalar SHs. Based
on Eq. (1b), is:

A2

[[2 (0120 (0)] do = [oa [r.cn.snoao. o
o g 6

where Am=m'—m" .

The performance of integration with respect to A is easy. The solution of the
second integral which is a SRI product of two ALFs needs more consideration. The
SRI (9) can be performed in an arbitrary geometry of o, by dividing the integration

domain into small elements. The product of two ALFs can be written in terms of one
ALF and the Gaunt coefficients (see e.g. Xu 1996):
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n'+n"
_ nm
Pn'm’Pn”m” - Z Qn’m'n”m”an . (10)
n=ln'—n’"|
The Gaunt coefficients Q)7 .. are non-zero if |n'—n"| <n<n'+n" and

m=m'+m". There is a challenge among mathematicians to find a relevant
algorithm to speed up the Gaunt coefficients generation; see for example Xu (1996)
and Sebilleau (1998). A brief definition of the Gaunt coefficients are given in
Appendix B.

Substituting Eq. (10) into Eq. (9) reads:

i(emml‘ _ itk ) wn’

(2, (0):[ 28, (0) | do = ) Q:;:rnumrrgzjam sin@do. (1)
o n'- 6,

Am

|
n= n ‘

The solution of the integral of ALFs which is in the right hand side of Eq. (11) is
rather easy and a recursive formula was presented by Paul (1978) for that

4.2. SPATIALLY RESTRICTED INTEGRAL OF TWO VECTOR
SPHERICAL HARMONICS

The Slepian function of Eq. (8b) involves the integral products of two derivatives of

ALFs and two ALFs divided by sin’ @ . In this subsection we prepare some necessary
formulas in Propositions 1 and 2 and after that we will formulate the SRI of vector
SHs.

Proposition 1

n'+n"
0Py P _ " m
89 89 - n'm'n"m"" nm >
n:‘nlfrl”‘

where
|n'—n"| <n<n'+n"
1 1 nm ! "
2 T2 Y O A m=m+m"-2
Knm _ al a2 Qnm +a2 al Qnm m = m,‘i‘m”
n'm'n"m" n'm'“'n"m"Zn' ,m'-1,n",m"+1 n'm' " 'n"'m"Zn' ,m' +1,n",m" -1 -
2 2 nm ' "
2 N7 Y O IR m=m+m+2

Proof. According to Lemma 1 we can write

oP, . oP, .

YREY, =(al P +a> P, )(al,, P

n'm'" n' m'-1 n'm'" n' m'+1 n"'m"" n" m"-1

+ P ) (12a)

n"m"" n" m"+1

Expanding the right hand side of Eq. (12a) considering Eq. (10) yields:
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n'+n"
a])n'm' aPn"m" _ 1 al Z Qnm P +
ae 89 an'm' n"'m" n',m'=1,n",m"-1" nm
el —n"

oon

n'+n" n'+n
1 2 nm 2 1 nm
+an'm'an"m” Z Qn’,m'—l,n",m"+anm +an'm'an"m” z Qn',m’+],n",m"—lpnm +
n=n'-n" n=n'-n"
n'+n"
2 2 nm
+an'm'an"m" Z Qn',ln'+l,n",m"+lpnln . (12b)
n=\n'—n"
After simplifications we obtain:
oP, . OP ey
n'm' n'm" __ 1 1 nm 1 2 nm
—nm __nm Z (an,m,an,,m"Qn,,m,fl’n"’m,,f1 + an,m,an,,m,,Qn,’le,n”,m” gt
00 00 L
+a’, a', O +a’ a’, Q" P (12¢)
n'm"™n"'m"=< n' m'+1,n" ;m"-1 n'm"™n"'m"=< n' m'+1,n" ,m"+1 nm *

The Gaunt coefficients are non-zero for the orders which are equal to the sum of the
orders of the first and second ALFs. Therefore if in the right hand side of Eq. (12¢)
the Gaunt coefficients of the first term are non-zero then those of other terms are.
This holds for the last term as well. If the second and third terms are non-zero then
the first and last terms will be zero. Consequently it is convenient to write Eq. (12¢)
as the equation presented in the proposition.

Proposition 2

n'+n"+2
Pn’m’ Pn”m" _ l“V )nm

- 1 = v=1,2,30r4
sinf sind

oronow T onm 2
n'm'n"m

:n'fn"72‘
where
|n'—n" <n<n'+n"-2
1 1 nm _ ' "
B0yt ot m=m'+m"—-2
)" A 2 nm 2 g1 nm o "
(r )n/mrnnn1n - bn’m’bn”m”Qn’—l,m’—1,n”—1,m”+l +bn'm’bn"m”Qn'—l,m’+1,n"—1,m"—1 m=m +m ’
2 2 nm _ ! "
bn'm'bn"m"Qn'—l,m'+l,n"—1,m"+l m=m'+m"+2
or
|n'—n”+2| <n<n'+n"
r1 1 nm _ i "
DD i D et 4t m=m'+m"-2
2\ _ r1 2 nm 12 1 nm _ ' "
(F )n’m'n”m" - bn'm'bn”m"Qn'H,m'—l,n"—l,m"+1 +bn'm'bn"m"Qn'+l,m'+l,n"—l,m"—l m=m +m >
2 2 nm _ i "
bn'm'bn”m"Qn'Jrl,m'+1,n”—1,m"+1 m=m +m +2
or

|n’—n"—2|<n <n'+n"
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1 r1 nm _ ! "_
DD Oyttt m=m'+m" -2
3\™ _ 1 12 nm 2 1 nm _ i "
(F )nrrn/nrrmrr - bn’m'bn”m”Qn’—l,m'—1,n"+1,m”+l +bn'm’ n"m”Qn’—l,m'—1,n”+1,m"—1 m=m +m b
2 12 nm _ ’ "
Db O ittt m=m'+m"+2
or
|n'—n"| <n<n'+n"+2
r1 r1 nm _ i "
DBy ottt m=m'+m"—2
4\ _ 11 2 nm 2 11 nm _ ’ "
(r )nllnlnllmﬂ - bn'm' n"m"Qn'+l,m'—1,n"+1,m"+] +bn'm' n”m”Qn'+],m'+1,n"+1,m"—l m=m +m
12 12 nm _ ! "
bn'm' n'm "Qn'+l,m'+l,n"+1,m"+1 m=m'+m"+2

Proof. According to Lemma 2 we can write

P

n"-1,m"-1

ﬁﬂ_(bl P

2 1
. . “\"u'm' "t n'-1,m' -1 + bn’m'ljn'—l,m'H )(b
sin @ sin &

n"'m"

+ bj"m"ljn"—l,mul ) ’ (133)

after expanding Eq. (13a) considering Eq. (10) we obtain:

P P n'+n"-2
wmt Lt 11 1 m
. . - bn’m’bn"m" Z Qn'—l,m’—l,n”—l,m”—lem +
sin & sin & Pt
n'+n" n'+n"
1 2 nm 2 1 nm
+bn’m’bn”m" Z Qn’—l,m’—l,n"+1,m”+1an +bn’m’bn”m” Z Qn’+l,m’+1,n”—1,m”—1an +
n:n'—n”—Z‘ n:n'—n"+2‘
n'+n"+2
2 2 nm
+bn’m’bn”m" Z n’+1,m’+l,n"+1,m”+lpnm . (13b)

n=n"—n"

Finally we obtain:

n'+n"+2
Po Prw _
siné sin @ n=ln'=n"-2|

+b2 bl QM +b2 b2 O™ )P, . (13d)

n'+l,m'+1,n"-1,m"-1 n'm'~ n"m n'+l,m'+1,n"+1,m"+1

1 1 nm 1 2 nm
(bn'm'bn”m"Qn'—l,m'—l,n"—l,m"—l + n'm’ n"m"Qn'—l,m'—l,n"H,m"+1 +

Similar expressions can be made as that presented at the end of the proof of
Proposition 1. Here we just considered Lemma 2 in our derivations but other
combinations can be used as well. Here we presented the final results in the

and (T*)"  will be obtained

"n
n

m

proposition. If Lemmas 2 and 3 are used (Fz)n

m'n"m"

and (F4) . 1s derived when just Lemma 3 is used.

nm
oo
nmnm

Now, we return to formulation of the SRI of two vector SHs presented in Slepian
function (8b). According to Egs. (4a) and (4b) we can write:



! [20).(0):[ 20, (0)] do = J (£, (Q) B}, (0)+ i () Fe (0) Mo

(14a)
As is observed, Eq. (14a) consists of two parts. After simplifications and integration
with respect to 4, the first and second parts are:

zAm/lz etAm/I1 0, aP

a n"m"
”E )dO'— ~ J 60 Y sin 6d6 (14b)

_mm' (& ) Py By
J.J. Forut Q)da iAm ; sin@ sin@ Sin 0.

(14¢)
Substituting Egs. (14c) and (14b) into Eq. (14a) with considering Propositions 1 and
2 reads:

i(eiAmﬂl _ eiAmﬂQ ) Wen42

22 (0):[ 20 (0) [ do="——t 37 [ (1) +K i

n:‘n'—n”—Z‘

x [P, sin0do. (14d)

In Eq. (14d) one may say that the summation is performed from |n'—n”—2| to

nm
n'+n"+2 for (FV) .. and it is inonsistent w ith those of K., .. However
nmnm

n'mn'm"

since K" . , is non-zero when |n '—n "| <n <n'+n" therefore one should not worry

n'mn"m"

about this issue.

4.3. SPATIALLY RESTRICTED INTEGRAL OF TWO TENSOR
SPHERICAL HARMONICS

The Slepian function of Eq. (8c) involves two complicated SRI products of two
tensor SHs. Their formulations will not be as easy as those were for the vector SHs.
This subsection will simplify some necessary products in Propositions 3 and 4 and
after that it willformulate the SRI product of two tensor SHs.

Proposition 3

62an 8Pn’m’ 2 Pn'm’ 82Pn"m" a])n"m" "2 Pn"m”
—z—coté’ +m'T ——cot6 +m" o | =
06 06 sin” @ 06 06 sin” @

n'+n"

_ nm
- Z Qnmnm le ’

n:‘n’ n ‘

where
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1 1 nm . "
CormCotm Dot 2.2 m=m+m"—4
cl c2 Qnm +02 cl Qnm m= ml+mn_2
wm Cnr =2 " o Cori o =2 =
2 2 nm 1 3 nm
o Corm ot Domtnm F Cormt o Do o2t w2 T
n'm'n"m" 3 1 nm — "
+ cn,m,cn,,m,,Qn,’m#z,,,,m,,f2 m=m+m

2 3 nm 3 2 nm Y "
Corm o Drimnt mrsz F Cotny Corr O e mM=m+m"+2

n',m'+2,n"m

3 3 nm Y "
Corm ot Doy ot 2.0t w2 m=m+m +4
Proof. According to Eq. (4c) we can write

o’P,,. oP,. ., P.. |\ 0P, OP,. . P..
— - —cotd—""-+m" — S-—cotd—""—+m" | =
00 00 sin” & 06 00 sin” @

2 3 1 2 3
Py P Py P ey € i P +C P

n
P..+c' ¢’ P P
P

P +

n'm'" n" m"+2

n'm'

1
={c
1 1 1 2
=C i Cprm P, P ¥ConConP

n'sm'=2" n n';m'-2

2 1 2 2 2 3
FC i Cowim oy Pt 72 FC oy C gt P P € €1

non
m

+

300 32 303
FCmC o P2 P2 T o C Pt iria Pt - C o ot P ia P (15a)

According to Eq. (10) and after further simplifications we obtain:

82Pn'm' aI)n'm' 2 Pn'm' 62Pn"m" a})n"m" "2 Pn"m”
—2—00t9 +m " > —cot@—2" +m 5 o |=
0 00 sin” @ 00 00 sin” @

_ 1 1 nm 1 2 nm 1 3 nm
= E (cn,m,cn”m”Qn,,m,fzm”m,_2 F Coim ot Doyt -2 mm® FCntmr Corn Qo2 w2 T

n=\n"-n"

nm

2 1 2 2 nm 2 3 nm

FCmC i mnt -2 FCmC o™ mnm® FCom i it 12 +

+c ¢, .o +c el O +c’ el O P .QE.D
n'm™ n'm"<Zn' \m'+2,n" ,m"-2 n'm™ n'm"Zn',m'+2,n"'m" n'm"™ n'm" nm T

n',m'+2,n",m"+2
(15b)

Proposition 4

8 Pn’m, i Pn”m” B n'+n"+2 N
20\ sin@ )00\ sing ) >, ()

P ,v=12,30r4
nmnm

n:‘n’—n"—Z‘

where

|n'—n" <n<n'+n"-2




or

or

or

1 1
dn 'm 'dn "m ”Q
d', d> .0

nm

2 2
d2, d>, .0

2 3
dn 'm 'dn "m ”Q
d. d. .0

nm

r1 1
d' d!. 0

1 2
d" d> .0

2 2
d? d> 0

12 3
d?.d> 0
3 3
d? d’. 0

1 1
d,d 0

1 2
d,d> .0

2 12
d> d"? .0

2 13

n'm"

3 3
d’,.d" .0

m

1 1

n'm'

1 1?2
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i(%ji(%j:{d;'m'ljn'—l,m' 2+dnzm n'=l,m' +d3m n' lm+2}><
00\ sinf )06\ sinf

{dl “Lm" 2+dnz"m” +d3m n"—Lm" +2} (16a)

After expansion and simplifications we have:

i P, i P..\_
00\ sin@ )00\ sinf

n'+n"-2

_ 1 1 nm 1 2 nm 1 3 nm
- z (dnm dn m" Qn',m'—Z,n",m” 2 + dn m' dn "m" Qn',m'—Z,n"m +dnm dn m" Qn',m'—Z,n",n1"+2 +
n=jn'=n'|
+d2 dl Qnm +d2 d2 Qnm +d2 d3 Qnm +
n'm n'm'n",m"-2 n'm'™" n"m n'm'n'm" n'm n'mn",m"+2
3 1 nm 3 2 nm 3 3 nm
+dn’m 'dn"m ”Qn',m’+2,n",m" 2 +dn ‘m dn "m Qn',m'+2,n”m " +dn'm'dn"m'Qn m'+2.n" m"+2 ) (16b)

Simplification of Eq. (16b) delivers (Al)nm .. Here we proved the proposition

oo
nmnm

according to Lemma 2. If we consider Lemmas 2 and 3 we can obtain further

and (A3)nm, ., respectively. If

n'm'n"m

combinations which will be simplified to (Az)

n'm'n"m"

just Lemma 3 is considered we will obtain (A4)

nmnm

The SRI of two tensor SHs in Eq. (8¢) can be rewritten by:

[25,.(0):[ 20, (©)]do = [[[G i (Q)Gro (Q)+ H 1, (Q) H e (Q) Hor - (172)

()} 90

It is straightforward to show that

eiAmﬂQ _eiAmﬂ,l 0, 82 a P, ’
Gy ()G (0)dor = cot gy >t
J.J- n'm nm Q) o iAm .[( aez 69 o Sinzejx
2
aizm_c “98P "+ m" P”;" sin 8d6 (17b)
06 06 sin” @
and
Am'm !I( iAmﬂz_eiAmﬂ,l)gz o (P a(P
H,,(0)H.,.(Q)do = | | = |sin0d).
ﬂ o (Q)H,, (Q)do iAm J@@(sin@j@&(sin@jsm

(17¢)

According to Propositions 3 and 4 and after further simplifications of Egs. (17b) and
(17¢) and substituting the results into Eq. (17a) yields:
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l-(eiAm/L] _ eiAmJQ ) a2

125 (0):[20,(0) ] do = =— > |amr(A) v |

n=‘n'—n"—2‘

6,
x [P, sin0d6. (17d)
o
Similar explanation for consistency of the summation limits of (AV )”m and

[N
nmnm

Q"' . . can be made as that stated at the end of the proof of Proposition 3.

nmnm

5. SUMMARY

The spherical Slepian function can be used to locally concentrate the solutions of the
gradiometric boundary value problems and maximize the signal energy in the desired
area. The numerators of the Slepian functions (8a)-(8c) involve SRI products of
scalar, vector and tensor SHs, which have complicated forms. This paper provided
some necessary products in similar and simple mathematical forms in Propositions 1
to 4; and used them to find a simple mathematical solution for the SRIs of scalar,
vector and tensor SHs in terms of combinations of the Gaunt coefficients and
integrals of ALFs.
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APPENDIX A: TENSOR SPHERICAL HARMONICS

Any second-order symmetric tensor V(P ) whose components are square integrable

functions can be expanded in a series of the tensor SHs fon), (P), t=1,2,3,...,6as
(Martinec 2003):

Z Z Zv “zZO (P (A.1)

n=0m=—n t=1

(f)

where v, ' are the expansion coefficients which can be obtained using the application

of the orthogonality of Z! ) (P) (Martinec 2003):

Hz ):[ 2. (P)] do= 47z[N<’)} 8,8, 5y (A2)

nn'Ymm' i’ 0

where
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1 t =1

1
—n(n+1 t=2
5 (n+1)

= , (A3)

Ny 077 220 =Dn(r D +2) t=3
[ ] 2n*(n+1)° { =4

1
—n(n+1 t=5
5 (n+1)

2(n —Dn(n+1)(n+2) t=6
1s the square norm of base functions fo,l (P), the colon denotes the double-dot

product of the tensors, ¢ is the unit sphere of integration, do is the integration
element and * is the complex conjugate operator.

Equation (A.l) is very similar to the well known SH expansion; the main
difference is related to the fact that it presents similar harmonic expansion for tensor
fields. However the base functions of Eq. (A.1) are not as simple as the scalar SHs.

Note that in the case where 7 = 1 the tensor SHs of Zf:,l (P) is the same with scalar

SHs Y, (P).

nm

APPENDIX B: THE GAUNT COEFFICIENTS
The Gaunt coefficients have the following relation with the Clebsch-Gordan
coefficients (Xu 1996):

n'+m\Wn"+m")(n—-—m)!
Q:”:qn'n”m” =\/En,—m';!gn"—m";!gn +m;!C::;'n”m"C:r(0)n"0’ (B'l)
where
() | " (B.2)
n'm'n"'m" m, m” —m 5 .

are the Clebsch-Gordan coefficients related with the Wigner3j coefficients
(Varshalovich et al. 1989) showed in Eq. (B.2) by parenthesis. If we require product
of two fully-normalized ALFs it is enough to replaced the non-normalize functions
by the fully-normalized one and considering their normalization factor. In this case
the Gaunt coefficients will have the following relation with the Clebsch-Gordan
coefficients:

Q_;“Z'nw\/(zn +1)(2-3,,) (20" +1)(2=8,,) o B3

(2n+1)(2_§m0) ~n'mn'm"™ n'0n"0 *
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