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ABSTRACT. One of the aspects of geopotential models is orbit integration of 
satellites. The geopotential acceleration has the largest influence on a satellite with 
respect to the other perturbing forces. The equation of motion of satellites is a second-
order vector differential equation. These equations are further simplified and 
developed in this study based on the geopotential force. This new expression is much 
simpler than the traditional one as it does not derivatives of the associated Legendre 
functions and the transformations are included in the equations. The maximum degree 
and order of the geopotential harmonic expansion must be selected prior to the orbit 
integration purposes. The values of the maximum degree and order of these 
coefficients depend directly on the satellite’s altitude. In this article, behaviour of 
orbital elements of recent geopotential satellites, such as CHAMP, GRACE and 
GOCE is considered with respect to the different degree and order of geopotential 
coefficients. In this case, the maximum degree 116, 109 and 175 were derived for the 
Earth gravitational field in short arc orbit integration of the CHAMP, GRACE and 
GOCE, respectively considering millimeter level in perturbations.  
 
 
Keywords: Geopotential, orbit integration, average power acceleration, orbital 
elements 
 
1. INTRODUCTION 
The spherical harmonic expansion is a mathematical tool for approximating the 
Earth’s gravitational field. The harmonic coefficients of this expansion can be 
determined in various ways, say, by using terrestrial and/or satellite data. Only the 
long wavelength structure of the Earth’s gravitational field can be determined by the 
satellites, because of attenuation of the gravitational signal due to the satellite altitude. 
Different satellite missions have been dedicated for such aims. The last three satellite 
missions are CHAMP (Challenging Minisatellite Payload) [Reigber et al., 1999 and 
2004], GRACE (Gravity Recovery and Climate Experiments) [Tapley et al., 2005] 
and upcoming GOCE (Gravity Field and Steady-state Ocean Circulation Explorer) 
missions [ESA, 1999, Albertella et al., 2002, Balmino et al., 1998 and 2001]. The 
CHAMP mission was designed based on satellite-to-satellite tracking and analysis of 
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the precise orbit of the satellite for recovery of the gravitational field. The GRACE 
mission is a common project between US and Germany and in this technique low-low 
mode of the satellite to satellite tracking (SST) are used as space gradiometry. The 
GOCE mission was dedicated to be launched and in this satellite mission the space 
gradiometry technique is used as well. The GOCE mission is considered to be the first 
gradiometric mission although there is a concept for the GRACE satellites as a large 
one-dimensional gradiometer. 
 
      Satellite orbit analysis is a well-known technique for gravitational field recovery 
cf. e.g., Kaula (1966), Visser (1992), Sneeuw (1992). It is important to consider that 
although the satellite gradiometry techniques [Rummel et al., 1993, Keller and Sharifi, 
2005, Sharifi, 2006] are used in two last missions, the satellite’s orbit should be 
determined as precise as possible so that the extracted perturbations can be analyzed 
without worrying about biases in the solution. The precise orbit determination (POD) 
[Su, 2000 and Wolf, 2000] can be done in different ways, such as Kinematic POD, 
dynamic POD, reduced dynamic POD, etc; see e.g. Rim and Schutz (2001).  In this 
paper we concentrate on orbit integration [Eshagh, 2003a and 2003b] which is the 
prediction part of the orbit in the dynamic POD.  Numerical integration of the orbit 
has some benefits with respect to analytical one [Kaula, 1966], as it is not restricted to 
the mathematical models of the perturbing forces.  For details of the algorithms; see 
e.g. Su (2000), Wolf (2000), Eshagh (2003a and 2005) and Sharifi (2006), Eshagh and 
Najafi-Alamdari (2005a, 2005b, 2006 and 2007).  
 
      The equation of motion of satellite is a second-order vector differential equation 
and the satellite acceleration vector is integrated twice to obtain the vector of 
velocities and positions. Integrating the equation of motion once yields a velocity 
vector (and three unknowns), integrating it twice results in a position vector (six 
unknown integration constant). The traditional expression for the vector differential 
equation of satellite’s motion is complicated as it includes partial derivatives of the 
spherical coordinates with respect to Cartesian coordinates, derivative of associated 
Legendre functions (ALF) and singular terms when satellite approaches the poles 
(near polar satellite). The satellite acceleration is a summation of different 
gravitational and non-gravitational accelerations, but the largest perturbation is due to 
the geopotential field. In this study we concentrate on the geopotential force and 
simplify the vector differential equation of motion of satellite so that it excludes the 
mentioned complications. This paper continues the previous studies of the authors and 
also considers the behavior of the orbital elements in each degree of the geopotential 
field in the recent satellite missions CHAMP, GRACE and GOCE.  
 
     In the next section, we present the traditional expression of satellite’s equation of 
motion. In Section 3 we derive a new expression for equation of motion and Section 4 
presents an alternative non-singular expression. Section 5 deals with the system of 
equation to be integrated. In Section 6 the average acceleration power of the 
gravitational vector is considered to determine maximum degree of geopotential 
expansion needed for orbit integration. In Section 7 a numerical study on the orbital 
elements are presented and the paper is ended with conclusions in Section 8. 
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2. TRADITIONAL EXPRESSION OF EQUATION OF MOTION OF  
SATELLITE 
The gravitational field of the Earth can be approximated by a truncated series of 
spherical harmonics [Heiskanen and Moritz, 1967]: 
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where, GM is the geocentric constant,  R is the radius of the mean sphere of the Earth, 

nmu  is the co-sine and sine geopotential coefficient when m �   0 and m > 0, 
respectively. n mP  is the fully-normalized ALF of degree n and order m,  r, � , �  are 

the spherical  Earth-fixed  coordinate of the satellite at point P and  
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          (2) 
Transformations of these triple parameters r, � , �  to the Cartesian quasi-inertial 
coordinates of x, y, and z are: 
 

    
2 2 2r x y z� � � ,                 (3a) 

� �2 sinarc z r� �� 	 ,                 (3b) 

 � �tanarc y x� � 	� .                           ( 3c) 
 
where �  is Greenwich apparent sidereal time. The partial derivatives of these 
curvilinear and Cartesian coordinates is:  
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where, ir , i=1, 2, 3  stand for x, y and z, respectively. Now the derivatives of potential 
U(P) with respect to spherical coordinates must be derived. These derivatives are 
well-known for details see, e.g. Parrot (1989), Santos (1994) and Hwang and Lin, 
(1998). According to Hwang and Lin (1998) the satellite acceleration can also be 
expressed in the quasi-inertial frame using the following transformation (neglecting 
precession, nutation and polar motion but for actual orbit analysis one cannot neglect 
these effects): 
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The traditional expressions for the elements of gravitational vector in geocentric 

Earth-fixed frame are: 
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Non-singular expressions for the elements of the gravitational vector are given by 
Eshagh (2008a). Equation (5) is the differential equation of satellite’s motion. This 
equation is involved with derivatives of the curvilinear coordinates. Therefore the 
second-order derivatives of the gravitational potential will have a complicated form 
for each element of the acceleration vector. In the following section an attempt is 
made to simplify this differential equation further.   
 
3. NEW EXPRESSIONS FOR EQUATION OF MOTION OF 
SATELLITE 
As it was shown in previous section, to carry out the integration steps of satellite orbit 
in the quasi-inertial frame while the geopotential model (e.g., EGM96, Lemoine et al., 
1996) as the source of geopotential is given in an Earth fixed (non-inertial) curvilinear 
coordinates system, one has to transfer the satellite position from the inertial frame to 
the Earth fixed frame, for the acceleration computation out of the Earth gravitational 
model. This requires the Cartesian and Curvilinear coordinates of the satellite to be 
computed in both the quasi-inertial and the Earth fixed frames.  
 
      Similar to the previous section we can write the following transformation for the 
satellite’s accelerations in a quasi-inertial frame, but this time we change the 
transformation matrix from Cartesian to curvilinear form: 
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where �� � � � �  as defined previously. By inserting the components of the 
gravitational vector Eqs. (6a)-(6c) into the Eq. (7) and after simplifications we obtain : 
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where 
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Equations (9b)-(9d) were given by Eshagh (2008a, Proposition 3), nmf and nmg are 
derived based on normalizing Lemma 5 using Eq. (11), which will be presented later. 
It should be mentioned that the order m is a part of nmf , nmg , � �nmF � and � �nmG � . 
Now an attempt is made to simplify these coefficients further. For presenting our 
mathematical derivations we define the following lemmas.  

 
Lemma 1 [Ilk 1983, Eq. (Z. 1.43)]: 
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Lemma 2 [Ilk 1983, Eq. (Z.1.37)]: 
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Note: these relations only hold for non-normalized ALF. 
 
Proposition 1: 
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Proof. By multiplying Lemma 2 by (n+1) and adding to Lemma 1 we obtain : 
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by considering normalization factors  
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By normalizing Eq. (10) based on Eq. (11) and after further simplifications 
Proposition 1 is proved.  

 
Corollary 1 The satellite acceleration in z-direction in the quasi-inertial frame is: 
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Here, the result follows by considering and re-substituting the results of Proposition 1 
into Eq. (8c). 

   
For simplifying the co-latitude dependent parts of Eqs. (8a) and (8b), we start our 

mathematical derivations by the following lemmas. 
 

Lemma 3 [Ilk 1983, Eq. (Z.1.44)]: 
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Lemma 4 [Ilk 1983, Eq. (Z.1.40)]: 
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Lemma 5 [Ilk 1983, Eq. (Z.1.42)]: 
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Note: all relations hold for non-normalized ALF. 

 
Proposition 2: 
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Proof. We have to derive a relation for cos n mP
�

�

�

�
. In this case let us differentiate 

Lemma 2 with respect to �  (co-latitude) 
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considering Lemma 3 for the derivatives of the unnormalized ALF and inserting them 
in Eq. (12) we finally obtain 
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by taking sin n mP�	 into the right hand side of Eq. (13) and considering Lemma 4 we 

obtain:                                                           
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Multiplying Lemma 4 by –(n+1) and adding to Eq. (14) we have 
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The proposition is proved by normalizing Eq. (15) and considering Eq. (11) as the 
normalizing factor.  

 
Corollary 2 The satellite acceleration in x- and y-directions of the quasi-inertial 
frame are: 
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The corollary follows by inserting Proposition 2 into Eqs. (8a) and (8b) and 
considering Eqs. (9a) and (9b). It should be emphasized that nmf and nmg are derived 
based on normalizing Lemma 5 using Eq. (11), see e.g. Eshagh (2008a, Proposition 
3). 
 
Note: For the zonal terms of satellite accelerations presented in Corollary 2, 

� � 0nmG � � , i.e. the second term in both equations of Corollary 2 will vanish.  
 
      We have presented the elements of the satellite acceleration vector in Corollaries 1 
and 2. It is obvious that the presented formulas are very simple to use as there is 
neither first- and/or second-order derivatives of the ALF nor singular terms. Also the 
formulation inherently includes necessary transformation. The satellite’s acceleration 
in x- and y-directions, which were presented in Corollary 2 can also be further 
simplified. In the following section we present alternative formulas for these 
accelerations. 
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4. ALTERNATIVE NON-SINGULAR EXPRESSIONS FOR EQUATION OF 
MOTION OF SATELLITE 
In the previous section we obtained non-singular expressions for the satellite’s 
accelerations in a quasi-inertial frame. We can also further simplify the relations 
presented in Corollary 2 considering some trigonometric simplifications. The result of 
these simplifications is: 
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It should be mentioned again that � � 0nmG � � for the zonal terms and Eqs. (16a)-(16d) 

can further be simplified. We have added m m in our formulation in Eq. (16b) to 

keep the right sign for � �� �1mQ m� � � � , when m is negative a minus sign (-) 

appears by multiplication of -1 to this coefficient, and when it becomes positive, a 
plus sign  (+) appears instead.  
 
Equations (16a) and (16d) contain two terms � � � �� �nm nmF G� �	 and 

� � � �� �nm nmF G� ��  , when m < 0 and m  > 0, respectively, and they are simplified in 
the following propositions.  
 
Proposition 3: 
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Proof. By considering Eq. (15) and Lemma 5 we obtain after simplification: 
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and the proposition is proved by normalizing Eq. (17) using Eq. (11). 
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Proof. Again by considering Eq. (15) and Lemma 5 and after simplification we 
obtain: 
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and the proposition is proved by normalizing Eq. (18) using Eq. (11). 
 

Note: For m=0 terms the third term in the first square bracket of the nma& , nmb & , nma&&  
and nmb &&  coefficients presented in Propositions 3 and 4 vanish. In other words, 

0 0 0n n na a a&& &� �  and 0 0 0n n nb b b&& &� � . 
 

Corollary 3 The satellite acceleration in x- and y-directions of the quasi-inertial 
frame based on Eqs. (16a) and (16b) and Propositions 3 and 4 are: 
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The advantages of our new expressions are to exclude singular terms, derivatives of 
the ALF and simplicity because of having same type of the coordinates for the same 
point at satellite level. All the coefficients of the ALF 
( nma& , nmb & , nmc & , nmd & , nma&& , nmb && , nmc && and nmd && ) are constant and do not change by satellite’s 
position. The ALF are needed to be computed once for each position of the satellite.  
 
5 NUMERICAL ORBIT INTEGRATION 
Equation (5) shows the three differential equations to be solved. Numerical 
integration is the simplest and most efficient technique for the solution. The Runge-
Kutta [Babolian and Maleknejad, 1994, Eshagh 2003a, Eshagh and Najafi Alamdari, 
2006] is one of the well-known single step methods of numerical integration. Adams-
Bashforth and Adams-Moulton [Babolian and Maleknejad, 1994], also Störmer-
Cowell [Santos, 1994] algorithms are two well-known methods of multi-step 
integration.  Step-variable methods can also be used for integration; see Eshagh 
(2005). The orbit integration in different frames is given by Eshagh (2009b). Some 
details for the benefits of the reader about orbit integration are given in Appendix A.  
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6. AVERAGE POWER OF ACCELERATION AT SATELLITE 
ALTITUDE 
Depending on the satellite’s altitude, the maximum degree maxN , in the spherical 
harmonic expansion is considered as a cut-off degree. This is due to the factor 
� �2nR r in these equations that attenuates the magnitude of the satellite acceleration 
and due to the asymptotic decrease in nmu coefficients. The average power of the 
satellite’s acceleration was investigated by Hwang and Lin (1998). This power can be 
written in terms of the degree variance of the gravitational field as [Hwang and Lin, 
1998]: 
  

                                   
� �� �

2 2
2

2
2

1 2 1
nk n

k nm
n m n

GM RP n n u
R R� �	


 � 
 �� � ��  � & &� � � �
� � ,                    (19) 

 
where R &  is approximately equal to the Earth's mean radius plus the satellite mean 
altitude. With specific error tolerance the cutoff degree can be determined by 
comparing the power of acceleration up to the cutoff degree and the “total” power of 
acceleration which can be obtained by an expansion to a very high degree maxN . 
Currently equal to 2160 is the highest possible degree but at satellite level such high 
degree geopotential model does not make sense. In order to determine the highest 
useful degree one may compute the relative power up to degree k 
 

                                                             max

k
k

N

P
P

' �  ,                           (20) 

 
we should have 1k' (  or � � 141 10k' 		 ) for the k to be the cut-off degree.  
 
   Based on the average acceleration power of the satellite, Eq. (19), and the criterion 
mentioned above (Eq. 20), the cut-off degree of the spherical harmonic expansion of 
the gravitational field for integrating the orbit of the CHAMP, GRACE and GOCE 
satellites are obtained 154, 137 and 261, respectively.  
 
7. NUMERICAL ESTIMATION OF SATELLITE ORBIT 
The perturbations of the orbital elements are enlarged by decreasing the satellite’s 
elevation. The approximate magnitude of these orbital elements for the recent satellite 
missions are presented in Table 1. 

 
Table 1. Orbital characteristics of the recent satellite missions, CHAMP, GRACE and 

upcoming GOCE 
 

Orbital 
elements CHAMP GRACE GOCE 

a (metre) 6823287 6882043 6628281
e <0.004 <0.005 <0.001 

i (deg.)  87.3 89.05 96.6 
* (deg.) 144 74.51 0 
+(deg.) 257 68.35 0 
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The GRACE twin satellites have higher altitudes than the others, its orbit is more 
polar as its inclination is closer to 90 deg. The GOCE satellite has the most circular 
and inclined orbit. The current orbital elements of the CHAMP and the GRACE are 
available on http://www.gfz-potsdam.de/pb1/op/champ/ and 
http://www.csr.utexas.edu/grace/, respectively. Also the initial position and velocity 
of the GOCE were received by authors from ESA (European Space Agency) (Plank, 
personal communication) and converted to the orbital elements.  
 
      In order to study the behaviour of orbital elements due to different harmonics we 
need to integrate Corollaries 1 and either 2 or 3 numerically. Among the various 
techniques of solving the vector system of differential equations, the well-known 4-th 
order Runge-Kutta integrator was used in this study because of its simplicity. 
 
     The computational speed on the orbit integration process is directly related to the 
computation of the satellite accelerations due to different resolutions of the 
gravitational field. A double summation can be summed up using two loops in 
computer programming, but it is not the best way, in computational point of view by 
increasing maximum degree of the spherical harmonic expansion computational time 
is increased too.  In such cases, vectorization techniques are preferred. Sharifi (2006) 
and Eshagh (2009a) have also used this technique for global synthesis and analysis of 
the Earth gravitational field successfully.  
 
      We consider one day revolution of the CHAMP, GRACE and GOCE satellites to 
compare the behaviour of their orbital elements at each degree of the gravitational 
field. At first step maximum degree maxN  of the spherical harmonic coefficients of 
the Earth gravitational field were determined for each satellite using average 
accelerations power presented in Section 5. The integration performs maxN  times for 
computing the satellite state vector in each step. The state vector is converted to the 
orbital elements and the orbital elements due to the central (spherical) gravitational 
field are subtracted to obtain the perturbations. The following figures show the 
behaviour of orbital elements for each satellite with respect to different harmonic 
degree of gravitational field. In these figures we consider the maximum absolute 
value of the geopotential perturbation for a specific degree along the satellite motion. 
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Fig.1. Absolute maximum value of geopotential perturbation in one day revolution of 
satellites, (a) perturbation in semi-major axis, (b) perturbation in eccentricity, (c) 

inclinations, (d) right ascension of ascending node, (e) perigee argument, (f) mean 
anomaly 

 
Figure 1(a) shows the semi-major axis of the orbital ellipses of the recent satellite 
missions. The behaviour of the semi-major axis of the CHAMP and GRACE satellites 
are more or less the same as would be expected because of having close altitudes. 
However, in Fig. 1(a) one can see that the perturbation of these two satellites differs 
in some degrees. The perturbations of the CHAMP and the GRACE satellites in semi-
major axis are nearly in the same order up to degree 50 but they differ in higher 
degrees. Because of lower altitude of the GOCE than the other satellites the semi-
major axis of this satellite is more perturbed. It is perturbed more or less in the same 
order as the other satellites up to degree 30 but it differs. In order to see more details 
we can present the perturbations of the maximum degree on the orbital elements. A 
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maximum degree could be considered for specific level of perturbation in each 
element. The millimeter level has been considered in the perturbation of semi-major 
axis and 1 arc-second for the angular elements. The maximum degree is 116 to see 
perturbations in millimeter level in semi-major axis of the CHAMP; this value is 109 
and 175 for the GRACE and GOCE, respectively. The inclinations of the satellites are 
presented in Fig. 1(c).  The figure shows the small perturbations in the inclination. 
They are in the same order for the lower degrees up to 20 and decreasing to 1 arc-
second. In Fig. 1(d) the large perturbations in the right ascension of ascending node 
are decreasing fast. They decrease to 1 arc-second up to degree 40 for the GOCE 
while it is about 20 for other satellites. The interesting matter is to see small 
perturbations on the satellite’s orbit eccentricity, and this is why for dynamic orbit 
determination and analytical solution of the Earth gravitational field the satellite’s 
orbit is assumed circular. It expresses that perturbation in eccentricity does not play an 
important role in orbit integration and recovery of the geopotential coefficients as the 
orbits are more or less circular. The behaviour of the perigee argument and mean 
anomaly is larger in the GOCE than the other satellites as it is expected. The 
perturbations in perigee arguments and mean anomaly are up to same degree 83 for 
the CHAMP and GRACE while these are considerably perturbed (twice larger) in 
GOCE.  
 
      In comparison with average power of accelerations, 154, 137 and 261 in these 
satellites missions, we can say that these values are too optimistic and theoretical, and 
the above numbers discussed are also too pessimistic for the maximum degree of 
perturbations. We expect that these differences are due to the selection of short arc 
orbit in this study. As it is known now, the maximum degree of the spherical 
harmonic expansion of the geopotential considered to be determined by the orbital 
analysis of CHAMP satellite is about 119 which does not confirm with the average 
power and the number that we obtained. The gravitational field extracted from the 
GRACE mission is expanded up to degree and order 150; but it should be kept in 
mind that satellite gradiometric data of the GRACE mission helped the solution to 
derive higher degrees and orders. Perturbation analysis of the satellite’s orbit at 
altitude of the GRACE satellites cannot yield such resolution for the gravitational 
field from space. The maximum degree obtained using the average power of the 
acceleration for the GOCE is 261 but in this numerical study we obtain 175 based on 
short arc orbit consideration.  
 
 
8. CONCLUSIONS 
The newly presented expression for satellite acceleration computation in this paper is 
very simple for programming as it is not involved with the associated Legendre 
function derivatives and singular terms. However it should be mentioned that the 
singularity happens only for those satellites whose orbits inclined towards the poles. 
Since the GOCE orbit is away from the poles, the singularity is not needed to be 
considered. The coefficients of the associated Legendre functions in new expressions 
are constants and do not change by the position of a satellite and they should be 
computed once for all the integration process. The associated Legendre functions 
should be generated up to only two more harmonic degrees and orders in the new 
expression than in the traditional method. Another achievement is the capability of 
investigating perturbations of a satellite orbit parameters due to a single harmonic 
coefficient of the geopotential field during one day revolution of satellite. The average 
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acceleration power was considered for the recent satellite’s missions and the 
maximum degree of the spherical harmonic expansion are obtained 154, 137 and 261, 
for the CHAMP, GRACE and GOCE, respectively. The maximum absolute values of 
the perturbations of the orbital elements with respect to each degree of geopotential 
were computed by frequent integrating the satellites’ orbit and comparing with 
Keplerian orbit. The perturbations were visualized in some figures presenting the 
behaviour of the orbital elements clearly. As we expected the perturbations of the 
CHAMP and GRACE satellite are similar and the GOCE orbit is perturbed 
considerably larger than the others. The maximum degrees of the spherical harmonic 
expansion of the orbit integration procedure was obtained based on a predefined 
amount of the perturbations (millimeter level in this study).  This maximum values are 
116, 109 and 175 for the CHAMP, GRACE and GOCE satellites, respectively, which 
contradicts with the degrees obtained from average acceleration power because we 
have considered one day revolution of satellite in our investigations.   
 
APPENDIX A 
 
Schematically we can write the system of differential equation as: 
 
x x� �                              (A1a) 
y y� �                         (A1b) 
z z� �                      (A1c) 

� �4 , , ,x f x y z t� ,��                   (A1d) 

� �5 , , ,y f x y z t� ,��                          (A1e) 

� �6 , , ,z f x y z t� ,��                    (A1f)             
 
where, x� , y�  and z�  are the satellite’s velocities in the quasi-inertial frame. The 
functions 4f , 5f  are the formulas presented in either Corollary 2 or 3 and 6f  is 
Corollary 1. These equations can be solved by numerical integration algorithms. In 
this study we use 4-th order Runge-Kutta algorithm for solving the equation of motion 
of the satellite: 
 

1 11 21 31 41( 2 2 ) / 6i ix x k k k k� � � � � �                           (A2a) 

1 12 22 32 42( 2 2 ) / 6i iy y k k k k� � � � � �                                    (A2b) 

1 13 23 33 43( 2 2 ) / 6i iz z k k k k� � � � � �                                      (A2c) 

1 14 24 34 44( 2 2 ) / 6i ix x k k k k� � � � � �� �                          (A2d) 

1 15 25 35 45( 2 2 ) / 6i iy y k k k k� � � � � �� �                                     (A2e) 

1 16 26 36 46( 2 2 ) / 6i iz z k k k k� � � � � �� �                                     (A2f) 
 
The coefficients of jkk , j=1, 2, 3,  4 and k=1,2,…, 6 are presented. i is the epoch 
number.  
 
Generally, a higher order differential equations than first, is converted to a system of 
first order differential equations for the numerical solution; see Appendix B.  In orbit 
integration the numerical solution of this system of differential equation yields the 
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position and velocity of the satellite simultaneously in the next epoch of integration. 
For more detail see Appendix B. 
 
The coefficient of 4-th order Runge-Kutta algorithm for solving the system of 
differential equation of satellite motion Eqs. (A1a)-(A1f) 
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ix  , iy , iz , ix� , iy� and iz� are the three components of the position and velocity at 

reference epoch i, respectively. it, is the integration step size.  
 
APPENDIX B 
The solution of the higher order differential equation leads to a system of first order 
differential equations and this system of differential equations can numerically be 
solved. For an m-order differential equation we write

 
y=y(t), a t b� �                                                   (B.1)  
 
is the solution of the following m-order differential equation 
 

( ) ( 1)( ) ( , , , , )m my t f y y y t	&� �                    (B.2)
  

with the following initial values 
 

0 1( )y t -�  , 0 2( )y t -& �   ( 1)
0, , ( )m

my t -	 �� .              (B.3) 
 
A system of first order differential equations can be written:

 
1 2( ) ( ), ( ) ( ), ,y t v t y t v t&� � � ( 1) ( ) ( )m

my t v t	 �               (B.4)  
and  
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                                  (B.5)

is the system of m first order differential equations with the following initial values 
 

 

1 0 0 1

2 0 0 2

( 1)
0 0

( ) ( )
( ) ( )

( ) ( )m
m m

v t y t
v t y t

v t y t

-
-

-	

� �
&� �

� �

�
                           (B.6) 

 
The numerical solution of the system of differential equations by for example Runge-
Kutta is
 

( )n ny y t� , and            ( )n nz z t� ,                   (B.7) 
( , , )y f y z t& � , and       ( , , )z g y z t& � ,                           (B.8) 

 
and coefficients of the Runge-Kutta algorithm are:

 
1 ( , , )i i i ik f y z t t� ,              

1 ( , , )i i i im g y z t t� ,  

2 1 1( 2 , 2 , 2)i i i i ik f y k z m t t t� � � � , ,  
� �2 1 12, 2, 2i i i i im g y k z m x t t� � � � , ,

3 2 2( 2, 2, 2)i i i i ik f y k z m t t t� � � � , ,  
� �3 2 22, 2, 2i i i i im g y k z m t t t� � � � , ,  

4 3 3( , , )i i i i ik f y k z m t t t� � � � , ,  
� �4 3 3, ,i i i i im g y k z m t t t� � � � , ,

                     (B.9) 
and the differential equations are numerical solved by the following relations 
 

� �1 1 2 3 42 2 / 6i iy y k k k k� � � � � �                (B.10) 

� �1 1 2 3 42 2 / 6i iz z m m m m� � � � � � .              (B.11) 
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