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ABSTRACT. In a satellite gradiometry mission the observables will be the second order 
derivatives of the Earth potential in the local orbital reference frame. The conventional 
expansions for these derivatives contain singular factors. They depend on the functions of the 
orbit inclination I  and their first and second order derivatives. If the orbit eccentricity is 
taken into account then the functions of the eccentricity also involve these expressions. In the 
present paper more simple alternative expansions for the orbital derivatives are constructed, 
depending on the spherical coordinates and cos I. They have only two sums and do not have 
singular factors. These expansions depend on the Legendre functions of the latitude but do not 
depend on their derivatives. As compared to the earlier expressions of the authors the present 
ones have the form which is more convenient for computations. Besides, these expressions 
can be applied not only for the case when the satellite orbit is circular and π / 2 ≤ I ≤ π but for 
the arbitrary eccentricity (0 ≤ e < 1) and inclination (0 ≤ I ≤ π). After additional 
transformations the final expansions for the orbital derivatives represent, for the first time, 
simple functions of the cartesian coordinates of the satellite and the components of its 
velocity. These expressions may be convenient for inverting a huge amount of the GOCE data 
in the geopotential coefficients. 

Keywords: local orbital derivatives – arbitrary satellite orbits – spherical and cartesian 
coordinates – geopotential model – GOCE satellite gradiometry mission  

1. INTRODUCTION  
The first satellite gradiometry mission GOCE of the European Space Agency (ESA) will start 
in 2007. In this mission the second order derivatives of the Earth potential in the local orbital 
reference frame will be measured. On the basis of these data a new high precision model of 
the geopotential will be constructed. For compiling observation equations various forms of 
expressions for the orbital derivatives are developed. These results are thoroughly outlined by 
Rummel et al. (1993) and Koop (1993). Basic principles of the time-wise method for solving 
the observation equations have been successfully developed in Klees et al. (2000a), Sneeuw 
(1992, 2000), Sneeuw et al. (2001). 

In the time-wise approach to constructing a geopotential model from the GOCE mission 
data, developed in Rummel et al. (1993), Koop (1993), ESA (2003), the expansions for the 
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orbital derivatives depend on the osculating Keplerian elements. These expressions involve 
the inclination functions and their first and second order derivatives. If the orbit eccentricity is 
not neglected then they depend also on the eccentricity functions (Kaula, 1966) which are 
different for the short-period and long-period perturbations. In publications of researches from 
Delft University, in particular Ditmar et al. (2003, p. 69), a conclusion is drawn that “the 
time-wise approach, when implemented correctly (i.e. without various approximations) is 
rather time-consuming technique and is hardly applicable to the inversion of the entire set of 
SGG data to be collected by GOCE.” 

In this connection it is a matter of much interest to develop alternative expressions for the 
orbital derivatives which have no deficiencies of the conventional expansions. 

Such expressions are derived in Petrovskaya and Vershkov (2006). They represent double 
series depending on the spherical coordinates and the satellite track azimuth α. These series 
do not contain any derivatives and have no singular factors. However, only the case is 
considered when  and π / 2 ≤ I ≤ π. Different expressions for α are given, however 
without their derivation. 

0e =

In the present paper the expansions for the orbital derivatives from (ibid.) are transformed 
to the form which simplifies the construction of a geopotential model from the gradiometry 
data. Now the general case is considered when there are no restrictions with respect to the 
values of the orbit eccentricity and inclination. 

At first the orbital derivatives are presented in terms of the spherical coordinates and cos I. 
Then these expansions are transformed, for the first time, to simple expressions which depend 
only on the cartesian coordinates of the satellite and the components of its velocity. 

2. CONVENTIONAL AND NEW EXPRESSIONS FOR THE LOCAL  
NORTH-ORIENTED DERIVATIVES 

We consider the Earth's disturbing potential  

   T V U= - ,

where V  represents the true gravitational potential and U  is the normal or another reference 
potential. 

A truncated spherical harmonic series for T  has the form 
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where mnY ,  are the surface spherical harmonics 
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In (1) – (2)  is the geocentric distance, θ and λ are the colatitude and the longitude. The 
quantity 

r
GM=μ  is the gravitational constant multiplied by the Earth's mass, a  is the semi-

major axis of the reference ellipsoid, mnC ,  and )(cos, θmnP  represent the fully normalized 
harmonic coefficients and the associated Legendre functions, respectively. In (1) m  have 
positive and negative values. 
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Fig. 1. Global reference frame 1 1 1{ }X Y Z, ,  and local north-oriented triad { }x y z, ,  

In Fig. 1 two reference frames are presented. The first of them is the global Earth-fixed 
coordinate system 1 1 1{ }X Y Z, ,  where O  is the Earth center, axis 1Z  coincides with the axis of 
the Earth rotation, axis 1X  is directed along the line of intersection of the Greenwich meridian 
(where λ = 0) with the equatorial plane and  is directed to the East. 1Y

The second system is the local north-oriented reference frame { }x y z, ,  in which z  has the 
geocentric radial direction, x  points to the north, and y  is irected to the west (a right-handed 
system).  

 d

There are the following expressions for the second order derivatives of the potential T  
(Reed, 1973)  
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From the series (1) the expansion for the radial derivative follows 

 ).,()2)(1( ,,

3
0

2
3
0

λθμ
mnmn

nn

nm

N

n
zz YC

r
ann

a
T

+

−==
⎟
⎠
⎞

⎜
⎝
⎛++= ∑∑  (4) 

By substituting the expressions for the other derivatives of T  with respect to r, θ, λ in the 
right-hand sides of equations (3) the conventional series for the north-oriented derivatives are 
obtained 
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  (5)  

Expressions (5) depend on the associated Legendre functions and also on their derivatives 
of the first and second order. The series for  and  contain singular factors sin-1 θ 
and sin-2 θ which become infinite at the poles.  

yy xyT T, yzT

As follows from the theory of the potential, the derivatives of T are bounded functions in 
the whole exterior space. According to Ferrer's equation (Ilk, 1983, p. 119, (z.1.3)) the 
expression for the Legendre function )(cos, θmnP  contains the factor θmsin . However this 
factor does not eliminate the singular factors in equations (5). In particular, the last terms in 
the square brackets of the expressions for derivatives  retain the singular factor  
for  and all n , after substituting Ferrer's expressions for the Legendre functions. 
Therefore only transformations of the complete expressions in the square brackets of 
equations (5) can eliminate all the singularities. Such transformations are performed in 
Petrovskaya and Vershkov (2006). 

yy xyT T,  sin-1θ
1m| |=

In (ibid.) the series in (5) are converted into simple expansions depending on the spherical 
coordinates r, θ, λ and not containing the derivatives of the Legendre functions and singular 
factors. We shall transform the series (4) and the expressions for the other derivatives from 
(ibid.) to the form which is more convenient for computations. 

The order of summations of the series from (ibid.) is interchanged and the north-oriented 
derivatives are presented as Fourier series with respect to the longitude λ 
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Functions fn,m,k (r,θ)  have the form 
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It can be noted that the factor ( 1  in (8) partly counteracts the attenuation 

factor ( .  
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The numerical coefficients ,~,~
,, mnmn ba

n m n ma b, ,,
, etc., in (9) are provided in Appendix A. They differ 

from the similar coefficients , etc., from (ibid., Appendix A) only by the factor 
 in the denominators. ( 1)( 2n n+ + )

                                                

*  

 
* The value of  for  is misprinted in (ibid.). It should be  and not 
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70n ma , =
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The new constants are bounded for any values of m  and n , as compared to some 
constants from (ibid.) which increase with enlarging n  and . m| |

In comparison to the conventional expansions (5), the expansions (6) do not contain 
singularities and the first and second order derivatives of the Legendre functions. As 
compared to the expressions for xxT  in (ibid.) it is essentially simplified by applying the 
Laplace equation. 

In the next Section we shall apply expressions (6) for deriving new expressions for the 
local orbital derivatives. 

3. CONVENTIONAL AND NEW EXPRESSIONS FOR THE LOCAL ORBITAL 
DERIVATIVES 

We consider the global reference frame (Kaula, 1966, Section 2.3) which is presented in Fig. 
2. It is the conventional inertial system of coordinates { }X Y Z, ,  where axis Z  coincides with 
the axis of the Earth rotation 1Z , axis X  points to the vernal equinox γ and Y is directed to 
the East. 

The angle between X  and 1X  is equal to the Earth argument of the longitude )( Gθ . 

On Fig. 2 the local orbital reference frame {  is also presented where axis w  
coincides with z , axis v  is directed along the instantaneous angular momentum vector and u  
complements the right-handed triad.  

}u v w, ,

 
Fig. 2. Global reference frames { }X Y Z, , , 1 1 1{ }X Y Z, ,   and local orbital triad {  }u v w, ,

When constructing a geopotential model from satellite gradiometry data by the time-wise 
approach the expressions for the orbital derivatives are considered as functions of time. In the 
conventional expressions they are presented in terms of r  and the osculating Keplerian 
elements e,I,Ω,ω,M which are, respectively, the eccentricity, the inclination, the right 
ascension of the ascending node, the argument of the perigee and the mean anomaly. Due a 
small eccentricity of a satellite orbit, it is assumed in some theoretical and numerical 
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investigations that  (Rummel et al., 1993, p. 3.4), (Koop, 1993, p. 35) (Klees et al., 
2000b, p.70).  

0e =

In this case the potential T , defined in (1) and (2), is presented in the following form 
(Koop, 1993, pp. 35, 36)  
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where 2
l kp -=  and index k  ranges from  to l  with a step-size 2.  l-

In (10)  

 
⎪
⎭

⎪
⎬

⎫

−Ω=
+=

+=

.
,

,

0

0

Ge

ekm

M
mk

θω
ωω

ωωψ
 (11) 

There are the designations  
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where l mC ,  corresponds to λmcos  and l mS ,  to λmsin  in the spherical harmonic expansion 
for T .  

In (10) ( )Il m p, ,F  are the normalized functions of the inclination I . According to Kaula 
(1966) and Rummel et al. (1993, p. A-3.7), these functions can be presented as follows  
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Here  

  (14) max min maxmin { } max {0 } min { 2 }q j p c p q c l m q s m= , , = , - , = - - + , - s

and j  is the integer part of 2
l m- .  

The inclination functions (13) can be evaluated in different ways. More simple 
calculations are based on recurrent relations (Sneeuw, 1991).  

In the conventional approach the orbital derivatives are considered in one of two systems 
of curvilinear coordinates (Rummel et al., 1993, pp. A-1.10, A-1.11). In one of them the 
coordinates r,I,ω0 are applied and in the other r,ωe,ω0.  

In the first case there are the following expressions for the orbital derivatives  
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and in the second case  
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In the right-hand sides of equations (15) and (16) the partial derivatives of T  with respect 
 and the orbital elements are substituted. They are found by differentiating the expressions 

(10) and (13) with respect to r, I, ω0 and ωe

r
e

004.0≈e o01.0<Iδ

.  

Let us note that the expressions (15) involve not only the inclination functions (13) but 
also their first and second order derivatives.  

The initial series for the geopotential given in Kaula (1966) contains additional 
eccentricity functions, , in form of series depending on e . These functions have 
different form for the long and short period perturbations.  

( )n m pG e, ,

It is known (Pail and Plank, 2002) that in the GOCE mission the orbit eccentricity may be 
 and the variation of the inclination . Therefore the inclination functions 

vary with time (ibid., p. 466) and the eccentricity can not be neglected.  

In the GOCE mission there will be several hundred millions of observations and 90 000 of 
the unknown spherical harmonic coefficients of the geopotential (ibid., p. 462). 
Correspondingly, the solution of the observation equations will be very time-consuming (even 
for a circular satellite orbit), as follows from numerical studies of researches from Delft 
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University. That is why an alternative approach is proposed (Ditmar and Klees, 2002), 
(Ditmar et al., 2003) in which the geopotential expansion (10) is not applied.  

The expressions for three derivatives,  and , have singularities: for vv uvT T, vwT πω ,00 =  in 
equations (15) and for 2/0 πω =  in equations (16). These singularities can be excluded by 
certain transformations (Rummel et al., 1993, p. 3.6). However the resulting expressions for 
the derivatives become more complicated than in (15) and (16) because they depend on the 
derivatives of T entering the right-hand sides of both sets of equations.  

An alternative approach is developed for eliminating the singularities (Rummel et al., 
1993, pp. 3.7, 3.8). It is based on transferring from the equatorial reference plane for the 
latitudes to the orbital plane. However the corresponding expression for the modified 
inclination functions is more complicated than for the conventional functions in (13).  

In Petrovskaya and Vershkov (2006) simple non-singular expressions are derived for the 
geopotential derivatives in the local orbital reference frame in the case of a circular satellite 
orbit. These expressions depend on the spherical coordinates and the satellite track azimuth. 
Several expressions for the azimuth are provided, without their derivation. In Appendix B we 
present this derivation and not only for the case when  and 0e = ππ ≤≤ I2/  but for the 
general case of an arbitrary eccentricity and inclination.  

Besides, the expressions for the orbital derivatives from (ibid.) will be transformed to the 
form which is more convenient for processing satellite gradiometry data, when estimating the 
geopotential coefficients by the time-wise least squares adjustment.  

In (ibid.) the orbital derivatives are presented as linear functions of the north-oriented 
derivatives  
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Here α is the satellite track azimuth, that is the angle between the local meridian in the 
observation point and the direction of axis u . This angle is reckoned from the north 
clockwise.  

The expressions for α are given in (ibid.) for the case when  and 0e = ππ ≤≤ I2/ . Now 
more general formulas for  will be derived in Appendix B, corresponding to the case when 

 and 
a

10 <≤ e π≤≤ I0 .  

The right-hand sides of equations (17) depend on five north-oriented derivatives, with 
excluding xxT .  

We substitute expressions (6) for the north-oriented derivatives in equations (17).  

In the result, the expansions for the orbital derivatives are presented in the form of Fourier 
series with respect to λ 
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Here  

 ,9,...,2,1,0),,(~)(),,( ,,,, == kFrrF knmnknm αθσαθ  (19) 

where function )(rnσ  is defined in (8).  

Functions ),(~
,, αθknmF  have the following expressions  
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Functions )(~
,, θknmf  in the right-hand sides of (20) are defined in (9).  

In each equation from (18) there are two sums. Besides, the right-hand sides of these 
equations do not depend on any derivatives and have no singularities.  
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4. ORBITAL DERIVATIVES AS FUNCTIONS OF THE SATELLITE POSITION 
AND THE VELOCITY  

In the conventional expressions for the orbital derivatives and in the expressions for them in 
Petrovskaya and Vershkov (2006) the case of a circular satellite orbit is considered, when 

 and the argument of the latitude ω0 is equal to ω + M, where w  is the argument of the 
perigee and 

0e =
M  is the mean anomaly. In the present paper we consider the general case when 

the satellite orbit has an arbitrary eccentricity 10 <≤ e . The corresponding argument of the 
latitude is equal to υωω +=0 , where υ is the true anomaly. Besides, the inclination is also 
arbitrary, that is π≤≤ I0 .  

There can be two approaches for choosing the angular variables in equations (18). In one 
of them these variables are ω0 and λ and in the other case they are θ and λ. Correspondingly, 
in the first case the angles θ and α are expressed in terms of 0ω  and in the second case α is a 
function of θ.  

In (ibid.) equations for the angular variables are given, in which it was assumed that 
 and 0e = π π≤≤ I2/ .  

In this Section we shall use the following expressions, derived in Appendix B, 

,sinsincos
,sinsin1sin
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0
22

ωθ
ωθ

I
I

=

−=  (21)  

0
22
0

0
22

sinsin1
cossincos

,
sinsin1

cossin

ω
ωα

ω
α

I
I

I
I

−
=

−
=

  (22) 

and  

.
sin

cossincos

,
sin
cossin

22

θ
θα

θ
α

−
±=

=

I

I

  (23) 

As was mentioned above, now υωω +=0 .*  

In (23) the ‘plus’ sign corresponds to the ascending satellite track and the ‘minus’ sign to 
the descending one.  

Let us note that the first equation in (23) was given in Vermeer (1990), only without its 
derivation.  

In the case when the angular variables are chosen to be θ and λ it is convenient for 
computations to present (23) in a more simple form  

                                                 
* In (ibid.) the expression for cos α, depending on ω0, has a superfluous symbol . ±
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.sin1cos

sin
cossin

2 αα
θ

α

−±=

=
I

 (24) 

The most important advantage of (24) is that expressions (9) and hence (18) – (20) depend 
directly on θ and not on ω0. Therefore, if the time variable is ω0 then it would be necessary to 
transfer in the Legendre functions in equations (9) from the variable θ to the variable ω0, with 
the aid of  (21).  

Taking into account this remark, equations (24) can be recommended for the 
implementation.  

The satellite in the GOCE mission will be continuously tracked with the aid of an onboard 
GPS/Glonass receiver which is used as a Satellite-to-Satellite Tracking Instrument (ESA, 
2003). Thus, the satellite position and velocity at the moment of observations will be known. 
If functions θ, λ and I are presented in terms of three cartesian coordinates and three 
components of the velocity then expressions (24) for the azimuth and expressions (18) – (20) 
for the orbital derivatives will become functions of these six variables.  

According to Fig. 1, function θcos  is presented in the form (Heiskanen and Moritz, 1967)  

 
r

Z1cos =θ , (25) 

where  

 2 2
1 1 1r X Y Z= + + .2  (26) 

From (25) and (26) follows  

 .sin
2

1
2
1

r
YX +

=θ  (27) 

Equations (18) represent the Fourier series with respect to the longitude λ. The value of λ 
is defined by the equation (ibid.)  

 .arctan
1

1

X
Y

=λ  (28) 

Function cos I  entering the first equation in (24) can be expressed in terms of coordinates 
X Y Z, ,  (Fig. 2) and components  of the satellite velocity.  ZYX &&& ,,

From the integrals of the areas (Smart, 1953, Section 2) follows that  

 3cos CI
C

=  (29) 

where  

  (30) 
⎪
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⎪
⎬
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 2 2
1 2C C C C= + + .2

3  (31) 

After applying equations (24), (27) and (29) we obtain  

 .sin 3
2

1
2
1

C
C

YX
r
+

=α  (32) 

Function αcos  is evaluated from (24).  

Let us consider function )(rnσ , entering (19). It is defined in (8).  

The geocentric distance of the satellite is presented in the form  

 rrr δ+= 0 , (33) 

where  is the radius of a mean orbital sphere and δr is the deviation of  from .  0r r 0r

From (8) and (33) we can write  

 )()()( 0 rrr nnn ωσσ = , (34) 

where  
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Function )(rnω  can be expanded in the power series  
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We consider a truncated series  
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where the constants pν  have the expressions  

 
!

)2)...(4)(3(
p

pnnn
p

++++
=ν  (37) 

In the GOCE mission km and the quantity 2500 +≈ ar 0/ rrδ  in (36) will be small 
( 004.0/ 0 ≈rrδ ). Then, with the accuracy , in the series (36) it can be taken   1610−

max 20p = .

Since the quantities )( 0rnσ  in (35) and pν  in (37) are constants then they can be 
calculated only one time and retained in the computer storage.  

In the result, the orbital derivatives are determined by (9), (18) – (20), the second equation 
in (24) and (30) – (37).  
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Equations (18) can be solved with respect to the potential coefficients n mC ,  on the basis of 
gradiometry data by the least squares time-wise approach.  

The same equations can be applied for simulating the orbital derivatives from a known 
geopotential model. 

5. FORMULAS FOR COMPUTATIONS  

We present the orbital derivatives as functions of the moments jt  of the gradiometry 
measurements, where .  max1 2 3j …= , , , , j

For convenience of implementation all the necessary formulas are combined together.  

Equations (18) are presented in the form  
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From (19) and (34) follows  

 .9,...,2,1,0),,(~)()()( ,,0,, == kFrrtF jjknmjnnjknm αθωσ  (39) 

The constants )( 0rnσ  are defined in (35).  

From (33) and (36) we have  
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1 0
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where the constants pν  are given in (37).  

Equations (20) are written in the form  
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From (9) follows  
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Equations (25) and (26) give  
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From (30) and (31) we have  
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From (32) and (24) it is obtained  
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From (28) and (2) follows  
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In the result, equations (35), (37), (39) – (49) and the constants from Appendix A provide 
the formulas for computation of the functions of time in the right-hand sides of the basic 
equations (38).  

The procedures of computations can be as follows.  

Before evaluating the functions ( )n m k jF t, ,  in the right-hand sides of equations (38), for a 
fixed m  and different n  and , the constants are evaluated. The constants entering equations 
(42) are estimated by the formulas given in Appendix A. The quantities 

k
)( 0rnσ  and pν , 

which also do not depend on , are found from (35) and (37).  jt

The basic functions of time, jθcos , jαsin  and jαcos , are calculated from equations 
(43) – (47).  

The associated Legendre functions in (42), depending on jθcos , are evaluated by 
recurrent procedures, for a fixed m  and all n . For this purpose very effective algorithms can 
be applied which are elaborated by Holmes and Featherstone (2002).  

The functions kmnf ,,
~  are calculated from (42) and substituted in (41), together with the 

known  jαsin  and jαcos . Then from (41) the functions )(~
,, jkmn tF  are evaluated.  

The found quantities (35), (40) and (41) are substituted in (39), from where the functions  
)(,, jkmn tF  are estimated.  

Finally, from (48) and (49) the functions )( jmQ λ  are found.  

In the result, all the functions of time in the right-hand sides of Eqs. (38) are evaluated. 
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7. FINAL COMMENTS 
The derived simple expansions for the orbital derivatives contain only two sums and do not 
contain singular factors. Due to a small eccentricity of the orbit of the GOCE satellite, it is 
sometimes ignored in the conventional expansions, as well as in the earlier expressions of the 
authors. In the present expressions the orbit eccentricity and inclination are arbitrary 
(  and 10 <≤ e π≤≤ I0 ). The argument of the latitude is also arbitrary, including the values 

ππω ,2/,00 = , which are singular in some conventional expansions of the orbital derivatives.  

The final expressions for the orbital derivatives depend neither on the Keplerian elements, 
no on the spherical coordinates. Instead, they are presented, for the first time, as simple 
functions of the cartesian coordinates of the satellite and its velocity.  

The new expressions may be convenient for processing a huge amount of the gradiometry 
data when constructing a geopotential model from the GOCE mission data.  

The successive steps in the simultaneous implementation of the new expressions for the 
north-oriented and orbital derivatives of the geopotential can be the same as it is described by 
Petrovskaya and Vershkov (2006), in Section 6.  

The general character of the derived expressions makes possible to apply them not only 
for the case of the GOCE mission but also for another satellite gradiometry program for any 
planet.  
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CONSTANTS 
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APPENDIX B 

DERIVTION OF THE EQUATIONS (21) – (23) 
 
In Figs. 3, 4 the satellite track azimuth α is presented in connection with the angular variables  

0,ωθ  and I . The case of ππ ≤≤ I2/  is considered, corresponding to the GOCE mission, 
for the north hemisphere. For the other cases similar pictures are also constructed but not 
presented here.  

 
Fig. 3. Satellite track azimuth α for ascending track in the case of ππ ≤≤ I2/  
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Fig. 4. Satellite track azimuth α for descending track in the case of ππ ≤≤ I2/  

By  the Earth center is denoted. Vector UO
r

 is directed along the axis u  ( ) and 
vector  points to the North, tangentially to the local meridian.  

rU rr
⊥

N
r

Let us consider the spherical triangles A BC  in Figs. 3, 4 with the sides a , b  
and .  The arc 

CB= CA=
c A B= A B  belongs to the section of the sphere of radius r  by the orbital 

plane. 

The following relations of the spherical trigonometry between the elements of the 
spherical triangle A BC  are applied  

 cos cos cos sin sin cosB A C A C b= - + ,  (55) 

 sin sin
sin sin

b c
B C

= ,  (56) 

  (57) cos cos cos sin sin cosA B C B C= - + ,a

A.  (58) cos cos cos sin sin cosa b c b c= +

Since 2/π=C  then (55) can be written in the form  

 cossin
cos

BA
b

= .  (59) 

From (56) the relations follow  

 2 2sin sin sin cos 1 sin sinb B c b B= , = - c  (60) 

and  
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= , = - .  (61) 

By inserting the second equation from (60) in (59) we derive the equation  
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Equations (59) and (62) provide two forms of expressions for sin A .  

By substituting (58) in (57) and setting 2/π=C  we obtain  

 sin cos coscos
1 sin sin sin

B b cA
b c B

=
-

.  (63) 

From (63), after applying (61) and (60), two forms of expressions are derived for :  cosA

 
2 2sin sincos
cos
B bA

b
-=  (64) 

and  

 
2 2

sin coscos
1 sin sin

B cA
B c

=
-

.  (65) 

Let us consider the case, corresponding to Fig. 3. 
 
We have 

 
0

0

,
2

,
2

,,2

;2
2
3,

2
0,

2
0,

2

ωθπππαπ

παππωπθππ

=−==−=−=

≤≤≤≤≤≤≤≤

cbCIBA

I
 (66) 

In (59), (60), (62), (64) and (65) the transfer is performed to the quantities αωθ ,,, 0I  by 
means of relations (66). 

From (60) equations (21) follow. From (62) and (65) we obtain equations (22). On the 
basis of equations (59) and (64) equations (23) are derived.  

Similar derivation was carried out for the case presented in Fig. 4 and for the remaining 
cases. 
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