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ABSTRACT: Galileo satellites have been planned to be launched in 2006 by the Eu-
ropean Union. Launching these satellites will double the number of positioning satellites
currently accessible to users. As a consequence, accuracy and reliability will be improved
dramatically. Besides accuracy and reliability, availability is also used for quantification
of a Global Navigation Satellite System performance. This paper briefly describes the
constellation of space segment of the proposed Galileo navigation system in comparison
with the well-known Global Positioning System (GPS). Availability of GPS, Galileo and
Galileo/GPS satellites are then formulated in terms of Satellite Appearance Distribution
Function (SADF). Achievable accuracy in horizonal and vertical positions and timing are
expressed using the respective Dilution of Precisions based on the derived mathematical
formulation.

1. INTRODUCTION

Satellite navigation is going to play a key role in everyday life in the near future. The ex-
isting Global Navigation Satellite Systems (GNSS), GPS as the US type and GLONASS
as the Russian one, have already demonstrated GNSS efficiency to land, sea, and air
users. They were originally designed for military use and are still under national control.
Although the number of civil users is higher than 100 millions, some severe shortcomings
such as the limited achievable accuracy, missing guarantee for service, lack of signal in-
tegrity are evident for the civil users (Wolfrum and Trautenberg, 2000). This situation
has been an advantageous motivation for establishing a civil GNSS with a global coverage.

As the pioneer, the European Union together with the European Space Agency are
developing a new generation of (GNSS) called Galileo. Its definition phase has started in
1999 and ended in 2001 with defining the initial requirements and the system architecture.
The design and validation phase, from 2002 to 2005, is comprised of consolidation of
the requirements, the satellites and ground base components development and in-orbit
validation (Seeber, 2003). Up to four satellites will be launched in the initial deployment
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(2004-2006). Finally, launching the remaining satellites by 2008 will make the system
fully operational.

Galileo consists of 30 (27+3 active spares) satellites equally spaced in three circular
Medium Earth Orbits (MEO). Being a global system from the beginning is the rationale
for using the satellites of the MEO type. The orbital altitude is 23616 km and the
inclination angle is 56◦. The satellites move around the earth every 14 hours in the
orbital planes and the ground tracks repeat every 10 days.

On the one hand, Galileo will be complementary to GPS and on the other hand,
interoperable with it. Therefore, the overall GNSS will remedy the existing shortcoming
and make it more robust and reliable. Indeed, performing control of the system by civil
authorities will remove the limits in the achievable accuracy.

For technical comparison of Galileo and GPS performance, we should compare their
performance measures. In the context of GNSS, availability, accuracy, continuity and
integrity are mostly used as the quantification parameters of a GNSS performance.

In this paper, we will compare availability of two systems. To avoid confusion due
to existence of several different definitions, let us define the measure first. According to
US Federal Radionavigation Plan (FRP), the availability of a navigation system is the
percentage of time that the services of the system are within the required performance
limits (FRP, 2001). Alternatively, availability refers to the number of satellites available
to the user. This is the definition used by many authors (see, e.g., O’Keefe et al., 2002;
Wolfrum and Trautenberg, 2000; Wang et al., 2002). Herein, we also consider the later
definition of the measure.

As already mentioned, instead of 24 MEO satellites in GPS system Galileo is composed
of 30 satellites. Consequently, the global availability is increased and as a by-product, the
geometric situation is also improved. Eventually, from availability point of view, deploy-
ment of the Galileo satellites will introduce a high performance satellite-based navigation.

Herein, we introduce an innovative approach for the MEO satellites availability compu-
tation. Besides developing the mathematical formulation of the method, different achiev-
able accuracy using GPS, Galileo and a combined Galileo/GPS are compared.

As discussed in Santerre R. (1991), since the satellites’ inclinations are different from
90◦ the satellites sky distribution is a function of latitude φ. To clarify the dependency,
the aforementioned accuracy indices are visualized as functions of site latitude.

2. SATELLITE APPEARANCE DISTRIBUTION FUNCTION (SADF)

For a satellite moving along azimuth α and geocentric latitude φ in a celestial frame,
trajectory of the satellite can be parameterized using the geodesic equation on the mean
sphere of the orbit, C(0, R), as follows (e.g., Krakiwsky and Thomson, 1974)

R cos φ sin α = c, (1)

where c is a constant. This constant value can be expressed as a function of R and α at
ascending node, φ = 0

R sin α0 = c, (2)

where α0 is the satellite’s azimuth at ascending node (complement of the orbit inclination
i ). For instance, it is equal to 35◦ and 34◦ for GPS and Galileo satellites respectively.
Substituting eq. (2) into eq. (1) is recast into

cos φ sin α = cos i. (3)
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Decomposition of the satellite angular velocity ω, to the meridian component ωφ and the

parallel one ωλ, as the respective N-S and E-W direction velocities yields
⎧⎪⎨
⎪⎩

ωφ = 2πR
T

cos α
R

= 2π
T

cos α = 2π
T

√
1− cos2 i

cos2 φ

ωλ = 2πR
T

sin α
R cos φ

= 2π
T

sin α
cos φ

= 2π
T

cos i
cos2 φ

(4)

T is the orbital period of the satellites which is equal to 11h 56m and 14h 22m for GPS
and Galileo satellites respectively. Obviously, ground stations experience the satellite
angular velocity along the λ direction less than the real value due to the earth rotation
and retrograde motion (in the same direction as the earth rotation, 0◦ ≤ i ≤ 90◦) of the
satellites. So, the relative angular velocity components of the satellites (ωr

φ, ωr
λ), to an

observer on the Earth are ⎧⎪⎨
⎪⎩

ωr
φ = 2π

T

√
1− cos2 i

cos2 φ

ωr
λ = 2π

T
cos i

cos2 φ
− ωE

(5)

where ωE stands for the Earth angular velocity, i.e. 0.00007292115 rad/sec.

The faster a satellite moves, the lower possibility for appearing at a station obtains.
This is the rationale behind introducing our innovative method of the MEO satellites
availability computation. To determine the Satellite Appearance Distribution Function
(SADF) as the local visibility indicator of a satellite, we divide the mean sphere of the orbit
into an equiangular 1◦ × 1◦ grid. Each block is specified by its center point coordinates
where for the nmth block the coordinates (φn, λm) is defined as

⎧⎨
⎩

φn = n− 0.5 n = −89,−88, · · · , 90

λm = m− 0.5 m = 1, 2, · · · , 360
(6)

Dnm, the nmth local visibility number is

Dnm =

⎧⎪⎨
⎪⎩

k√
ωr

φ
2+ωr

λ
2

− i ≤ φn ≤ i

0 elsewhere

(7)

It is a measure of the extent with which the nmth cell contributes to the number of
satellites (nsat) at a station. Conceptually, it is very similar to redundancy number (ri)
and degree of freedom (df) in the classical geodetic control networks. ri is the contribution
of each observation to df . Similarly, Dnm expresses the nmth cell’s contribution to the
number of visible satellites at a station. Inserting ωr

φ and ωr
λ from eq. (5) into eq. (7) gives

Dnm =
T

2π

⎧⎪⎨
⎪⎩

k cos φn√
(1−τ2) cos2 φn+cos2 i tan2 φn−2τ cos i

| φn |≤ i

0 elsewhere

(8)

where τ = T ωE

2π
and k is proportional to the total number of satellites Nsat, forming a

navigation system

k =
0.017453292 Nsat

T
∑i

n=−i+1
cos φn√

(1−τ2) cos2 φn+cos2 i tan2 φn−2τ cos i

. (9)
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Figure 1: SADF versus geocentric latitude

One can compute the parameter for every positioning system simply by replacing the cor-
responding values for Nsat, i and τ . For instance, it is approximately equal to 5.27445437×
10−8 and 6.10642075×10−8 for GPS and Galileo systems respectively. Therefore, the local
visibility number of the nmth block for a GPS satellite is

Dnm = kGPS

⎧⎪⎨
⎪⎩

cos2 φn√
cos4 φn+cos2 55 sin2 φn

| φn |≤ 55◦

0 elsewhere

(10)

whereas that of a Galileo satellite equals to

Dnm = kGalileo

⎧⎪⎨
⎪⎩

cos2 φn√
cos4 φn+cos2 56 sin2 φn

| φn |≤ 56◦

0 elsewhere

(11)

SADF as a function of the geocentric latitude (Dnm = Dnm(φ)), for GPS, Galileo and a
combined Galileo/GPS systems are plotted in Fig. (1).

As seen, the local visibility number of a Galileo satellite for the low and mid-latitude
stations is higher than that of a GPS satellite. Moreover, the combination raises the
number sharply.

3. NUMBER OF SATELLITE VISIBLE AT A STATION (TOTAL VISIBIL-
ITY NUMBER)

When satellites are close to horizon, there is more atmosphere, troposphere, and ionosphere
for the signals to go through. Consequently, the observable random error increases dra-
matically and vertical accuracy gets the worst. To prevent deficiency in positioning ac-
curacy, we usually ignore the observed quantities to the satellites below the elevation
mask angle. The angle determines the minimum elevation angle below which the receiver
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will no longer use a satellite in its computations. A typical value for the angle is 15◦.
Therefore, a satellite will be visible if its elevation is higher than the mask angle, i.e. 15◦.
The number of visible satellites np, available to a station p, on the Earth is calculated by
accumulating Dnms for the satellites with zenith angle smaller than 75◦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

np =
∑90

n=−89

∑360
m=1 Dnm

subject to

Znm
p ≤ 75◦

(12)

where, Znm
p is the zenith angle defined by the station p and the nmth block. Computation

of Znm
p would be then the first step. Let us consider an arbitrary station p with (L, B, h)

coordinates in the conventional terrestrial system (CTS). Its Cartesian coordinates are
(e.g. Keller 2001)

⎛
⎝

xp

yp

zp

⎞
⎠

CTS

=

⎛
⎝

(N + h) cos B cos L
(N + h) cos B sin L

(N(1− e2) + h) sin B

⎞
⎠ (13)

where N is the radius of curvature in the prime vertical

N =
a√

1− e2 sin2 B
. (14)

a and e are the semi-major axis and the first numerical eccentricity of the utilized reference
ellipsoid (WGS84).

With tagging the coordinates of each block onto the satellite appeared within the cell,
we can write the satellite coordinates in terms the block coordinates. For instance, for
the satellite appeared in the nmth block

⎛
⎝

Xsat

Y sat

Zsat

⎞
⎠

CIS

=

⎛
⎝

R cos φn cos λm

R cos φn sin λm

R sin φn

⎞
⎠ , (15)

where R is the mean radius of the orbital sphere. To provide a coherent coordinates,
we transform satellites coordinates from the space-fixed equatorial system (CIS) to the
conventional terrestrial system (CTS). The transition from CIS to CTS is substantiated
through a sequences of rotations that accounts for precession, nutation and the Earth
rotation including polar motion. These rotations can be expressed using a sequence of
matrix multiplication (McCarthy, 1996)

⎛
⎝

xsat

ysat

zsat

⎞
⎠

CTS

= PN(t)R(t)W(t)

⎛
⎝

Xsat

Y sat

Zsat

⎞
⎠

CIS

, (16)

where PN(t), R(t) and W (t) are the transformation matrices arising from the motion of
the Celestial Ephemeris Pole (CEP) in the CIS, from the rotation of the Earth around
the axis of the CEP, and from polar motion respectively. For our application, PN(t) and
W (t) can be easily replaced by the identity matrix (I) without loss of generality
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Figure 2: The utilized coordinate systems

⎛
⎝

xsat

ysat

zsat

⎞
⎠

CTS

= R3(GAST )

⎛
⎝

Xsat

Y sat

Zsat

⎞
⎠

CIS

(17)

where GAST is Greenwich Apparent Sidereal Time and R3 is the rotation matrix around
the third axis (ZCIS).

Finally, for transformation of coordinate differences from CTS or the global ellip-
soidal coordinate system to the Local Ellipsoidal Coordinate System (LES), denoted by
(N, E, U), we obtain the relation

⎛
⎝

U
E
N

⎞
⎠

LES

= R2(−B)R3(L)

⎛
⎝

xsat − xp

ysat − yp

zsat − zp

⎞
⎠ (18)

in which, R2 is the rotation matrix around the second axis of CTS (yCTS). The utilized
coordinate systems are visualized in Fig. (2) altogether. Eventually, the zenith angle Znm

p

is calculated using eq. (19)

Znm
p = arccos

U√
U2 + E2 + N2

. (19)

Combining eqs. (19) and (12) yields
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

np =
∑90

n=−89

∑360
m=1 Dnm

subject to

U√
U2+E2+N2 ≤ cos 75◦

(20)
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Figure 3: Number of available satellites at different geodetic latitudes

Solving eq. (20) for any desired station on the Earth results in the number of visible
satellite at the station. We have considered GPS and Galileo systems respectively with 24
and 30 satellites which have been distributed with continuous distribution (Geiger, 1988).
Fig. (3) shows the number of available satellites versus geodetic latitude.

As seen, in all cases the maximum number of satellites is accessible at the equator,
whereas the number is minimum at latitude 60◦. At least 4 GPS satellites are visible at
any time and any location ( in the absence of the natural or man-made barriers), while
this number is 6 for the Galileo system. Totally, at least 11 satellites of the kind GPS or
Galileo can be tracked whenever and wherever a GPS/Galileo receiver is mounted. Due
to symmetry of the diagram with respect to the equator, we only represent the visible
satellites at the stations located on the northern hemisphere.

4. LINEAR SYSTEM OF OBSERVATION EQUATIONS OF THE NAVIGA-
TION SOLUTION

Pseudo-range observable is common both to GPS and Galileo system. Eq. (21) expresses
the observable in terms of satellite and station coordinates

v + ρnm
p =

√
(xsat − xp)2 + (ysat − xp)2 + (zsat − xp)2 − cδt, (21)

where v is the observation’s residual and ρnm
p stands for the observed distance at the

station P to a satellite appeared in the nmth block. Synchronization error of the receiver
and the space segment as well as the propagation error is expressed in cδt (Geiger, 1988).
Linearization of eq. (21) with respect to the station coordinates and clock error, as the
unknowns leads to a linear observation equation of the type
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v =
(
−xsat−xp0

ρnm
p0

−ysat−yp0

ρnm
p0

−zsat−zp0

ρnm
p0

−1
)
⎛
⎜⎜⎝

δxp

δyp

δzp

cδt

⎞
⎟⎟⎠− (ρnm

p − ρnm
p0

), (22)

in which, (xp0 , yp0, zp0) is the approximate coordinates of the station P and ρnm
p0

is the
computed range using the approximate coordinates. For ease of representation, we rewrite
the equation as

v =
(

e1 e2 e3 −1
)
⎛
⎜⎜⎝

δxp

δyp

δzp

cδt

⎞
⎟⎟⎠− δl (23)

(e1, e2, e3) is the unit vector pointed from the satellite to the station (Geiger, 1988).
Considering the value of SADF as the weight of the observations to the satellite appeared
in each cell gives the normal matrix of equations as follows

N4×4 =

⎛
⎝

N11(3× 3) N12(3× 1)

NT
12(1× 3) N22(1× 1)

⎞
⎠ (24)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

N11(i, j) =
∑90

n=−89

∑360
m=1 Dnmeiej

N12(i, 1) =
∑90

n=−89

∑360
m=1 Dnmei

N22 =
∑90

n=−89

∑360
m=1 Dnm

subject to U√
U2+E2+N2 ≤ cos 75◦

(25)

where i and j run over {1, 2, 3}. Inversion of the normal matrix yields variance-covariance
matrix of the estimated parameters (δxp, δyp, δzp, cδt). We can derive inverse of the
normal matrix with a similar structure using the partitioning formulae

Qxx = N−1 =

⎛
⎝

Q11 Q12

QT
12 Q22

⎞
⎠ (26)

Q11 and Q22 are the estimated station coordinates and the receiver clock difference auto-
covariance matrices respectively. Q12 contains cross-covariances between the two sets of
estimated parameters. Implementation of the partitioning relationships yields (e.g. Wells,
1994)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q11 = (N11 −N12N
−1
22 N21)

−1

Q22 = (N22 −N21N
−1
11 N12)

−1

Q12 = −N−1
11 N12Q22

(27)
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Figure 4: GPS, Galileo and Galileo/GPS GDOP s at different geodetic latitudes

The covariance matrix contains a part of the accuracy of satellite positioning which
depends on the geometric configuration of the employed satellites. The concealed infor-
mation in the matrix is frequently used in satellite positioning and called Dilution Of
Precision (DOP). For instance, the combined effect for position and time called GDOP ,
is calculated as follows (Seeber, 2003)

GDOP =
√

trace(Qxx). (28)

GDOP is calculated for GPS, Galileo and Galileo/GPS combination. The achieved results

are plotted in Fig. (4) versus geodetic latitude.

Obviously, stations located at the Equator experience the best GDOP in all solutions
while the near polar stations go through the worst. Galileo and GPS combination will
sharply decrease the quantity thoroughly.

We can easily decompose GDOP into PDOP and TDOP . They hold the following
relationship (Yarlagadda et al., 2000)

GDOP =
√

(PDOP )2 + (TDOP )2. (29)

Where PDOP and TDOP are two different DOP designations are in use for 3D position-
ing and time determination respectively. In terms of variance-covariance matrix entries,
they can be defined as

PDOP =
√

trace(Q11), (30)

and
TDOP =

√
Q22. (31)
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Figure 5: PDOP , TDOP , V DOP and HDOP at different geodetic latitudes

Similarly, PDOP can be split up into horizontal and vertical components, denoted by
HDOP and V DOP . Their representations in the local coordinate system, i.e. LES is
preferred. Therefore, we calculate variance-covariance matrix of UEN coordinates using
the propagation law to derive explicit expressions for the latest defined forms of DOP

QUEN = R2(−B)R3(L)Q11 R3(−L)R2(B). (32)

As already mentioned, E and N defines the local horizontal plane of the station while
U points to the zenith. Using QUEN , dilution of precision are then derived for horizonal
and vertical positioning

⎧⎨
⎩

V DOP =
√

QUEN(1, 1)

HDOP =
√

QUEN(2, 2) + QUEN(3, 3)

(33)

These two quantities reflect the utilized satellites geometrical constellation contributions
to the horizontal and vertical accuracies. PDOP , TDOP , V DOP and HDOP are plotted
for stations with different latitudes in Fig. (5).

Like GDOP , the equatorial stations have the minimum value for PDOP , V DOP
and TDOP for all three solutions whereas the near polar stations will experience the
maximum values. HDOP shows a completely different pattern of error. It will reach its
maximum at the stations with latitude around 55◦, φ = i.

Furthermore, QUEN contains information on the horizontal components of the station
position in N-S and E-W directions. For instance, plotting the ratio of the third and second
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Figure 6: Ratio of N and E components versus the station latitude

diagonal elements (QUEN (3,3)
QUEN (2,2)

) at different latitudes shows fluctuation of the components

accuracy with station latitude variation, see Fig. (6).

As seen, the components have nearly the same accuracy at the polar and equatorial
stations. While the E-component is determined with higher accuracy at the mid-latitude
stations with respect to the other.

This behavior can be interpreted by considering the satellites’ geometrical configura-
tion. φ = i is the turning point of the satellites, so the cells with φ = i are surveyed
just in the E-W direction (ωr

φ = 0). Therefore, position of the stations at φ = i are
more likely determined using the satellites located at the same latitude. Consequently,
the N-component is determined rather weakly compared to the E-component. This inter-
pretation is valid for three solutions.

Indeed, we compute cross-covariance matrix of the local coordinates and clock differ-
ence parameter to figure out time determination and positioning uncertainties correlation
arising from satellites constellation. Implementation of the propagation law yields

CUENt =

⎛
⎝

CUEN CUEN,t

Ct,UEN Ct

⎞
⎠ =

⎛
⎝

SQ11S
T SQ12

SQT
12 Q22

⎞
⎠ (34)

where S is the transformation matrix from CTS to UEN. Hence,

S = R2(−B)R3(L). (35)

CUEN,t is comprised of cross-covariances of the coordinates and clock difference. For
instance, CUEN,t(1, 1) represents vertical positioning and time determination covariance.
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Figure 7: Correlation coefficient of the station height and clock difference

To get a dimensionless indicator, we compute the corresponding correlation coefficient

ρu,t =
CUEN,t(1, 1)√
CUEN(1, 1)

√
Ct

. (36)

The achieved results for the correlation coefficient at different latitudes are depicted in
Fig. (7).

As it is seen, they are strongly correlated to each other, so that the different solutions
coefficients (absolute values) reach their minimum (approximately 0.92) around φ = 60◦.
From statistical point of view, even for the other latitudes the coefficients reflect a very
strong correlation between the two estimated parameters. This correlation is eminently
reasonable because the vertical positioning is directly affected by time determination
error. Moreover, the negative sign of the coefficient is due to inverse proportionality of
the station height and the travel time of the emitted signal from the satellites to the
station.

5. CONCLUSIONS

The US government has monopoly on satellite based navigation because of military au-
thorities of GPS. Even though GLONASS, the Russian GNSS, was developed simultane-
ously, it has only few users due to its deficiency. It is going to be over by launching a new
generation of GNSS under civil authorities. The new GNSS called Galileo is managed by
the European Union and the European Space Agency.

To compare the coming system with the preceding one, i.e. GPS, performance para-
meters are used. In the context of GNSS, availability, accuracy, integrity and continuity
are frequently used as the performance measures. Among them, availability, the number
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of satellites available to the user, investigated in this paper. We introduced an innovative
approach for the MEO satellites availability computation. Besides developing the mathe-
matical formulation of the scheme, different achievable accuracy using GPS, Galileo and
a combined Galileo/GPS compared numerically.

Continuous satellite distributions were considered for simulation both for GPS and
Galileo system and the numerical analysis carried out using the simulated data. The
achieved results for GPS, Galileo, and Galileo/GPS in terms of different designations
of DOP were compared. From constellation point of view, Galileo is superior to GPS
because of offering relatively higher accuracy nearly in all instances. We also showed that
a combined GPS and Galileo system sets up a robust and reliable satellite navigation and
positioning system of extraordinary performance, as discussed in (Meng et al., 2003).
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