Efficiency optimization of a closed indirectly fired gas turbine cycle working under two variable-temperature heat reservoirs

ZHESHU MA¹*
JIEER WU²

¹ Department of Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
² School of Mathematics & Physics, Jiangsu University of Science and Technology, Zhenjiang, 212003, China

Abstract Indirectly or externally fired gas turbines (IFGT or EFGT) are interesting technologies under development for small and medium scale combined heat and power (CHP) supplies in combination with micro gas turbine technologies. The emphasis is primarily on the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass even “dirty” fuel by employing a high temperature heat exchanger (HTHE) to avoid the combustion gases passing through the turbine. In this paper, finite time thermodynamics is employed in the performance analysis of a class of irreversible closed IFGT cycles coupled to variable temperature heat reservoirs. Based on the derived analytical formulae for the dimensionless power output and efficiency, the efficiency optimization is performed in two aspects. The first is to search the optimum heat conductance distribution corresponding to the efficiency optimization among the hot- and cold-side of the heat reservoirs and the high temperature heat exchangers for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the maximum efficiency between the working fluid and the high-temperature heat reservoir for a fixed ratio of the thermal capacitance rates of the two heat reservoirs. The influences of some design parameters on the optimum heat conductance distribution, the optimum thermal capacitance rate matching

*Corresponding author. E-mail address: mazheshu@126.com
and the maximum power output, which include the inlet temperature ratio of the two heat reservoirs, the efficiencies of the compressor and the gas turbine, and the total pressure recovery coefficient, are provided by numerical examples. The power plant configuration under optimized operation condition leads to a smaller size, including the compressor, turbine, two heat reservoirs and the HTHE.

Keywords: Indirectly fired gas turbine, Bioenergy technology; High temperature heat exchanger; Finite time thermodynamics; Cycle performance

Nomenclature

- C_{wf} — thermal capacitance rate of working fluid, kJ/(s K)
- C_H — thermal capacitance rate of high-temperature (hot-side) heat reservoir, kJ/(s K)
- C_L — thermal capacitance rate of cold-side heat reservoir, kJ/(s K)
- $C_{H\ min}$ — smaller of C_H and C_{wf}, kJ/(s K)
- $C_{H\ max}$ — larger of C_H and C_{wf}, kJ/(s K)
- $C_{L\ min}$ — smaller of C_L and C_{wf}, kJ/(s K)
- $C_{L\ max}$ — larger of C_L and C_{wf}, kJ/(s K)
- c_p — specific heat, kJ/(kg K)
- D — total pressure recovery coefficient
- E_{H} — effectiveness of hot-side heat exchanger
- E_{L} — effectiveness of cold-side heat exchanger
- E_{HE} — effectiveness of high temperature heat exchanger
- k — adiabatic exponent (specific heat ratio)
- \dot{m} — mass flow, kg/s
- N_H — number of heat transfer units of hot-side heat exchanger
- N_L — number of heat transfer units of cold-side heat exchanger
- N_{HE} — number of heat transfer units of high temperature heat exchanger
- p_i — pressure of state i, Pa
- P — power output of indirectly fired gas turbine cycle
- P^* — dimensionless power output of indirectly fired gas turbine cycle
- \dot{Q}_H — rate of heat supplied to high-temperature reservoir
- \dot{Q}_L — rate of heat removed to low-temperature reservoir
- \dot{Q}_R — rate of heat exchanged in HTHE
- T_i — temperature of state i, K
- T_{Lin} — inlet temperature of cold-side heat reservoir, K
- U_H — heat conductance of high-temperature heat reservoir, W/(m²K)
- U_L — heat conductance of low-temperature heat reservoir, W/(m²K)
- U_{HE} — heat conductance of high-temperature heat reservoir, W/(m²K)
- U_T — total heat exchanger inventory
- u_H — heat conductance distribution of hot-side heat reservoir
- u_L — heat conductance distribution of cold-side heat reservoir
- x — isentropic temperature ratio
1 Introduction

Classical thermodynamics is typically used for analyzing energy systems or components, and it basically considers equilibrium states and generally slow rates that typically result in infinite time processes; however, finite work divided by infinite times produces zero power, thus no practical applications for realistic power production arise in consideration of concepts and cycles in classical thermodynamics. Modeling of real processes in which the working fluid passes through hardware and/or components of finite size in finite-time periods involves irreversibilities which necessitate considerations regarding their quantification with time-size constraints becoming important. Finite-time thermodynamics (FTT) or entropy generation minimization (EGM) concepts provide an approach to quantify cycles and plant component irreversibilities and ultimately can provide a more rationally based prescription applicable to engineering design and development processes. Since the pioneering work of Novikov [1], Chambadal [2], and Curzon and Ahlborn [3], FTT has been used progressively in cycle and power plant performance analyses and a large amount of information has been published in this field [4,5].

In recent years, renewable energy utilization has grown rapidly. Electricity generated by utilizing renewable energy sources occupied 19% of the world electricity production in 2005 [6]. The state-of-the-art regarding renewable energy sources include large hydropower and other sources such as wind, biomass, solar, geothermal, and small hydros. However, related energy conversion technologies should for optimum benefit combine high conversion-efficiencies with low emissions leading to especially careful
considerations for the widely publicized CO₂ emission levels. As a consequence, accurate design methods and optimal device energy performance for these novel conversion technologies assume a most significant activity, since, commercial applications or even their demonstrations are costly and time-consuming including a high risk of failure, e.g., UK’s unsuccessful “flagship” Project Arable Biomass Renewable Energy (ARBRE) [7]. Thus, the need to develop both scientific and reasonable engineering criteria to define objective functions and to perform the required optimization on these functions becomes apparent. The following criteria combine a number of conflicting but nevertheless important variables contributing to the engineering task in hand: maximum power, minimum entropy generation, maximum power density, first law efficiency, ecological criterion, maximum profit, and second law efficiency. These different approaches are taken according to the specific needs for the desired application; however, on consideration of certain conditions some of the above criteria are shown to be equivalent [8]. Many researchers have applied the above mentioned objective functions to different processes.

As distinct from the mature/advanced modern energy-conversion technologies including internal combustion engines and ordinary gas turbines which demand clean fuels as combustion gases (working fluid) are in direct contact with the moving parts of the machine, indirectly fired gas turbine (IFGT) cycles employ indirect combustion systems thereby separating the combustion process and thermodynamic conversion process. This practice allows utilizations of “dirty” fuels including biomass and waste fuel as practical possibilities. Recently, IFGT cycles have also involved a class of state-of-the-art promising research undertakings in a variety of applications internationally. In addition to the conventional coal-fired steam cycle plants and Stirling engines, indirectly or externally-fired gas-turbine (IFGT or EFGT) also appear as a novel technology item under development for small and medium scale combined heat and power (CHP) applications in combination with micro gas turbine technologies [9]. The most attractive advantage of IFGT units is that they open new and exciting avenues to utilize biomass for CHP and contribute to reducing greenhouse-gas emissions while offering engineering possibilities for higher conversion efficiency. Up to now, studies of externally fired gas turbines have been performed by a number of different research organizations and power equipment manufacturers. Currently, available analyses concentrate on various cycle configurations to attain high conversion efficiencies [10–27], including different types of furnace arrange-
Efficiency optimization of a closed indirectly fired gas turbine cycle...

ments [13–15], and the development of possible high-temperature heat exchangers [10–14]. In addition, several excellent review papers and reports on IFGT applications are available [15–17].

Based on various finite time thermodynamic formulae derived for a real irreversible closed cycle working between two finite heat reservoirs while incorporating in addition various resistances for heat transfer, this paper aims to optimize the dimensionless cycle power output using the theory of thermodynamic optimization by searching for the optimum heat conductance distribution among the three heat exchangers (the hot-side and cold-side heat reservoirs, and the high temperature heat exchanger) for a fixed total heat exchanger inventory. In the analysis, the heat resistance losses in the three heat exchangers, the irreversible compression and expansion losses in the compressors and the turbine, and the pressure drop loss at the heater, cooler and regenerator as well as in the piping, are taken into account. The effects of some cycle parameters on the cycle optimum performance have been derived numerically and summarized by illustrations.

2 Model cycle and analytical relation

The schematic and T-S diagrams of the closed IFGT cycles studied are shown in Figs. 1 and 2, respectively. The working air enters the compressor at state 1 and is nonisentropically compressed to state 2. After state 2 (ideally to the state 2s), the air leaving the compressor enters the high temperature heat exchanger (HTHE) and is heated to state 3 via the high temperature combusted biomass gas flow. Then the heated air enters the gas turbine and expands nonisentropically to state 4 (ideally to state 4s). After leaving the gas turbine, the still hot air enters the combustion chamber and takes part in the combustion process with biomass fuel to the highest temperature point of the cycle, i.e., state 5. The hot gas then exits the combustion chamber and enters the HTHE, where it adds heat to the air and in return is cooled to state 6 at constant pressure. Finally, the cycle is completed by cooling the gas to the initial state. In Fig. 2, the process 1-2s is an isentropic compression and 1-2 takes into account the nonisentropic nature of a real compressor; the process 3-4s is an isentropic expansion while 3-4 signifies a real nonisentropic expansion in a real turbine.

In order to analyze the efficiency characteristics of the IFGT cycle under consideration, following assumptions are made for the one dimensional ideal gas steady flow and application conservation of energy principle to each
component:

(i) The working fluids (air and combustion gases) are ideal gases and each possesses constant specific heat. The working fluids flow through the system in a one-dimensional quasistatic-state fashion.

(ii) The compression process 1-2 and expansion process (4-5) are adiabatic and irreversible. The deviations from the isentropic processes are accounted for by the isentropic efficiencies. The gas turbine’s isentropic efficiency η_t, gives the ratio of the actual expansion process producing power to the isentropic one. The isentropic efficiency of the compressor η_c, is defined as the ratio of the power requirement during the isentropic compression to that of the actual compression. Efficiencies η_t and η_c have the values between zero and unity:

$$\eta_t = \frac{T_3 - T_4}{T_3 - T_{4s}},$$ \hspace{1cm} (1)

$$\eta_c = \frac{T_{2s} - T_1}{T_2 - T_1},$$ \hspace{1cm} (2)

(iii) The heat transfer in the real high temperature heat exchanger (HTHE) is described by using the HTHE efficiency η_{HE}. This efficiency is defined as follows

$$\eta_{HE} = \frac{T_3 - T_2}{T_6 - T_6},$$ \hspace{1cm} (3)
which is the ratio of the actual heat transfer process 2-3 to the maximum idealistic amount of heat transfer (5-6). The value of η_{HE} varies from 0 to 1.

(iv) The cycle has a pressure ratio, which is the ratio of the maximum pressure of the cycle obtained at the compressor exit (state 2) to the minimum pressure of the cycle at the turbine exit which corresponds to the compressor inlet (state 1), i.e.,

$$\pi_c = \frac{p_2}{p_1},$$ \hspace{1cm} (4)

(v) The pressure drop in the flow piping is reflected by using a total pressure recovery coefficient, that is:

$$D = 1 - \frac{\Delta p}{p},$$ \hspace{1cm} (5)

$$\frac{p_3}{p_4} = D \frac{p_2}{p_1},$$ \hspace{1cm} (6)

where p denotes pressure. The working fluid is an ideal gas with a constant thermal capacitance rate C_{wf} ($C_{wf} = \dot{m}c_p$, mass flow times the specific heat). The high-temperature (hot-side) heat reservoir is assumed to have a finite thermal capacitance rate C_H. The inlet and outlet temperatures of the heating fluid are T_{Hin} and T_{Hout}, respectively. The low-temperature (cold-side) heat reservoir is also assumed to have a finite thermal capacitance rate C_L and the inlet and outlet temperatures of the cooling fluid are T_{Lin} and T_{Lout}, respectively. All heat exchangers, including the high temperature heat exchanger, are assumed to be counter-flow heat exchangers with constant heat conductances U_H, U_L and U_R. The heat conductance is defined as the product of the overall heat transfer coefficient and the heat transfer surface area of the heat exchanger. According to the principles of heat transfer and thermodynamics, the rates at which heat is supplied, rejected and transferred in the high temperature heat exchanger are given by the following expressions:

$$\dot{Q}_H = \dot{Q}_{4-5} = U_H \frac{(T_{Hin} - T_5) - (T_{Hout} - T_4)}{\ln[(T_{Hin} - T_5)/(T_{Hout} - T_4)]} = C_H (T_{Hin} - T_{Hout}),$$ \hspace{1cm} (7)

$$\dot{Q}_L = \dot{Q}_{6-1} = U_L \frac{(T_L - T_{Lout}) - (T_1 - T_{Lin})}{\ln[(T_L - T_{Lout})/(T_1 - T_{Lin})]} = C_L (T_{Lout} - T_{Lin}).$$ \hspace{1cm} (8)
\[\dot{Q}_H = C_{wf} (T_5 - T_4), \quad (9) \]
\[\dot{Q}_L = C_{wf} (T_6 - T_1), \quad (10) \]
\[\dot{Q}_R = C_{wf} (T_5 - T_6) = C_{wf} (T_3 - T_2), \quad (11) \]
\[\dot{Q}_H = C_{H \text{ min}} E_H (T_{H \text{ in}} - T_4), \quad (12) \]
\[\dot{Q}_L = C_{L \text{ min}} E_L (T_6 - T_{L \text{ in}}), \quad (13) \]
\[\dot{Q}_R = C_{wf} E_{HE} (T_5 - T_2), \quad (14) \]

where \(E_H \) and \(E_L \) denote the effectiveness of the hot-side and cold-side heat exchangers and \(E_{HE} \) is the effectiveness of the high temperature heat exchangers.

The effectivenesses of the heat exchangers are defined as:

\[E_H = \frac{1 - \exp \left[-N_H \left(1 - \frac{C_{H \text{ min}}}{C_{H \text{ max}}} \right) \right]}{1 - \frac{C_{H \text{ min}}}{C_{H \text{ max}}} \exp \left[-N_H \left(1 - \frac{C_{H \text{ min}}}{C_{H \text{ max}}} \right) \right]}, \quad (15) \]
\[E_L = \frac{1 - \exp \left[-N_L \left(1 - \frac{C_{L \text{ min}}}{C_{L \text{ max}}} \right) \right]}{1 - \frac{C_{L \text{ min}}}{C_{L \text{ max}}} \exp \left[-N_L \left(1 - \frac{C_{L \text{ min}}}{C_{L \text{ max}}} \right) \right]}, \quad (16) \]
\[E_{HE} = \frac{N_{HE}}{N_{HE} + 1}, \quad (17) \]

where \(C_{H \text{ min}} \) and \(C_{H \text{ max}} \) are the smaller and the larger of the two capacitance rates \(C_H \) and \(C_{wf} \), while \(C_{L \text{ min}} \) and \(C_{L \text{ max}} \) are the smaller and the larger of the two capacitance rates \(C_L \) and \(C_{wf} \):

\[C_{H \text{ min}} = \min \{ C_H, C_{wf} \}, \quad (18) \]
\[C_{H \text{ max}} = \max \{ C_H, C_{wf} \}, \quad (19) \]
\[C_{L \text{ min}} = \min \{ C_L, C_{wf} \}, \quad (20) \]
\[C_{L \text{ max}} = \max \{ C_L, C_{wf} \}. \quad (21) \]

Here \(N_H \) and \(N_L \) are the numbers of heat transfer units of the hot-side and cold-side heat exchangers, while \(N_{HE} \) is the number of heat transfer units of the high temperature heat exchanger. The heat transfer units are
based on the minimum thermal capacitance rates and can be expressed in the following expressions:

\[N_H = \frac{U_H}{C_{H_{\text{min}}}}, \quad N_L = \frac{U_L}{C_{L_{\text{min}}}}, \quad N_R = \frac{U_R}{C_{w_f}}. \] \hspace{1cm} (22)

Define \(x \) as the isentropic temperature ratio in the compressor. According to the knowledge of thermodynamics, one can obtain:

\[x = \frac{T_{2s}}{T_1} = \left(\frac{p_2}{p_1} \right)^m = \pi_c^m, \] \hspace{1cm} (23)

where \(m = \frac{k-1}{k} \) and \(k \) is adiabatic exponent (ratio of respective specific heats).

According to the definition of total pressure recovery coefficient, one can obtain the isentropic temperature ratio in the gas turbine:

\[\frac{T_3}{T_{4s}} = \left(\frac{p_3}{p_4} \right)^m = (\pi D)^m = xD^m. \] \hspace{1cm} (24)

Define dimensionless temperature:

\[\theta_i = T_i / T_{Lin}. \] \hspace{1cm} (25)

Thus the dimensionless power output and cycle efficiency of the IFGT cycle can be derived:

\[
P^* = \frac{P}{C_L T_{Lin}} = \frac{\dot{Q}_H - \dot{Q}_L}{C_L T_{Lin}} \\
= \frac{C_{H_{\text{min}}} E_H (\theta_{H_{\text{in}}} - \theta_4) - C_{L_{\text{min}}} E_L (\theta_6 - 1)}{C_{w_f}} \\
= \left(C_{H_{\text{min}}} \frac{E_L}{C_{w_f}} \right) \theta_{H_{\text{in}}} - \left(C_{L_{\text{min}}} \frac{E_L}{C_{w_f}} \right) \times \\
\times \left\{ \left[(c - cd) (2E_H - 1) - E_H \right] b \theta_{H_{\text{in}}} + (E_H - 1) cd \right\} / \\
\left\{ \left[a + E_H (b - 1) \right] (c - cd - 1) + \\
+ (a + b - 1) (c - cd) (E_H - 1) \right\} - \left(C_{L_{\text{min}}} \frac{E_L}{C_{w_f}} \right) \times \\
\times \left\{ c (a + b - 1) (1 - E_H) + (1 - c) \left[a + E_H (b - 1) \right] + \\
+ ab (E_H - 1) \theta_{H_{\text{in}}} \right\} / \left\{ \left[a + E_H (b - 1) \right] (c - cd - 1) + \\
+ (a + b - 1) (c - cd) (E_H - 1) \right\}, \] \hspace{1cm} (26)
\[
\eta = \frac{\dot{P}}{Q_H} = 1 - \frac{\dot{Q}_L}{Q_H} = 1 - C_{L_{\text{min}}} E_L \frac{\theta_{H_{\text{min}}} - \theta_4}{\theta_{H_{\text{in}}} - \theta_4} = 1 - \frac{(C_{L_{\text{min}}} E_L)/(C_{H_{\text{min}}} E_H) \times \{c (a + b - 1) (1 - E_{HE}) + (1 - c) [a + E_{HE} (b - 1)] + ab (E_{HE} - 1) \theta_{H_{\text{in}}} \}}{\left\{ [a + E_{HE} (b - 1)] (c - cd - 1) \theta_{H_{\text{in}}} + (a + b - 1) (c - cd) (E_{HE} - 1) \theta_{H_{\text{in}}} + [(c - cd) (2E_{HE} - 1) - E_{HE}] b \theta_{H_{\text{in}}} + (1 - E_{HE}) cd \right\}},
\]

where

\[a = \frac{1}{1 - \eta_T + x^{-1} D^{-m} \eta_T}, \quad b = C_{H_{\text{min}}} E_H \frac{C_{w_f}}{C_{w_f}}, \quad c = \frac{\eta_c + x - 1}{\eta_c}, \quad d = C_{L_{\text{min}}} E_L \frac{C_{w_f}}{C_{w_f}}.\]

Equations (26) and (27) indicate that the dimensionless power output \(P^* \) and cycle efficiency \(\eta \) of the specific IFGT cycle considered are complicated functions of the isentropic efficiencies of the gas turbine \(\eta_t \) and the compressor \(\eta_c \), the total pressure recovery coefficient \(D \), the cycle pressure ratio \(\pi_c \), the cycle heat reservoir inlet temperature ratio \(\theta_{T_{\text{in}}} \), heat transfer effectiveness of both the hot-side heat reservoir \(E_H \), and the cold-side heat reservoir \(E_L \), heat transfer effectiveness of the regenerator \(E_{HE} \), thermal capacitance rates of both the hot-side \(C_H \), and the cold-side heat reservoir \(C_L \) and thermal capacitance rate of the working fluid \(C_{w_f} \).

3 Optimum distribution of heat conductance

For the fixed heat conductances \(U_H, U_L \) and \(U_{HE} \), Eq. (27) shows that there exists an optimum pressure ratio \(\pi_{c,\text{opt}} \) which leads to maximum cycle efficiency. In the practical design, \(U_H, U_L \) and \(U_{HE} \) are interchangeable. For a fixed pressure ratio, there exists a pair of optimum distributions
among the heat conductances of hot- and cold-side heat reservoirs and the high temperature heat exchanger for a fixed total heat exchanger inventory, leading to optimum cycle efficiency η_{max}. The optimum pressure ratio $\pi_{c,\text{opt}}$ and a pair of optimum distributions lead to the maximum optimum (double-maximum) cycle efficiency $\eta_{\text{max},\text{max}}$. They may be determined using numerical calculations.

For a fixed total heat exchanger inventory U_T, i.e., for the constraint
\[U_H + U_L + U_{HE} = U_T, \] (32)
defining the heat conductance distribution of hot-side heat reservoir u_H, and the heat conductance distribution of cold-side heat reservoir, u_L, as
\[u_H = \frac{U_H}{U_T}, \] (33)
\[u_L = \frac{U_L}{U_T}, \] (34)
leads to
\[U_H = u_H U_T, \] (35)
\[U_L = u_L U_T, \] (36)
\[U_{HE} = (1 - u_H - u_L) U_T. \] (37)
The efficiency optimization is performed via a numerical calculation. In the calculation, the respective parameters are set to $C_H = 2.0$ kW/K, $C_L = 2.0$ kW/K, $C_{w,f} = 1.0$ kW/K and $k = 1.4$. In the numerical calculation, additionally the following numerical constraints should be satisfied:
\[0 < u_H < 1, \] (38)
\[0 < u_L < 1, \] (39)
\[0 < u_H + u_L < 1. \] (40)
The influence of the cycle inlet temperature ratio ($\theta_{H_{\text{in}}}$) for the two heat reservoirs on the optimum cycle efficiency (η_{max}) versus pressure ratio (π_c) with $U_T = 7.0$ kW/K, $\eta_c = 0.85$, $\eta_t = 0.85$ and $D = 0.93$ is shown in Fig. 3. The corresponding optimum heat conductance distributions ($u_{H,\text{opt}}$ and $u_{L,\text{opt}}$) and dimensionless power under optimal cycle efficiency condition ($P^*_{\eta,\text{max}}$) are shown in Figs. 4, 5 and 6.
The influence of the total heat exchanger inventory \((U_T) \) on the optimum cycle efficiency \((\eta_{max}) \) versus pressure ratio \((\pi_c) \) with \(\theta_{HIn} = 4.0 \), \(\eta_c = 0.85 \), \(\eta_t = 0.85 \) and \(D = 0.93 \) is shown in Fig. 7. The corresponding optimum heat conductance distributions \((u_{H,opt} \text{ and } u_{L,opt}) \) and dimensionless power under optimal cycle efficiency condition \((P^*_{\eta_{max}}) \) are shown in Figs. 8, 9 and 10.
The influence of the total pressure recovery coefficient \((D)\) on the optimum cycle efficiency \((\eta_{\text{max}})\) versus pressure ratio \((\pi_c)\) with \(\theta_{Hin} = 4.0\), \(U_T = 7.0\ kW/K\), \(\eta_c = 0.85\) and \(\eta_t = 0.85\) is shown in Fig. 11. The corresponding optimum heat conductance distributions \((u_{H,\text{opt}}\) and \(u_{L,\text{opt}}\)) and dimensionless power under optimal cycle efficiency condition \((P^*_{\eta,\text{max}})\) are shown in Figs. 12, 13 and 14.
These numerical results indicate that there exists a pair of optimum heat conductance distributions and an optimum pressure ratio corresponding to the double maximum cycle efficiency. For different pressure ratios, there exist different optimum heat conductance distributions corresponding to optimum cycle efficiency. In the power optimization results reported regarding the conventional internal combustion gas turbine cycles including the regenerated Brayton cycle [28–32] and the intercooled regenerated Brayton cycles.
in which the combustion process dominates the cycle performance, while regeneration of exhaust heat is a supplementary consideration to improve the total thermal efficiency, the optimum pressure ratio approaches the critical condition \(u_H + u_L = 1 \). However, with regard to IFGT cycles, the heat absorbed by the working air within the HTHE predominantly serves as the available energy source to drive the turbine. Therefore, the heat conductance ratio of the high temperature heat exchanger is always the highest of the three, a result that can be seen from optimization results. Such peculiar characteristics of the IFGT cycles should be seriously considered in the process of design and practical operational characteristics.

This aspect of the cycle is much different as compared to the conventional combustion gas turbine cycles [28] including the regenerated Brayton [29–33]. A close scrutiny of the performance behaviour further reveals the following interesting points during the design and development of IFGT cycles.

Both the optimum cycle efficiency \(\eta_{\text{max}} \) and the corresponding dimensionless power output \(P^*_{\eta,\text{max}} \) increase with the increases of the inlet temperature ratio of the two heat reservoirs \(\theta_{T_{\text{in}}} \), the total heat exchanger inventory \(U_T \), and the total pressure recovery coefficient \(D \). As well, both the optimum hot-side heat conductance distribution \(u_{H,\text{opt}} \) and the optimum cold-side heat conductance distribution \(u_{L,\text{opt}} \) increase with decreases of the inlet temperature ratio of the two heat reservoirs \(\theta_{T_{\text{in}}} \), the total heat exchanger inventory \(U_T \), and the total pressure recovery coefficient \(D \).

4 Conclusions

The performance of a closed indirectly-fired gas turbine cycle coupled to variable-temperature heat reservoirs with heat transfer irreversibility in the hot- and cold-side heat reservoirs and the high temperature heat exchanger, irreversible compression and expansion losses in the compressor and turbine, the pressure drop loss in the piping and the effect of the finite thermal capacity rate of the heat reservoirs are optimized by taking the power output as the optimization objective.

The optimization is performed by optimizing the distribution of the heat conductances between the hot- and cold-side heat reservoirs and the high temperature heat exchanger for a fixed total heat exchanger inventory. The impact of various parameters on the optimum power, optimum heat conductance ratios, and the corresponding cycle efficiency are analyzed.
The optimum distribution of heat conductance derived generally leads to a minimum heat exchanger inventory for a fixed power output. Therefore, the optimization carried out herein will lead to an indirectly-fired gas turbine power plant design with a smaller size and higher efficiency. The analysis and optimization may provide guidelines for the optimal design in terms of power, thermal efficiency and engine size for real closed IFGT power plants.

Acknowledgements This work is financially supported by the Qing-Lan Project of Jiangsu Province for universities’ outstanding youth skeleton teachers under contract No. 161220605 and the Startup-grant of Jiangsu University of Science and Technology for academic research under contract No. 2005JD009J. The corresponding author also owes great thanks to School of Mechanical, Aerospace and Civil Engineering in the University of Manchester for providing excellent collaborative research facilities.

Received 19 June 2010

References

