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Abstract
Feed contamination is a major cause of diseases outbreak in the poultry industry. There is a direct 
relationship between feeding, the intestinal microbiota and how the immune system responds to 
disease infestation. Cereals which form the bulk of poultry feed are mostly contaminated by myco-
toxins of Fusarium origin. Adequate knowledge of mycotoxins and their effects on animals is nec-
essary. Deoxynivalenol (DON) is a major contaminant of poultry feed. DON has the ability to bind 
with a large number of eukaryotic ribosomal subunits because of the presence of an epoxide group 
and these disrupt the activity of peptidyl transferase and the elongation or shortening of peptide 
chains. Deoxynivalenol has varying effect ranging from acute, overt diseases with high morbidity 
and death to chronic disease, decreased resistance to pathogens and reduced animal productivity. 
Deoxynivalenol also impairs the intestinal morphology, nutrient absorption, barrier function, and 
the innate immune response in chickens. This review highlights the impacts of deoxynivalenol on 
the immune system, intestinal microbiota composition and the morphology of chicken.
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The purpose of every poultry industry is to ensure high productivity and improve 
upon quality at a low cost. This, coupled with increase in the human population and 
its corresponding demand for poultry meat and products, has necessitated that there 
should be constant, efficient and goal-oriented healthcare to prevent the development 
of diseases leading to loss in the industry. One major cause of diseases in the poultry 
industry is  contamination of feed. There is a direct relationship between feeding, 
the intestinal microbiota and how the immune system responds to disease infesta-
tion (Wise and Siragusa, 2007; Kohl and Dearing, 2012; Oakley et al., 2013). One 
major mode of contamination of plant products is by mycotoxins of Fusarium origin 
(Pinton et al., 2008). These plant products are mostly used in the production of food 
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and feed (Martins, 2018; Reddy et al., 2018), of which cereals account for a large 
part of these plants products in the preparation of human and animal diets (Stuper-
Szablewska et al., 2016). To ensure that feed is not contaminated, knowledge about 
mycotoxins and their effect on animals is very important (Gajęcka et al., 2017; Liew 
and Mohd-Redzwan, 2018). Among the mycotoxins, the commonest are deoxyni-
valenol (DON), zearalenone (ZEN) and its metabolites, α-zearalenol (α-ZEL) and 
β-zearalenol (β-ZEL), with 58% and 41,157 μg/kg, for deoxynivalenol, and 46% 
and 3049 μg/kg for zearalenone, respectively (Schatzmayr and Streit,  2013; Lee and 
Ryu, 2017). The mycotoxin deoxynivalenol is a polar organic compound with for-
mula 12,13-epoxy-3α,7α,15-trihydroxy-trichothec-9-en-8-one (Maresca and Fantini, 
2010), having a ketone group on the C8 which is a characteristic feature of type B 
trichothecenes. The number and location of hydroxyl groups and acetyl esters can 
also determine the compound's relative toxicity inside cells (Pestka, 2004). DON 
has the ability to bind with a large number of eukaryotic ribosomal subunits because 
of the presence of an epoxide group (Pestka, 2010) and this disrupts the activity of 
peptidyl transferase and the elongation or shortening of peptide chains. Deoxyni-
valenol (DON) is a mycotoxin produced by Fusarium species. It is found mostly in 
cereals such as corn, barley, wheat, rye and sometimes in rice and sorghum and it 
is considered as one of the most important trichothecenes. Trichothecenes are the 
main and chemically most diverse group of the three major classes of Fusarium 
mycotoxins (Summerell and Leslie, 2011). They represent a large family of chemi-
cally related toxins produced by fungi in taxonomically unrelated genera, such as 
Fusarium, Myrothecium, and Stachybotrys and present a potential threat to animal 
health throughout the world (Li et al., 2011). They are classified into four groups  
(A, B, C and D) based on their substitution pattern, all containing a common 
12,13-epoxytrichothecene group which is responsible for their cytotoxicity and  
a 9,10 double bond with various side chain substitutions. Deoxynivalenol (DON) 
and its 3-acetyl and 15-acetyl derivatives is a type B and contains a keto (carbonyl) 
function at C-8 and includes fusarenon-X and nivalenol (NIV). The occurrence of 
deoxynivalenol is associated primarily with Fusarium graminearum (Gibberella 
zeae) and F. culmorum (Alassane-Kpembi et al., 2015). Mycotoxins of Fusarium 
origin often contaminate cereal grains which constitute the bulk of feed for poultry. 
Several researchers have investigated the effects of DON mycotoxin on the functions 
of the immune system ranging from immunosuppression to immunostimulation and 
reported that these impact is dependent on the concentration, duration and time of 
exposure (Bondy and Pestka, 2000; Pinton et al., 2010; Becker et al., 2011). Pestka 
(2003) reported that concentrations of DON (less than 5 mg/kg feed) seem to be re-
sponsible for stimulation of immunity and high concentrations seem to suppress the 
immune responses. Desjardins (2006) also reported that chronic DON intoxication at 
high concentrations lead to injuries of rapidly and actively dividing cells of immune 
organs and mucosa of the gastrointestinal tract. The toxin binds to the 60S subunit of 
ribosomes thereby inhibiting the synthesis of protein. This induces a stress response 
and mitogen activated protein kinases (MAPKs) are activated, due to ribosomal con-
formational changes affecting the peptidyl transferase activity of ribosomes. An im-
portant activity of MAPKs is their effect on transcription factors. Higher expression 
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of nuclear factor κB (NF-κB) induces the expression of pro-inflammatory cytokines 
affecting immune reactions in animals (Rocha et al., 2005). The important role be-
ing played by the intestinal microbiota of broiler chickens in ensuring optimum 
growth performance and good health of birds cannot be underestimated (Bjerrum et 
al., 2006). The influence of these microbiota are particularly important at the young 
stage since it would still be in the process of development (Gong et al., 2015). The 
interaction of intestinal growth, digestive functions, and diet is critical during the 
post-hatching period when birds switch to solid feed nutrition. Among the numerous 
functions of the microflora populations in the digestive tract of chicken is the promo-
tion of immune system development and function, nutrition and function, metabo-
lism and pathogen exclusion (Guarner and Malagelada, 2003; Noverr and Huffnagle, 
2004; Macpherson and Harris, 2004; Backhed et al., 2005; Guarner, 2006; Round and 
Mazmanian, 2009). Several researches have reported that the balance and regulation 
of helper T cells (Th1, Th2, Th17), in helping protect the host from the invasion of 
enteric pathogens is greatly influenced by intestinal microbiota (Ivanov et al., 2008). 
Ley et al. (2006) also found that germ-free chicken lacking microbiota have few 
plasma cells, decreased IgA levels, and under-developed Peyer’s patches in the small 
intestine, resulting in increased susceptibility to enteric pathogens. The gut of birds 
is colonized by environmental microbes immediately after hatching. Several factors 
such as nutrient composition of diet, age, medication and stress account for the com-
position of the gut microbiota (De La Cochtiere et al., 2008; Claesson and O’Toole, 
2010; Claesson et al., 2011). For the complete maintenance of animal health, there 
must be homeostasis. In the absence of homeostasis, the animals are predisposed to 
several diseases. The gut microbiota composition is readily changeable (Jia et al., 
2008); depending on the environmental condition prevalent and the nutrient compo-
sition of feed. Although some are beneficial to the growth of the animal, others are 
harmful. It is therefore imperative that the safety of the total environment and the 
nutrient composition and state of the feed must be greatly taken into consideration to 
ensure optimum performance (Claesson and O'Toole, 2010). The aim of this review 
is to assess the impact of deoxynivalenol (DON) on the gut microbiota, morphology 
and subsequently its effect on the immune system of chicken.      

Deoxynivalenol (DON) in poultry feed
Deoxynivalenol (DON), also called vomitoxin, is a major contaminant of feed-

stuffs worldwide, produced by Fusarium graminearum (Gibberella zeae) and F. cul-
morum (Romers Lab Guide, 2000). It is found in cereal grains (wheat, maize, barley, 
oat and rye and less often in rice and sorghum) which form the bulk of feed for live-
stock. Fusarium graminearum and F. culmorum can survive in the leaves of the cold 
season and be a source of infection for the new crop. Cool temperatures and high 
humidity are the environmental conditions that favor the fungal development in the 
field (Dersjant-Li et al., 2003; Richard, 2007). If grains are not properly stored after 
harvesting, and are exposed to high moisture conditions, it gives rise to the fungal in-
festation. After infection of grains, F. graminearum infestation results in the disease 
known as ear rot in corn or head blight in wheat and barley (Richard, 2007). One sign 
associated with deoxynivalenol contamination is when corn kernels ripen prema-
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turely, unevenly and have a blanched appearance. The natural occurrence of DON in 
grains used for poultry is normally between 0 and 5 mg/kg, although concentrations 
can be higher (Dersjant-Li, 2003). However, improved storage conditions (<14% 
moisture) will minimize further elaboration of DON. Fusarium mycotoxins have 
the property of exerting both acute and chronic toxic effects and this characteristic 
makes them a major cause of broad varieties of toxic effects in animals. These fungal 
compounds have varying effect ranging from acute, overt diseases with high mor-
bidity and death to chronic disease, decreased resistance to pathogens and reduced 
animal productivity. Kanora and Maes (2009) reported that even when low levels of 
toxins are ingested, the metabolic, physiological and immunological properties of 
the animal are compromised, with symptoms associated with mycotoxicosis being 
evident. Since it is a common practice to use multiple grain sources in animal diets, 
the risk of exposure to several mycotoxins increases with diet complexity (Grenier 
and Applegate, 2013). The hemical structure of DON is shown in Figure 1.

  

Figure 1. The chemical structure of deoxynivalenol

The gut microbiota, morphology and deoxynivalenol (DON)
The gut microbiota is very important in ensuring the health of the animal is not 

compromised. Among the numerous roles it plays are the modulation of the gut epi-
thelial barrier, responding to inflammations, synthesis of vitamins, dietary fiber fer-
mentation and providing protection against pathogen colonization (Maslowski and 
Mackay, 2011; Kogut and Arsenault, 2016). Bacteroidaceae, Ruminococcaceae, 
Lachnospiraceae and Clostridiaceae are the dominant bacterial taxa in chicken and 
they are highest in the ceca (Oakley et al., 2014). Moreover, the longer retention time 
of digesta in the ceca allows for a more complete microbial breakdown of complex 
fiber and enhances short-chain fatty acid (SCFA) production compared to the other 
gut sites (Oakley et al., 2014). Cereals form the bulk of poultry feed but there is the 
likelihood of it being contaminated by the Fusarium toxin deoxynivalenol (DON) 
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which is very harmful for animal health (Escrivá et al., 2015), and causes substantial 
economic losses in poultry production (Awad et al., 2013). Andretta et al. (2011) 
reported that chickens are sensitive to moderate DON levels that compromise feed 
intake, growth performance and functioning of the immune system. The current 
guidance value of The European Union’s standard for DON in poultry feed is 5 mg 
DON/kg feed (12% moisture) (2006/576/EC, 2006). When consumed, DON impairs 
the intestinal morphology, nutrient absorption, barrier function, and the innate im-
mune response in chickens (Awad et al., 2011 b; Osselaere et al., 2013; Lucke et al., 
2017 b). The gastrointestinal mucosa among other functions serves as a dynamic 
barrier, regulating uptake of nutrients and water, while excluding potential pathogens 
and toxicants (Eriksen and  Pettersson, 2004). These functions are impaired upon 
ingestion of contaminated feed (Desjardins, 2006). Lipopolysaccharides (LPS) are 
immune-stimulatory compounds which are released by the gut microbiota (Saadia 
et al., 1990; Ge et al., 2000; Ghareeb et al., 2016; Lucke et al., 2017 a). These com-
pounds are part of the outer membrane of Gram negative bacteria and may suppress 
growth performance in poultry by diverting energy for an elevated immune response 
(Ghareeb et al., 2016). Problems associated with LPS include damage to the gut 
mucosal tissue (Wu et al., 2013), modifying mucus secretion and composition in 
vitro (Dohrman et al., 1998; Smirnova et al., 2003; Cornick et al., 2015; Zhang et al., 
2017). Moreover, evidence suggests that LPS can interfere with the response to other 
xenobiotic agents. Trichothecenes are small, amphipathic molecules that can move 
passively across cell membranes. They are easily absorbed via the integumentary 
and gastrointestinal systems, allowing for a rapid effect of ingested trichothecenes on 
rapidly proliferating tissues (Pinton and Oswald, 2014). Trichothecenes are toxic to 
animals and its exposure has been linked to reproductive disorders in domestic ani-
mals (Cortinovis et al., 2013). Damage to the gut barrier in duodenum and jejunum 
may modify intestinal nutrient flows with consequences for the microbial composi-
tion and metabolism in the ceca. Robert et al. (2017) reported that DON and other 
mycotoxins target the mucus and microbiota composition of their hosts, causing 
damage to the tissue of the gut, shortening the height of the villi, stop differentiation 
of gut cells and destabilize the composition of the gut (Suzuki and Iwahashi, 2015). 
The gastrointestinal tract (GIT) exhibits several characteristics such as chemical, 
physical, immunological and microbiological, all geared towards ensuring that its 
function of serving as a barrier against toxins and contaminants is not compromised 
(Bouhet et al., 2004). The villi, the minute membranes lining the mucous membrane 
of the small intestine serve as a site for the absorption of nutrients. Upon exposure 
of the villi to DON contaminated diets, there is atrophy of the villi in broilers (Awad 
et al., 2004, 2006, 2011). The structures of duodenal and jejunal mucosa villi are 
also affected and they become thinner and shorter on exposure to DON (Awad et 
al., 2011). This adversely affects the digestive and absorptive functions of the in-
testines. To maintain and ensure proper mucosal integrity, the gut barrier function 
of the epithelial cell layer needs to be in the best of shape. The integrity is mostly 
provided by the tight and adherence junctions of the epithelial cells which are known 
to be affected by fungal toxins (Bouhet et al., 2004). There are negative effects when 
the immune organs, liver and the small intestines are exposed to DON (Feinberg 
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and McLaughlin, 1989). A research conducted on Peking ducks showed that feeding 
with an increasing proportion of DON contaminated wheat (6–7 mg DON/kg and 
0.05–0.06 mg ZEN/kg) led to a decrease of the relative weight of the bursa of Fab-
ricius (Dänicke et al., 2004), which in turn may decrease the production of antibod-
ies. It was also discovered that in ducks, higher weights were recorded for the heart, 
liver and pancreas after feeding of DON (Cheng et al., 2004), while in broilers, giz-
zard, heart and bursa of Fabricius were having a higher weight (Kubena et al., 1985; 
Kubena et al., 1997). DON also had an irritant effect on the gizzard mucosa and a 
decrease in the weight of the small intestine of laying hens when fed a concentration 
of 3.4 and 9.9 mg/kg Fusarium mycotoxin (Dänicke et al., 2002). DON causes a dis-
ruption in the synthesis of protein thereby influencing the rate of passage across cell 
membrane (Lun et al., 1989; Waśkiewicz et al., 2014), affects the role of enzymes in 
metabolism in the cytoplasm, changes in affinity for an active binding site (Pinton 
and Oswald, 2014). These properties enable DON to influence specific tissues and 
organs. For the mycotoxin to take effect, it has to be released from the food matrix 
and absorbed from the intestines (Pinton et al., 2012) into the bloodstream, whereby 
it can affect the structural properties of intestinal mucosa and animal productivity.

Figure 2. Effects of DON on the gut microbiota and immune system of chicken
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The immune system and deoxynivalenol (DON)
The immune system is composed of interacting cells, tissues and proteins that 

form two distinct arms: the innate and adaptive immune responses. The innate im-
mune system is the first line of defense and is rapid and non-specific but lacks mem-
ory of pathogens; therefore, it does not need prior experience of a pathogen to mount 
an attack, but subsequent challenges by the same pathogen result in a similar re-
sponse to that of the first exposure (Lun et al., 1986). Adaptive immunity, however, is 
very slow to reach protective levels upon an initial exposure to a pathogen, but class 
switching occurs and the memory B cells generated are stored, which permits a rapid 
and specific defense against subsequent exposures to the same pathogen. At hatch-
ing, birds are quite vulnerable to environmental pathogens, as the immune system 
had not matured. At this early stage of life there is a strong reliance on maternal anti-
bodies and innate immune function (Levy, 2007) whilst the adaptive immune system 
gradually develops in response to microflora colonization (Klasing and Leshchin-
sky, 1999; Klasing, 2004). The immune system serves among other functions to rec-
ognize foreign substances and organisms (antigens) that are able to enter the body 
and thereby initiate and manage appropriate physiological responses to neutralize 
and eliminate these organisms and substances. In a bid to achieve this goal, sev-
eral mechanisms come into play, including inactivation of biological agents, lysis 
(rupture) of foreign cells, agglutination (clumping) or precipitation of molecules or 
cells, or phagocytosis (engulfing and inactivating) of foreign agents. There is varying 
literature regarding the impact of feeding DON on the health and performance traits 
in poultry. This notwithstanding, it is established that there is a dysfunction of the 
immune system of birds when exposed to DON, predisposing the birds to infectious 
diseases (Lun et al., 1986; Oswald et al., 2005). Ghareeb et al. (2012) and Dänicke 
et al. (2002) reported that birds that were exposed to DON had suppressed antibody 
response to infectious bronchitis vaccine (IBV) and Newcastle disease virus. DON 
decreased the concentration of tumor necrosis factor alpha (TNF-α) in plasma of 
broiler chickens (Awad et al., 2012). TNF-α is an important cytokine involved in 
systemic inflammation and stimulates the acute phase reaction. DON, therefore, can 
interfere with production of TNF-α from macrophages. DON also has adverse effect 
on the intestinal histomorphology, electrophysiology, absorption and barrier function 
in chickens (Awad et al., 2004, 2006 a, 2006 b; Girgis et al., 2010). The negative ef-
fects of DON on the health and growth performance of broiler chickens have been 
documented (Yunus et al., 2012; Antonissen et al., 2015). Because of its potential of 
serving as a protein inhibitor, it is able to initiate apoptosis by activating mitogen-
activated protein kinases. This leads to a variety of lesions and symptoms including 
growth retardation, feed refusal and gastrointestinal disorders (Awad et al., 2006; 
Awad et al., 2012). Mycotoxins undergo the same processes as drugs (absorption, 
distribution, metabolisation and excretion). Mycotoxins sometimes act as substrates, 
inhibitors or inducers to these metabolizing enzymes. Several experiments done in 
vivo and in vitro showed absorption of DON mostly occurs from the stomach to 
the proximal jejunum, leading to inhibition of protein synthesis and suppression of 
various target genes, including amino acid transporters (Goyarts and Dänicke, 2006; 
Dänicke et al., 2006). Immune homeostasis can also be maintained by the intestinal 
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epithelial cells (IEC) when they come into contact with commensal bacteria, and the 
most crucial key to coexistence of commensal bacteria and IECs is the ability to seg-
regate host cells from microorganisms. This notwithstanding, disruptions occurring 
in the intestinal epithelial barrier pose risk of infection and inflammatory responses 
(Yan et al., 2013). In broiler chickens, T-2 causes reduced feed intake and body 
weight gain, but also severe oral lesions and immunological dysfunction (Devegow-
da and Murthy, 2005). Clinical signs depend on the exposure time and on the dose 
of the toxin. Moreover, this toxin causes oxidative stress that alters the cell cycle and 
induces apoptosis in vitro and in vivo (Islam et al., 1998; Chen et al., 2008). Ghareeb 
et al. (2006) reported that feeding 10 mg DON/kg to chicken altered the humoral im-
mune response to viral vaccine, decreased the level of alanine transaminase (ALT), 
increased serum cholesterol concentration and the amount of circulating triglycer-
ides. Moreover, Chen et al. (2017) verified that DON may cause a disturbance to the 
immune system and alter the intestinal barrier in Taiwan country chickens, and may 
also lead to irregularities in growth performances in a dose- and sex-dependent man-
ner (Chen et al., 2017). For an immune response to be effective, the right mechanism, 
or combination of mechanisms, must be activated. However, for each species there 
are many diseases for which immunity does not exist. Also, under certain circum-
stances, these normally protective responses can result in significant tissue damage, 
which leads to immune-mediated diseases. The summary of the effects of DON on 
the gut microbiota and immune system of chicken is presented in Figure 2.
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