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THE GCD SEQUENCES OF THE ALTERED LUCAS
SEQUENCES

Fikri Koken

Abstract. In this study, we give two sequences {L+
n }n≥1 and {L−

n }n≥1 de-
rived by altering the Lucas numbers with {±1,±3}, terms of which are called
as altered Lucas numbers. We give relations connected with the Fibonacci Fn

and Lucas Ln numbers, and construct recurrence relations and Binet’s like for-
mulas of the L+

n and L−
n numbers. It is seen that the altered Lucas numbers

have two distinct factors from the Fibonacci and Lucas sequences. Thus, we
work out the greatest common divisor (GCD) of r-consecutive altered Lucas
numbers. We obtain r-consecutive GCD sequences according to the altered Lu-
cas numbers, and show that their GCD sequences are unbounded or periodic
in terms of values r.

1. Introduction

Let Fn and Ln denote nth Fibonacci and Lucas numbers, respectively. The
numbers Fn and Ln, are entries of sequences {Fn}n≥0 and {Ln}n≥0, are given
by the linear recurrence relations,

(1.1) Fn+2 = Fn+1 + Fn, Ln+2 = Ln+1 + Ln, n ≥ 0

with the initial values F0 = 0, F1 = 1, L0 = 2, L1 = 1 (see [6]).
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A quick look at the greatest common divisor (GCD) properties of the
numbers Fn and Ln shows that the GCD of two Fibonacci numbers is al-
ways a Fibonacci number, (Fm, Fn) = F(m,n). Thus, the successive Fibonacci
and Lucas numbers are relatively prime, (Fn, Fn+1) = (Fn, Fn+2) = 1 and
(Ln, Ln+1) = (Ln, Ln+2) = 1. In addition to these properties, there exist a
number of divisibility and GCD properties for these numbers such as

Lm |Fn ⇔ 2m |n , m ≥ 2,

Lm |Ln ⇔ n = (2k − 1)m, m ≥ 2,

(Fn, Ln) =

{
2, n ≡ 0 (mod 3) ,

1, otherwise,

(Lm, Ln) = Ld if
m

d
and

n

d
is odd.

Several authors investigate the above numbers finding many values of a,
b ∈ Z for the Fibonacci {Fn ± a}n≥0 and Lucas {Ln ± b}n≥0 sequences. For
example, in [2], two sequences are defined with {Gn}n≥0 = {Fn + (−1)n}n≥0
and {Hn}n≥0 = {Fn − (−1)n}n≥0, which are called as the altered Fibonacci
numbers. It is shown that the sequences {Gn}n≥0 and {Hn}n≥0 are multipli-
cation of Fibonacci and Lucas subsequences according to their indices n ([1],
[2], [6]). And also, in [2], the authors investigate some GCD cases for succes-
sive terms of the {Gn}n≥0 and {Hn}n≥0. It is noted that (G4n+k, G4n+k+1)
and (H4n+k, H4n+k+1), (k = 0, 2) are not relatively prime. In addition to
the sequences {Gn}n≥0 and {Hn}n≥0, in [1], K. Chen defines a sequence
{Fn + a}n≥0, a ∈ Z, called as a shifted Fibonacci sequence. And also, the au-
thor establishes a sequence {fn(a)}n≥0 = {gcd(Fn + a, Fn+1 + a)}n≥0, which
is called as a GCD sequence of the shifted Fibonacci sequence. He shows that
some successive terms of the altered and shifted sequences have a different
behavior such as

(G4n, G4n+1) = L2n+1 = (G4n+1, G4n+3) , (G4n+2, G4n+3) = F2n+2,

(H4n, H4n+1) = F2n+1 = (H4n+1, H4n+3) , (H4n+2, H4n+3) = L2n+2,

f4n−1(1) = F2n−1, f4n+1(1) = L2n,

f4n−1(−1) = L2n−1, f4n+1(−1) = F2n.

In [1], the author shows that {fn(a)}n≥0 is bounded from above if a 6= ±1.
In addition to the properties of {fn(a)}n≥0 given in [1], we can give Spilker’s
result about fn(a) as follows (see [8]): let n and a be integers. If m := a4 − 1
is not 0 and fn (a) divides a2+(−1)n, then fn(a) is simply periodic such that
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a period p is defined by Fp ≡ 0 (modm), Fp+1 ≡ 0 (modm). Also, the author
produces explicit formulas for the number fn(a) and generalizes it to a wider
class of recursive second order sequences.

In [7], the authors establish a sequence {fn (±3)}n≥0, and show that their
results correspond with bounds and periods given in [1] and [8].

In [4], the authors study cases of (Fm + b, Fn + a), for a, b ∈ Z by varying
positive integers m and n. For example, they show that there exists a constant
c such that gcd (Fm + a, Fn + a) > ecm holds for infinitely many pairs of
positive integers m > n.

In [5], the author studies two shifted sequences Ua ± k of the Lucas se-
quences of the first kind, where Ua = {un}n≥0, a ∈ Z, un = aun−1 + un−2
for n ≥ 2, u0 = 0, u1 = 1, and shows that there exist infinitely many integers
k such that two sequences are prime free. This result extends previous works
for the shifted Fibonacci sequences, when a = 1 and k = 1.

In [2], the authors mention that the sequences {Ln + (−1)n}n≥0 and
{Ln − (−1)n}n≥0 are not considered as altered Lucas sequences. Fortunately,
in [1], the author also derives GCD sequences (L4n+k−1 + 1, L4n+k + 1), k =
0, 1, 2, 3, and mentions that if n ≡ l(modm), m = 3, 6 and l ∈ {0, 1, 2, 3, 4, 5},
then the sequences gcd (L4n+k−1 + 1, L4n+k + 1), k = 0, 1, 2, 3 are constant.

In this study, our goal is to define two altered Lucas sequences, {Ln ±
k1}n≥0 and {Ln ∓ k2}n≥0, for specific integers k1 and k2. Since it is seen
that theirs terms have two distinct factors such as the Fibonacci and Lucas
numbers, we work out GCD sequences for r-consecutive terms of the altered
Lucas sequences. And also, we determine relations between GCD sequences
and the Fibonacci or Lucas sequences. In the last part, we establish some
r-consecutive GCD shifted sequences from two altered Lucas sequences, and
give some properties of them.

2. The altered Lucas sequences

In this section, we define two altered Lucas sequences {L+
n }n≥1 and

{L−n }n≥1 by

L+
n =

{
Ln − 1, if n is odd,
Ln + 3, otherwise,

(2.1)

L−n =

{
Ln + 1, if n is odd,
Ln − 3, otherwise.

(2.2)
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Based on the definitions given in (2.1) and (2.2), we can give the first 12 terms
of the {L+

n }n≥1 and {L−n }n≥1 in the following table:

(2.3)
n 1 2 3 4 5 6 7 8 9 10 11 12

L+
n 0 6 3 10 10 21 28 50 75 126 198 325

L−n 2 0 5 4 12 15 30 44 77 120 200 319

.

We see that some interesting observations can be made for L+
n and L−n given

in (2.3) according to both divisibility properties and recurrence relation. For
example, the numbers L±3n (i.e., L+

3n and L−3n) have odd parity, and the num-
bers L±3n+1 and L±3n+2 have even parity. In addition, recurrence relations of
{L+

n }n≥1 and {L−n }n≥1 are shown by using L±n+1 + L±n = Ln+2 ± 2, namely,
the Lucas type recurrence relations are given as

L±n + L±n+1 =

{
L±n+2 ± 3, if n is odd,
L±n+2 ∓ 1, otherwise,

L±n+1 − L±n =

{
L±n−1 ± 1, if n is odd,
L±n−1 ∓ 3, otherwise.

Let us take a look at differences L±2n+1 − L
±
2n−1 and L±2n+2 − L

±
2n. It is seen

they are the Lucas numbers: L±2n+1 − L
±
2n−1 = L2n, L±2n+2 − L

±
2n = L2n+1.

The following equations, which are the relations for the difference and sum
of indices of the Lucas numbers given in [6],

Lm+n + Lm−n =

{
LmLn, if n is even,
5FmFn, otherwise,

(2.4)

Lm+n − Lm−n =

{
5FmFn, if n is even,
LmLn, otherwise,

(2.5)

will enable us to determine a number of properties for the altered Lucas
sequences.

Theorem 2.1. Let L+
n and L−n be the nth altered Lucas numbers given in

(2.1) and (2.2), respectively. The following equations are valid:

L+
4k = 5F2k+1F2k−1, L−4k = L2k+1L2k−1,

L+
4k+1 = 5F2k+1F2k, L−4k+1 = L2k+1L2k,

L+
4k+2 = L2k+2L2k, L−4k+2 = 5F2k+2F2k,

L+
4k+3 = L2k+2L2k+1, L−4k+3 = 5F2k+2F2k+1.
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Proof. By substituting 2k + 1 and 2k − 1 for m and n given in (2.4),
2k + 1 and 2k for m and n given in (2.5), respectively, we rewrite equalities
into the forms

L(2k+1)+(2k−1) + 3 = 5F2k+1F2k−1,

L(2k+1)+2k − 1 = 5F2k+1F2k.

Also, the desired results can be given with similar applications taking suitable
values for m and n. �

In the rest of this study, similar proofs of all results are generally omitted
for the sake of brevity.

Now, we show that the altered Lucas numbers L+
n and L−n satisfy interre-

lationships with the Fibonacci and Lucas numbers.

Theorem 2.2. If L+
n and L−n are the nth altered Lucas numbers, then

L+
2n + L+

2n+1 =

{
L2
n+1, if n is odd,

5F 2
n+1, otherwise,

L+
2n+1 + L+

2n+2 =

{
LnLn+3 + 6, if n is odd,

5FnFn+3 + 6, otherwise,

L−2n + L−2n+1 =

{
L2
n+1, if n is even,

5F 2
n+1, otherwise,

L−2n+1 + L−2n+2 =

{
LnLn+3 + 2, if n is odd,

5FnFn+3 + 2, otherwise.

Proof. By using the definitions given in (2.1) and (2.2), and all results
of Theorem 2.1, we obtain

L+
2n + L+

2n+1 =

{
Ln+1 (Ln + Ln−1) , if n is odd,

5Fn+1 (Fn + Fn−1) , otherwise,

L+
2n+1 + L+

2n+2 =

{
Ln (Ln+2 + Ln+1) + 6, if n is odd,

5Fn (Fn+2 + Fn+1) + 6, otherwise. �
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As an alternative method to the definitions given in (2.1), (2.2) and all
results of Theorem 2.1, we investigate a Binet’s like formula, which is com-
monly used in the proof of the properties of the integer sequences. Then, the
altered Lucas numbers can be expressed in terms of α and β = −α−1, where
α = 1+

√
5

2 is the golden ratio.

Theorem 2.3. The Binet’s like formulas of the numbers L+
n and L−n are

given, respectively, by

L+
n =

(
αb

n
2 +1c − (−1)b

n
2 c βb

n
2 +1c

)(
αd

n
2−1e − (−1)b

n
2 c βd

n
2−1e

)
,

L−n =
(
αb

n
2 +1c + (−1)b

n
2 c βb

n
2 +1c

)(
αd

n
2−1e + (−1)b

n
2 c βd

n
2−1e

)
,

where bxc and dxe denote the floor and ceiling integer functions.

Proof. By using the Binet’s formulas of the Fibonacci and Lucas num-
bers, we achieve the desired results. �

3. Properties of the GCD sequences of the altered Lucas sequences

In this section, we consider two greatest common divisor (GCD) sequences,
{L+

n,r}n≥1 and {L−n,r}n≥1, which are called as r-consecutive GCD sequences,

L+
n,r = gcd

(
L+
n , L

+
n+r

)
,(3.1)

L−n,r = gcd
(
L−n , L

−
n+r

)
.(3.2)

It is known that the Lucas sequence has some GCD properties such as
(Lm, Ln) 6= L(m,n) for n,m ∈ Z+, and if m

d and n
d are odd, (Lm, Ln) = Ld

and (Fn, Ln) = 1 or 2.
Firstly, our aim is to investigate the 1-consecutive GCD sequences,

{L+
n,1}n≥0 = {gcd(L+

n , L
+
n+1)}n≥1 and {L−n,1}n≥1 = {gcd(L−n , L−n+1)}n≥1, and

also to study some properties of them.
The first 14 terms of the sequence {L+

n,1}n≥0 are given with

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L+
n,1 5F1 6 L2 1 5F3 1 L4 2 5F5 3 L6 1 5F7 2 L8

.
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The sequence {L+
n,1}n≥1 is neither constant nor decreasing, or increasing.

But, there are some subsequences of the sequence {L+
n,1}n≥1, which are ei-

ther periodic or increasing. It is seen that the sequence {L+
2k,1}k≥0 includes

{Lk+1} for k = 1, 3, 5, ... and {5Fk+1} for k = 0, 2, 4, 6, . . .. Also, the sequence
{L+

2k+1,1}k≥0 is {6, 1, 1, 2, 3, 1, 2, 1, 3, 2, 1, 1} for k = 0, 1, 2, 3, . . . , 11, which is
periodic according to k ≡ 0− 11(mod 12).

Now, according to observations made for the numbers L+
n,1, the numbers

L−n,1 are given with

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L−n,1 L1 2 5F2 1 L3 3 5F4 2 L5 1 5F6 1 L7 6 5F8

It is seen that L−2k,1 = 5Fk+1 for k = 1, 3, 5, . . ., and L−2k,1 = Lk+1 for k =

0, 2, 4, 6, . . .. Also, the sequence {L−2k+1,1} = {2, 1, 3, 2, 1, 1, 6, 1, 1, 2, 3, 1}, k ≡
0− 11 (mod 12) is periodic.

Lemma 3.1. For any integers m and n,

(3.3) (Ln − Lm − Fm−1, Ln+1 + Lm−1 + Fm−2)

= (Ln−2 − Lm+2 − Fm+1, Ln−1 + Lm+1 + Fm) .

Proof. By applying property (x, y) = (x, y − x) for the left hand side of
(3.3), we have(

Ln − Lm − Fm−1, Ln+1 + Lm−1 + Fm−2
)

= (Ln − Lm − Fm−1, Ln+1 − Ln + Lm−1 + Lm + Fm−2 + Fm−1)

= (Ln − Ln−1 − Lm − Lm+1 − Fm−1 − Fm, Ln−1 + Lm+1 + Fm)

= (Ln−2 − Lm+2 − Fm+1, Ln−1 + Lm+1 + Fm)

by using Fn+1 − Fn = Fn−1 and Ln+1 − Ln = Ln−1 given in (1.1). �

Lemma 3.2. For any integers m and n,(
Ln − 1, Ln+1 + 3

)
(3.4)

= (Ln−2m − L2m+1 − F2m, Ln−2m+1 + L2m + F2m−1) ,(
Ln + 1, Ln+1 − 3

)
(3.5)

= (Ln−2m + L2m+1 + F2m, Ln−2m+1 − L2m − F2m−1) .
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Proof. Note that F−1 = F1 = 1 and F0 = 0. Thus, by applying property
(x, y) = (x, y − x) for the left hand side of (3.4), we get

(Ln − 1, Ln+1 + 3) = (Ln − F1L1 − F0L2, Ln+1 + F0L1 + F−1L2)

= (Ln − F1L1 − F0L2, Ln−1 + F2L1 + F1L2)

= (Ln−2 − F3 − 3F2, Ln−1 + F2 + 3F1) .

By using Ln = Fn−1 + Fn+1, we obtain

(Ln−2 − F3 − 3F2, Ln−1 + F2 + 3F1) = (Ln−2 − F4 − 2F2, Ln−1 + F3 + 2F1)

= (Ln−2 − L3 − F2, Ln−1 + L2 + F1) .(3.6)

The equation in (3.6) is a special case for m = 1 of equation given in (3.3).
Thus, by applying property (x, y) = (x, y − x),m−1 times to (3.6), we achieve
the desired result. �

Theorem 3.3. Let L+
2k,1 and L−2k,1 be the 1-consecutive GCD numbers

given in (3.1) and (3.2) with r = 1, respectively. Then

L+
2k,1 =

{
Lk+1, for odd k,

5Fk+1, for even k,
L−2k,1 =

{
5Fk+1, for odd k,

Lk+1, for even k.

Proof. Since L+
2k,1 = (L+

2k, L
+
2k+1), by applying k + 1 for m, and k − 1

and k for n in equations given (2.4) and (2.5), respectively, we can rewrite the
values L+

2k and L+
2k+1 as

L(k+1)+(k−1) + L(k+1)−(k−1) =

{
Lk+1Lk−1, if k is odd,

5Fk−1Fk+1, otherwise,

L(k+1)+k − L(k+1)−k =

{
5FkFk+1, if k is even,

Lk+1Lk, otherwise.

Since (Lk, Lk−1) = 1 and (Fk, Fk−1) = 1, (L+
2k, L

+
2k+1) is Lk+1 or 5Fk+1. The

other equation is shown with a similar way. �
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Theorem 3.4. If L+
2k−1,1 and L−2k−1,1 are the (2k − 1)th entries of the

1-consecutive GCD sequences, respectively, then L+
2k−1,1 and L−2k−1,1 are pe-

riodic such as

L+
2k−1,1 =


1, k ≡ 0, 2, 3, 6, 8, 11 (mod 12) ,

2, k ≡ 4, 7, 10 (mod 12) ,

3, k ≡ 5, 9 (mod 12) ,

6, k ≡ 1 (mod 12) ,

L−2k−1,1 =


1, k ≡ 0, 2, 5, 6, 8, 9 (mod 12) ,

2, k ≡ 1, 4, 10 (mod 12) ,

3, k ≡ 3, 11 (mod 12) ,

6, k ≡ 7 (mod 12) .

Proof. Since L+
2k−1,1 = (L2k−1−1, L2k+3), firstly, for an even k, we can

write (3.4) with n = 2k − 1 and m = k
2 as

(L2k−1 − 1, L2k + 3) = (Lk−1 − Lk+1 − Fk, 2Lk + Fk−1)

= (−Lk − Fk, 2Lk + Fk−1) .

By using properties Lk = Fk+1 + Fk−1 and (x, y) = (x, y + zx), we have

L+
2k−1,1 = (−2Fk+1, 2Fk+1 + 3Fk−1)

= (−2Fk+1, 3Fk−1).

Since (Fk+1, 3) = 1 for even k, it is valid (−2Fk+1, 3Fk−1) = (2, Fk−1). Thus,
L+
2k−1,1 is 1 or 2.
Secondly, for an odd k, we can write (3.4) with n = 2k − 1 and m = k−1

2
as

(L2k−1 − 1, L2k + 3) = (−Fk−1, Lk+1 + Lk−1 + Fk−2) .

By using properties 5Fk = Lk+1 + Lk−1 and (x, y) = (x, y + zx), we have

L+
2k−1,1 = (−Fk−1, 5Fk−1 + 6Fk−2)

= (−Fk−1, 6Fk−2) .
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It follows (−Fk−1, 6Fk−2) = (Fk−1, 6), so L+
2k−1,1 is one of the entries of

{1, 2, 3, 6} for odd k. In both cases, the following properties are valid

(2, Fk) = 2 if and only if k ≡ 0 (mod 3) ,

(3, Fk) = 3 if and only if k ≡ 0 (mod 4) ,

(6, Fk) = 6 if and only if k ≡ 0 (mod 12) .

Thus, in case (Fk−1, 6) = 6, for k ≡ 1(mod 12), it is clear that (L+
2k−1, L

+
2k) =

6. If (Fk−1, 6) = 3, k 6= 1, for k ≡ 1(mod 4) for odd k, that is k = 4l + 1,
for k ≡ 5, 9(mod 12), then (L+

2k−1, L
+
2k) = 3. Now, assume (Fk−1, 6) = 2,

for k ≡ 1(mod 3) for odd k, that is k = 3m + 1, for k ≡ 7(mod 12), then
(L+

2k−1, L
+
2k) = 2. Finally, in the cases k ≡ 3, 11(mod 12), we have (Fk−1, 6) =

1. Suppose that (2, Fk−1) = 2, k ≡ 1(mod 3) for even k, that is k = 3s + 1,
for k ≡ 4, 10(mod 12), it is clear that (L+

2k−1, L
+
2k) = 2. Otherwise, in cases

k ≡ 0(mod 3) and k ≡ 2(mod 3), it is (2, Fk−1) = 1, for k ≡ 0, 6, (mod 12) and
k ≡ 2, 8, (mod 12), respectively. All results complete the proof for all cases of
L+
2k−1,1 = (L+

2k−1, L
+
2k).

Now, since L−2k−1,1 = (L−2k−1, L
−
2k), we suppose for even k, n = 2k− 1 and

m = k
2 given in (3.5):

(Lk−1 + Lk+1 + Fk,−Fk−1) = (2Fk,−Fk−1) .

And also, we assume for odd k, n = 2k − 1 and m = k+1
2 given in (3.5):

(Lk−2 + Lk+2 + Fk+1, Lk−1 − Lk+1 − Fk) = (3Lk + Fk+1,−Lk − Fk)

= (3Fk−1 + 4Fk+1,−2Fk+1)

= (3Fk−1,−2Fk+1) .

Depending on whether k is odd or even, the calculations of expressions
L−2k−1,1 = (2Fk,−Fk−1) and L−2k−1,1 = (3Fk−1,−2Fk+1) can be made with
similar methods. �

As a brief summary of the mentioned above, the sequence {L+
4k−2,1}k≥1 =

{gcd(L+
4k−2, L

+
4k−1)}k≥1 is {L2k}k≥1, and the sequence {L+

4k,1}k≥1 is
{5F2k+1}k≥1. And also, {L−4k−2,1}k≥1 = {5F2k}k≥1 and {L−4k,1}k≥1 =

{L2k+1}k≥1. These results given in the following lemma are consequences of
Theorem 3.3.
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Lemma 3.5. Let L+
n,1 and L−n,1 be the nth numbers of 1-consecutive GCD

sequences. Then

L+
4k,1 = 5F2k+1, L−4k,1 = L2k+1,

L+
4k+2,1 = L2k+2, L−4k+2,1 = 5F2k+2.

In addition, the {L+
4k+1,1}k≥1 = {6, 1, 3, 2, 3, 1}, k ∈ Z6 is periodic; that

is L+
4k+1,1 = 6 iff k ≡ 0 (mod 6), L+

4k+1,1 = 1 iff k ≡ 1 (mod 6) and so on,
respectively. The sequence {L+

4k−1,1}k≥1 = {1, 2, 1, 1, 2, 1}, k ∈ Z6 is periodic.
The sequence {L−4k+1,1}k≥1 = {2, 3, 1, 6, 1, 3}, k ∈ Z6 is periodic. In addition,
the {L−4k−1,1}k≥1 = {1, 2, 1}, k ∈ Z3 is also periodic. These results given in
the following lemma are consequences of Theorem 3.4.

Lemma 3.6. Let L+
n,1 and L−n,1 be the nth numbers of 1-consecutive GCD

sequences, L±n,1 denotes both the numbers L+
n,1 and L−n,1. Then

L+
4k+1,1 =


6, k = 0 (mod 6) ,

3, k = 2, 4 (mod 6) ,

2, k = 3 (mod 6) ,

1, k = 1, 5 (mod 6) ,

L−4k+1,1 =


6, k = 4 (mod 6) ,

3, k = 0, 2 (mod 6) ,

2, k = 1 (mod 6) ,

1, k = 3, 5 (mod 6) ,

and

L±4k+3,1 =

{
2, k = 1 (mod 3) ,

1, otherwise.

It is well known that (Fn, Fn+2) = 1 and (Ln, Ln+2) = 1. Similarly, se-
quences {L+

n,2}k≥1 and {L−n,2}k≥1 are obtained as the periodic constant se-
quences.

Theorem 3.7. Let L+
n,2 and L−n,2 be the nth 2-consecutive GCD numbers.

Then

L+
4k,2 = L+

4k+3,2 = L−4k+3,2 =

{
2, k ≡ 2 (mod 3) ,

1, otherwise,
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L+
4k+2,2 =

{
2, k ≡ 0 (mod 3) ,

1, otherwise,
L−4k,2 =

{
4, k ≡ 2 (mod 3) ,

1, otherwise,

L−4k+2,2 =

{
4, k ≡ 0 (mod 3) ,

1, otherwise,

L−4k+1,2 =


1, k ≡ 0, 2 (mod 6) ,

2, k ≡ 4 (mod 6) ,

3, k ≡ 3, 5 (mod 6) ,

6, k ≡ 1 (mod 6) ,

L+
4k+1,2 =


1, k ≡ 3, 5 (mod 6) ,

2, k ≡ 1 (mod 6) ,

3, k ≡ 0, 2 (mod 6) ,

6, k ≡ 4 (mod 6) .

Proof. From L+
4k,2 = (L+

4k, L
+
4k+2) and L

−
4k+2,2 = (L−4k+2, L

−
4k+4), we get(

L4k + 3, L4k+2 + 3
)
= (5F2k+1F2k−1, L2k+2L2k)

= (5F2k+1, L2k+2) (F2k−1, L2k) (5F2k+1, L2k) (F2k−1, L2k+2)

= (F2k−1, F2k+3 + F2k+1) = (F2k−1, 4F2k)

and(
L4k+2 − 3, L4k+4 − 3

)
= (5F2k+2F2k, L2k+3L2k+1)

= (5F2k+2, L2k+3) (F2k, L2k+1) (5F2k+2, L2k+1) (F2k, L2k+3)

= (F2k, F2k+4 + F2k+2) = (F2k, 4F2k+1) .

By using the properties (2, Fk) = 2 if and only if k ≡ 0 (mod 3) and (4, Fk) = 4
if and only if k ≡ 0 (mod 6), we obtain L+

4k,2 = 2 iff k ≡ 2 (mod 3) and
L−4k+2,2 = 4 iff k ≡ 0 (mod 3), then the desired results are found. The other
properties are obtained in a similar way by using (3, Fk) = 3 if and only if
k ≡ 0 (mod 4). �

It is well known that (Fn, Fn+3) = 2 and (Ln, Ln+3) = 2 iff n ≡ 0 (mod 3),
otherwise (Fn, Fn+3) = (Ln, Ln+3) = 1. And, sequences {L+

n,3}k≥1 and
{L−n,3}k≥1 are established by Theorem 3.8.

Theorem 3.8. Let L+
n,3 and L−n,3 be the nth 3-consecutive GCD numbers.

Then

L+
4k+1,3 =

{
10F2k+1, k ≡ 0 (mod 3) ,

5F2k+1, otherwise,
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L+
4k+3,3 =

{
2L2k+2, k ≡ 1 (mod 3) ,

L2k+2, otherwise,

L−4k+1,3 =

{
2L2k+1, k ≡ 0 (mod 3) ,

L2k+1, otherwise,

L−4k+3,3 =

{
10F2k+2, k ≡ 1 (mod 3) ,

5F2k+2, otherwise.

Proof. From L+
4k+1,3 =

(
L+
4k+1, L

+
4k+4

)
and L−4k+1,3 =

(
L−4k+1, L

−
4k+4

)
,

we get

(L4k+1 − 1, L4k+4 + 3) = 5F2k+1 (F2k, F2k+3) ,

(L4k+1 + 1, L4k+4 − 3) = L2k+1 (L2k, L2k+3) .

Thus, the properties (Fn, Fn+3) = 2 and (Ln, Ln+3) = 2 iff n ≡ 0 (mod 3)
complete the proof. �

Theorem 3.9. Let L+
n,3 and L−n,3 be the nth 3-consecutive GCD numbers.

Then

L+
4k,3 =

{
1, k ≡ 0, 3 (mod 6) ,

2, k ≡ 1, 2, 4, 5 (mod 6) ,
L−4k,3 =


1, k ≡ 0, 3 (mod 6) ,

2, k ≡ 1, 4 (mod 6) ,

4, k ≡ 2, 5 (mod 6) ,

L+
4k+2,3 =


1, k ≡ 4 (mod 6) ,

2, k ≡ 0, 2 (mod 6) ,

3, k ≡ 1 (mod 6) ,

6, k ≡ 3, 5 (mod 6) ,

L−4k+2,3 =



1, k ≡ 1 (mod 6) ,

2, k ≡ 5 (mod 6) ,

3, k ≡ 4 (mod 6) ,

4, k ≡ 3 (mod 6) ,

6, k ≡ 2, (mod 6) ,

12, k ≡ 0 (mod 6) .

Proof. Since L+
4k+2,3 = (L+

4k+2, L
+
4k+5) and L

−
4k,3 = (L−4k, L

−
4k+3), by ap-

plying appropriate values of equations given in (3.4) and (3.5), we obtain
proofs of all results. �

Since (Fn, Fn+4) = (Fn, 3Fn+1) and (Ln, Ln+4) = (Ln, 3Ln+1), it is seen
that (Fn, Fn+4) = 3 iff n ≡ 0 (mod 4) and (Ln, Ln+4) = 3 iff n ≡ 2 (mod 4),
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otherwise it equals to 1. Now, we give the form of the sequences {L+
n,4}n≥1

and {L−n,4}n≥1.

Theorem 3.10. Let L+
n,4 and L

−
n,4 be the nth 4-consecutive GCD numbers.

Then

L+
4k,4 = 5F2k+1, L−4k,4 = L2k+1,

L+
4k+2,4 =

{
L2k+2, k ≡ 0 (mod 2) ,

3L2k+2, otherwise,

L−4k+2,4 =

{
15F2k+2, k ≡ 0 (mod 2) ,

5F2k+2, otherwise.

Proof. From L−4k+2,4 = (L−4k+2, L
−
4(k+1)+2), it follows that L−4k+2,4 =

(L4k+2−3, L4(k+1)+2−3) and L−4k+2,4 = 5F2k+2(F2k, 3F2k+1). Since (F2k, 3) =

3 iff k ≡ 0 (mod 2), we achieve desired results. �

Lemma 3.11. Let L+
n,4 and L−n,4 be the nth 4-consecutive GCD numbers.

Then

L+
4k+1,4 = 5L−4k+1,4 =

{
5, k ≡ 1, 2 (mod 3) ,

10, k ≡ 0 (mod 3) ,

5L+
4k+3,4 = L−4k+3,4 =

{
5, k ≡ 0, 2 (mod 3) ,

10, k ≡ 1 (mod 3) .

Proof. Since L+
4k+1,4 = (L+

4k+1, L
+
4k+5) and L

−
4k+3,4 = (L−4k+3, L

−
4(k+1)+3),

by applying Theorem 2.1, we get the desired results. �

Now, in addition to the sequences L+
n,r and L−n,r defined in (3.1) and (3.2),

by selecting r-consecutive elements as mixed from the numbers L+
n and L−n

defined in (2.1) and (2.2), we establish two different GCD sequences of the
altered Lucas sequences such as{

L+ −
n,r

}
n≥1 =

{
gcd

(
L+
n , L

−
n+r

)}
n≥1 ,{

L− +
n,r

}
n≥1 =

{
gcd

(
L−n , L

+
n+r

)}
n≥1 .

It is well known that (Fn, Ln) = 2 if and only if 3|n, otherwise (Fn, Ln) = 1.
Similarly, the sequence {L+ −

n,0 }n≥1 (or {L− +
n,0 }n≥1), i.e. 0-consecutive GCD

sequence, is a constant periodic sequence.
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Lemma 3.12. Let L+ −
n,0 = L− +

n,0 = gcd(L+
n , L

−
n ) be the nth 0-consecutive

GCD numbers. Then

L+ −
4k,0 =

{
1, k ≡ 0 (mod 3) ,

2, otherwise,
L+ −
4k+1,0 =

{
1, k ≡ 2 (mod 3) ,

2, otherwise,

L+ −
4k+2,0 =

{
3, k ≡ 1 (mod 3) ,

6, otherwise,
L+ −
4k+3,0 =

{
1, k ≡ 0 (mod 3) ,

2, otherwise.

Proof. Since L+ −
4k,0 = (L+

4k, L
−
4k) and L+ −

4k+1,0 = (L+
4k+1, L

−
4k+1), by ap-

plying Theorem 2.1 with appropriate values, we can write

L+ −
4k,0 = (5F2k+1F2k−1, L2k+1L2k−1)

= (5F2k+1, L2k+1) (F2k−1, L2k−1) .

By using (L2k+1, 2) = 2 if and only if k ≡ 1(mod 3), and (F2k−1, 2) = 2 if and
only if k ≡ 2(mod 3), others cases are 1, we achieve desired result. The other
results are produced with similar ways. �

Firstly, we have not encountered in the literature with (Fn, Ln+1) and
(Fn+1, Ln), but, we can write (Fn, Fn+Fn+2)=1 and (Fn+1, Fn−1+Fn+1)=1,
respectively. Therefore, we study on 1-consecutive GCD sequences.

Theorem 3.13. Let L+ −
n,1 and L− +

n,1 be the nth numbers of 1-consecutive
GCD sequences. Then

L+ −
4k+1,1 = 5F2k, L− +

4k+1,1 = L2k,

L+ −
4k+3,1 = L2k+1, L− +

4k+3,1 = 5F2k+1.

Proof. From the definitions given in (2.1), (2.2) and Theorem 2.1, we
have (

L+
4k+1, L

−
4k+2

)
= (L4k+1 − 1, L4k+2 − 3) = 5F2k (F2k+1, F2k+2) ,(

L−4k+1, L
+
4k+2

)
= (L4k+1 + 1, L4k+2 + 3) = L2k (L2k+1, L2k+2) .

Thus, all results are obtained, since (F2k+1, F2k+2) = 1 = (L2k+1, L2k+2). �
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Lemma 3.14. If L+ −
n,1 and L− +

n,1 are the nth 1-consecutive GCD numbers,
then

L± ∓4k,1 =

{
2, k ≡ 1 (mod 3) ,

1, otherwise,

L+ −
4k+2,1 =


1, k ≡ 0, 4 (mod 6) ,

2, k ≡ 2 (mod 6) ,

3, k ≡ 1, 3 (mod 6) ,

6, k ≡ 5 (mod 6) ,

L− +
4k+2,1 =


1, k ≡ 1, 3 (mod 6) ,

2, k ≡ 5 (mod 6) ,

3, k ≡ 0, 4 (mod 6) ,

6, k ≡ 2 (mod 6) .

Secondly, (Fn, Ln+2) = (Fn, 3Fn+1) and (Fn+2, Ln) = (Fn−2, 3Fn−1) give
(Fn, Ln+2) = 3 iff n ≡ 0 (mod 4) and (Fn+2, Ln) = 3 iff n ≡ 2 (mod 4),
otherwise, it equals to 1. Now, we study on numbers L+ −

n,2 and L− +
n,2 .

Theorem 3.15. Let L+ −
n,2 and L− +

n,2 be the nth numbers of 2-consecutive
GCD sequences. Then

L+ −
4k+1,2 = 5F2k+1, L− +

4k+1,2 = L2k+1,

L+ −
4k+3,2 = L2k+2, L− +

4k+1,2 = 5F2k+2.

Proof. From the definitions given in (2.1), (2.2) and Theorem 2.1, we
have (

L+
4k+1, L

−
4k+3

)
= 5F2k+1 (F2k, F2k+1 + F2k) .

Since (F2k, F2k+1) = 1 and (x, y) = (x, y − x), we have the proof of the first
of our equalities. The proofs of the remaining properties are similar. �

Lemma 3.16. If L+ −
n,2 and L− +

n,2 are the nth 2-consecutive GCD numbers,
then

L+ −
4k,2 = 5L− +

4k,2 =

{
10, k ≡ 2 (mod 3) ,

5, otherwise,

L− +
4k+2,2 = 5L+ −

4k+2,2 =

{
10, k ≡ 0 (mod 3) ,

5, otherwise.
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As the third, since (Fn, Ln+3) = (Fn, 4Fn+1) and (Fn+3, Ln) = (2Fn, Ln),
it is seen that (Fn, Ln+3) = 4 iff n ≡ 0 (mod 6) and (Fn+3, Ln) is 4 iff n ≡
3 (mod 6) or 2 iff n ≡ 0 (mod 6), otherwise, (Fn+3, Ln) = (Fn, Ln+3) = 1. So,
we derive numbers L+ −

n,3 and L− +
n,3 .

Theorem 3.17. Let L+ −
n,3 and L− +

n,3 be the nth numbers of 3-consecutive
GCD sequences. Then

L+ −
4k,3 =

{
10F2k+1, k ≡ 2 (mod 3) ,

5F2k+1, otherwise,
L+ −
4k+2,3 =

{
2L2k+2, k ≡ 0 (mod 3) ,

L2k+2, otherwise,

L− +
4k,3 =

{
2L2k+1, k ≡ 2 (mod 3) ,

L2k+1, otherwise,
L− +
4k+2,3 =

{
10F2k+2, k ≡ 0 (mod 3) ,

5F2k+2, otherwise.

Proof. Since (L+
4k, L

−
4k+3) = (L4k +3, L4k+3 +1), by using Theorem 2.1,

we have

(L4k + 3, L4k+3 + 1) = (5F2k+1F2k−1, 5F2k+2F2k+1)

= 5F2k+1 (F2k−1, F3)

= 5F2k+1F(2k−1,3).

Since
(
L−4k, L

+
4k+3

)
= (L4k − 3, L4k+3 − 1), we get

(L4k − 3, L4k+3 − 1) = (L2k+1L2k−1, L2k+2L2k+1)

= L2k+1 (L2k−1, 2L2k)

= L2k+1 (L2k−1, 2) .

Because the other proofs are similar, we omit them. �

Lemma 3.18. If L+ −
n,3 and L− +

n,3 are the nth 3-consecutive GCD numbers,
then

L+ −
4k+1,3 =


1, k ≡ 2 (mod 3) ,

2, k ≡ 1 (mod 3) ,

4, k ≡ 0 (mod 3) ,

L− +
4k+1,3 =

{
1, k ≡ 2 (mod 3) ,

2, otherwise,
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L+ −
4k+3,3 =



1, k ≡ 3 (mod 6) ,

2, k ≡ 5 (mod 6) ,

3, k ≡ 0 (mod 6) ,

4, k ≡ 1 (mod 6) ,

6, k ≡ 2 (mod 6) ,

12, k ≡ 4 (mod 6) ,

L− +
4k+3,3 =


1, k ≡ 0 (mod 6) ,

2, k ≡ 2, 4 (mod 6) ,

3, k ≡ 3 (mod 6) ,

6, k ≡ 1, 5 (mod 6) .

Finally, we establish 4-consecutive GCD sequences {L+ −
n,4 }n≥1 and

{L− +
n,4 }n≥1.

Lemma 3.19. Let L+ −
n,4 and L− +

n,4 be the nth 4-consecutive GCD numbers.
Then

L± ∓4k,4 =

{
2, k ≡ 1 (mod 3) ,

1, otherwise,

L+ −
4k+1,4 =


1, k ≡ 1, 5 (mod 6) ,

3, k ≡ 2, 4 (mod 6) ,

4, k ≡ 3 (mod 6) ,

12, k ≡ 0 (mod 6) ,

L+ −
4k+3,4 =


1, k ≡ 3, 5 (mod 6) ,

3, k ≡ 0, 2 (mod 6) ,

4, k ≡ 1 (mod 6) ,

12, k ≡ 4 (mod 6) ,

L− +
4k+1,4 =


1, k ≡ 2, 4 (mod 6) ,

2, k ≡ 0 (mod 6) ,

3, k ≡ 1, 5 (mod 6) ,

6, k ≡ 3 (mod 6) ,

L− +
4k+3,4 =


1, k ≡ 0, 2 (mod 6) ,

2, k ≡ 4 (mod 6) ,

3, k ≡ 3, 5 (mod 6) ,

6, k ≡ 1 (mod 6) ,

L+ −
4k+2,4 =


3, k ≡ 0, 1, 3, 4, 7, 9 (mod 12) ,

6, k ≡ 5, 8, 11 (mod 12) ,

21, k ≡ 6, 10 (mod 12) ,

42, k ≡ 2 (mod 12) ,

L− +
4k+2,4 =


3, k ≡ 1, 3, 6, 7, 9, 10 (mod 12) ,

6, k ≡ 2, 5, 11 (mod 12) ,

21, k ≡ 0, 4 (mod 12) ,

42, k ≡ 8 (mod 12) .
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4. Conclusion

In this study, two altered Lucas sequences {L+
n }n≥1 and {L−n }n≥1 are de-

rived by altering the Lucas numbers with {±1,±3}. Thus, the {L+
n }n≥1 and

{L−n }n≥1 sequences are separated from the shifted and altered sequences in
the literature. But, the L+

n and L−n are related to the Fibonacci and Lu-
cas numbers. It is seen that they have two different Fibonacci and Lucas
factors. Therefore, we study several different type r−consecutive GCD se-
quences, {L+

n,r}n≥1 and {L−n,r}n≥1 for the altered Lucas sequences {L+
n }n≥1

and {L−n }n≥1, respectively. According to values r, it is seen that these se-
quences are periodic or unbounded. But for now, we leave other properties
of the altered Lucas and r-consecutive GCD sequences for researches in the
future.
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