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COMPLEX GLEASON MEASURES
AND THE NEMYTSKY OPERATOR

MARIA C. MARIANI, OsSEl K. TWENEBOAH, MIGUEL A. VALLES,
PAVEL BEZDEK

Abstract. This work is devoted to the generalization of previous results on
Gleason measures to complex Gleason measures. We develop a functional cal-
culus for complex measures in relation to the Nemytsky operator. Furthermore
we present and discuss the interpretation of our results with applications in the
field of quantum mechanics. Some concrete examples and further extensions
of several theorems are also presented.

1. Introduction

Gleason Measures have been deeply studied for their close relationship
with the foundations of Quantum Mechanics. In fact, Gleason measures have
a natural quantum mechanical interpretation (see [15]) and it is for this reason
that many authors have dedicated their research to Gleason’s Theorem and
its generalization (for instance [I]-[13],[20],[31]) as well as to application prob-
lems in quantum mechanics such as the one related to hidden variables (see
[21],]9]). In particular the vectorial character of the complex Gleason measures
gives a natural interpretation to such mathematical concept; many quantities
considered in physics have a vectorial character as well; the momentum and
the angular momentum of a particle exemplify this concept, and in quantum
mechanics, this kind of quantities are represented by what we call a vector

Received: 31.08.2017. Accepted: 28.11.2018. Published online: 11.01.2019.

(2010) Mathematics Subject Classification: 47B15, 28C05.

Key words and phrases: complex Gleason measures, Nemytsky operator, quantum
mechanics.



Complex Gleason measures and the Nemytsky operator 169

operator. All these relations have led us to generalizing previous results on
Gleason Measures to complex Gleason measures.

With the purpose of introducing this concept, consider for example the
momentum of a particle. In order to perform a measurement of a particle’s
momentum in two dimensions, we need to measure the two components of the
momentum p,, p, relative to an (arbitrarily chosen) orthogonal coordinate
system. Accordingly, in quantum mechanics, the momentum is represented by
two observables (self-adjoint operators) P, and P, and we may think of these
two operators as the “components” of one vector operator:

P = (P, P))

relative to the coordinate system chosen previously. This means that if a linear
change of coordinates is made, the components of P change according to the
same rule as the components of a vector; but the momentum itself should be
independent of the coordinate system chosen (otherwise it would not have a
physical meaning).

To stress this independence of the coordinate system, we shall follow a
different point of view: Notice that in order to measure a vector quantity
like p, it is necessary to be able to measure the scalar product (p,v) with
any given direction v. According to the quantum mechanics formalism we
would have an observable (self-adjoint operator) P, for each v. Furthermore
the correspondence v — P, should be linear. As a consequence, we make the
following formal definition: Let H be a Hilbert space (to be thought as the
state space of the quantum system) and V' a real Hilbert space (the space of
values of the vectorial quantity that we want to measure); a vectorial operator
is an element of L(V, L(H)).

The Nemytsky operator is a variable-coefficient composition operator of
the form ¢ () — g (z, ¢ (x)) that has been studied and used in the context of
many nonlinear problems involving integrals, as well as partial and ordinary
differential equations (see for instance, [4], [5], [7], [8], [18], |22], [23], [26], [27]
and [37]).

In [], the Nemytsky operator was extended to signed measures, using this
extension to solve an initial value problem with a signed finite measure as
initial condition, for a class of nonlinear evolution equations. The aim was
to develop a functional calculus for signed measures that allow one to give a
meaning to nonlinear term under fairly general conditions. The present article
develops a functional calculus that permits working with complex Gleason
measures.

We organize our work as follows. In section 2 notations, definitions and
results that will be used in the paper are introduced. In sections 3, 4, 5 and
6 we generalize previous results to complex Gleason measures. Sections 7
and 8 are devoted to the Nemytsky operator. In section 9 we present our
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main result; A Gleason measure can be used as an operator measure for the
Nemytsky operator. Finally in section 10 we present applications and examples
in the field of quantum mechanics.

2. Preliminary definitions and results

We shall begin this section by defining some Dirac notations, which for
convenience will be used in some sections of this paper.

A quantum state of a particle will be characterized by a state vector,
belonging to an abstract space &, called the state space of a particle. The fact
that the space F is a subspace of L? implies that &, is a subspace of a Hilbert
space. We will define the notation and the rules of vector calculations in &,.
Before we proceed, we state the following postulate: The quantum state of
any physical system is characterized by a state vector, belonging to a space £
which is the state space of the system.

DEFINITION 2.1. Any element, or vector of the space £ is called a ket
vector or a ket. It is symbolized by | ), inside which is placed a unique sign
which enables us to distinguish the corresponding ket from all others, for
example [1)).

DEFINITION 2.2. A linear functional y is a linear operation which asso-
ciates a complex number with every ket [)).

We remark that the set of linear functionals defined on the kets |¢)) € &
constitutes a vector space, which is called the dual space of £ and is repre-
sented as £*.

Next, we describe the elements of the dual space £* of £.

DEFINITION 2.3. Any element, or vector of £*-space is called a bra vec-
tor or a bra. It is represented by the symbol ( |. For example, the bra (x|
designates the linear functional y and we shall henceforth use the notation
(x|®) to denote the complex number obtained by causing the linear functional
(x| € £* to act on the ket |¢)) € &:

x([9)) = (xl¥).

The existence of a scalar product in £ will enable us to show that we can
associate, with every ket |¢) € &£, an element of £*, that is, a bra, which is
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denoted by (p|. Suppose (g| is a linear functional, the scalar product is defined
by the relation

(el) = (I#): [¥))-

Now assume that we write (¢| and |¢)) in the opposite order:

(2.1) ) (el

We shall observe that if we abide by the rule of juxtaposition of symbols, the
expression (2.1) represents an operator. For example select an arbitrary ket
say |x) and consider the expression

(2.2) [} (elx)-

We know that (p|x) is a complex number and so is a ket, obtained
by multiplying [¢) by the scalar (p|x). Thus |1)(p| applied to an arbitrary
ket, gives another ket hence it is an operator.

Next we define a projector Sy, onto a ket |¢).

Let |1) be a ket which is normalized to one, i.e. ()|¢)) = 1. Consider the
operator Sy, = |¢)(p| and apply it to an arbitrary ket |p):

Sylv) = [9){¥le)-

Sy acting on an arbitrary ket |p), gives a ket proportional to |¢). In fact
the coefficient of proportionality (i|p) is the scalar product of |¢) by |1).
Therefore Sy is the orthogonal projection operator onto the ket |1)). Please
refer to [I3] for more details of the dirac notation.

In subsequent parts of this section we will briefly review some definitions
and properties related to vector valued measures. The measurability of vector
valued functions are also presented (for more details see [16]). We assume that
(S,%, 1) is a complete o-finite measure space and X is a real Banach space
with norm ||-||.

DEFINITION 2.4. A function ¢ : S — X is a step function if there exists a

finite family {M,,} C ¥ of pairwise disjoint sets of finite measure and a finite
family {e,, } € X such that

Y = EXMnenv
n

where s, indicates the characteristic function of the set M,,.

The family of all step functions ¢ : S — X is a real vector space.
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DEFINITION 2.5. A function f: S — X is X-measurable if there is a se-
quence {pg} of step functions such that pr — f in X p-a.e. as k — oo.

We observe that, by definition, every step function is X-measurable.

LEMMA 2.6. Let {S,},~; C X be a countable partition of S and let f :
S — X be a function. Then, the function f is X -measurable if and only if for
each n > 1, the restriction f: S, — X is X-measurable.

PROPOSITION 2.7. Let {f,} be a sequence of X -measurable functions f, :
S — X converging p-a.e. to a function f: S — X. Then the function f is

X -measurable.

DEFINITION 2.8. A set function m: ¥ — X is called a vector valued mea-
sure if

(1) m(0) =0,
(2) for each countable, pairwise disjoint family {A;} C ¥,

w(U) =S,
J J
where the series is commutatively convergent.

DEFINITION 2.9. The variation |m| of the vector valued measure m is the
set function |m| : ¥ — [0, oo] defined for each A € ¥ as

m| (A) = sup {Z [[m(A;)] }

where the supremum is taken over all finite partitions {A4;} C ¥ of A.

LEMMA 2.10. The variation |m| of a vector valued measure m is a positive
o-additive measure.

This lemma can be proved by adapting the proof of Theorem 6.2 in
[35], p. 117.

LEMMA 2.11. Given two vector valued measures my, mg: 35 — X,

|my + meo| < |mq| + |mal.
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DEFINITION 2.12. Two vector valued measures mq,mo: X — X are mu-
tually singular, denoted my L my, if the measures |mq| and |msq| are mutu-
ally singular. That is, there is a partition S = AU B, A, B € %, such that
|mi| (A) = 0 and |mg| (B) = 0. In particular, a vector measure m: ¥ — X and
the measure p are mutually singular if the measures |m| and p are mutually
singular.

REMARK 2.13. The following statements are equivalent:

(1) |m|(A) =0 for some A € X.
(2) m(A')=0forall A’ C A A" e€X.

As a consequence of this remark, we can state the following results:

LEMMA 2.14. Two vector valued measures mi and msy are mutually sin-
gular if and only if there exists a partition S = AU B, A, B € ¥, such that

my(A)=0 forall A CA A €Y,
mo (B')=0 forall B C B, B €X.
PROOF. For A’ C A, A’ € ¥, by definition,

ma(A) = [Ima (AD|] + [[ma (A — A)]].

So my(A’) =0.
Analogously, |mo|(B) = 0 implies that mqo(B’) = 0 for all B C B,
B e %. U

LEMMA 2.15. If two vector valued measures my,ms: % — X are mutually
singular,

‘m1 +m2‘ = |m1‘ + ’m2’

The proof of Lemma and Lemma follow closely the proof of
Lemma 17 in [4].

DEFINITION 2.16. Given two vector valued measures mqi,ms: ¥ — X, we
say that mq is absolutely continuous with respect to mso, denoted m; < mao,
if |m1| < |mz|, which means:

If A € ¥ and |ms| (A) = 0, then |mq| (A) = 0 as well. In particular, a vector
measure m: > — X is absolutely continuous with respect to the measure p if
|m| < p.
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REMARK 2.17. According to Remark 2.13] m; < my if and only if A € &
and mg (A’) = 0 for all A’ C A, A’ € ¥, implies that my (A") = 0 for all
A CA AEY.

THEOREM 2.18 (Lebesgue decomposition, [16, p. 189]). Let p be a positive
measure on %, X a Banach space, and m: ¥ — X a vector valued measure
with o-finite variation |m|. If |m|+ p has the direct sum property, then m can
be written uniquely in the form of vector valued measures my,mo: % — X of
o-finite variation such that

m:ml+m27

m; < U, ma J_u.

The o-finiteness of |m| is necessary for the validity of Theorem even
in the case of signed measures, while the measure space (5,%, ) does not
need to be o-finite.

Before stating the next result, we define a Bochner integrable function.
The Bochner integral is the natural generalisation of the familiar Lebesgue
integral to the vector-valued setting.

DEFINITION 2.19 (The Bochner integral). Let (A, A, 1) be a o-finite mea-
sure space. A function f: A — FE is pu-Bochner integrable if there exists a
sequence of u-simple functions f,: A — F such that the following two condi-
tions are met:

(1) im0 fr = f p-almost everywhere;
(2) Timsoc [y lLfn — flldp = 0.

THEOREM 2.20 (Radon-Nikodym). For a vector valued measure m: ¥ —
X, the following statements are equivalent:
(1) There exists a unique function f: S — X, Bochner integrable, such that

m = fdu.

(2) The vector valued measure m satisfies the following conditions:

(a) m < p.

(b) |m| is a finite measure, that is to say |m|: X — [0, 00).

(¢) For each A € ¥ with 0 < p(A) < oo, there exists E C A, E € &
and a compact set K C X not containing zero, such that p(E) > 0
and for all E' C E, E' € 3, the set m (E') is contained in the cone
generated by K.

Please refer to [17] and [32] for the detailed proof of Theorem [2.20]
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REMARK 2.21. When the space X is finite dimensional, condition 2(c) in
Theorem [2.20] is satisfied by any vector valued measure m: > — X. Indeed,
we can select

K={zxeX:|z|=1}.
Then, the cone generated by K, defined as
{Ar:ze K, >0},

becomes X, so condition 2(c) holds. Thus, Theorem reduces to the fa-
miliar Radon-Nikodym theorem in this case. For a detailed analysis of the
conditions involved in Theorem see Chapter 5 in [6].

3. Extension of real Gleason measure to complex Gleason measure

DEFINITION 3.1. Following F. Riesz and Sz. Nagy (|33, Section 116]),
we shall say that an unbounded operator 7' and a bounded operator B are
permutable (or commute) if

BT C TB.
in other words, T'B is an extension of BT.

DEFINITION 3.2. Let H be a complex Hilbert space. Suppose that T: H —
H is a bounded operator. The adjoint of T', denoted T™, is the unique operator
T*: H — H such that (T'z,y) = (x,T*y). A bounded operator T: H — H is
self adjoint or hermitian if T = T™.

DEFINITION 3.3. Let H be a complex Hilbert space and let T' € L(H).
Suppose that T*: H — H is the adjoint of 7. T is said to be normal if
TT* =T*T.

Let H be a Hilbert space, A C L(H) a C* algebra of bounded normal
operators in H and P the set of orthogonal projectors in H.
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DEFINITION 3.4. A Gleason measure is a function p: P(H) — R which is
o-additive on orthogonal families of projections in P(#), i.e. if (Sy),cy and
S are orthogonal projectors then S is the strong limit of the series S, i.e.

(3.1) p(S) = ul(Sn)-

neN

DEFINITION 3.5. Let {|9)),|p)} be two states arbitrarily chosen from the
Hilbert space H except that they are neither identical nor orthogonal to each
other i.e. {(¢Y|¢)} # 0. Then

(3:2) H(Sy) = 1 u(Sy) = 0 and u(S,) = 1, u(S,2) = 0
where Sy = [9) (], Sye = 5 (W], Sy = le)le] and S,e = ) (0.

DEFINITION 3.6 (|I4, Chapter VII, Definition 2.E.1]). Let (X, M) be a
measurable space (i.e. M is a o-algebra of subsets of X). A spectral measure
FE is a mapping £: M — P such that

(1) E(U) is an orthogonal projector for every U € M.

(2) BE(X)=1.

(3) f U = Uy NUy, then E(U) = E(Uy) - E(Us). In particular if U; and Us
are disjoint, then E(U;) and E(Us) are orthogonal.

DEFINITION 3.7. Let u: P — R be a Gleason measure. Then p is said to
be concentrated on a subspace Sy if S C Sg- implies that x(S) = 0. In terms of
projections, we can express the same idea by saying that p is concentrated on
a projector Py if for any projector P € P(H), PoP = 0 implies that u(P) = 0.
We note this by u C Sp or u C Py. Furthermore, if the set {P € P : u(P) = 0}
has a greatest element, Py, then I — Py is called the strong support of pu.
Evidently, u(P) = 0 if and only if P(I — Py) = 0 (see [25]).

DEFINITION 3.8. Let A\, a: P — R be two Gleason measures. The measure
A is said to be absolutely continuous with respect to o and we write A < «,
if a(P) = 0 implies A(P) = 0. Two Gleason measures A and « are said to be
mutually singular (written A L ), if there exists an orthogonal decomposition
I = Py+ Qo with Py, Qg orthogonal projections such that, PhQo = QoFy =0
and A C Py, u C Q.

DEFINITION 3.9. For 1 < p < oo, we denote by L, the class of bounded
operators (T') which satisfy the following condition: for each orthonormal sys-
tem {ox, bk € K} in H, Y7, e (Tor, @r)|P < 00. L, is a two sided ideal in
L(H), thus it is contained in the ideal of compact operators ([34]).
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REMARK 3.10. In order to define the trace of an operator A, we need the
series

To(T) = > (Tpx, or)

keK

to be absolutely convergent, where Tr denotes the trace. So it is natural to
define the trace for operators in Li. We call the operators in L, operators of
trace class. Then if A is a trace class operator and B is bounded, AB is also
of trace class. Moreover, we have that

[Tr(AB)| < || B[ Tr(|A]).
We also recall that a frame function of weight w in H is a real valued function

f defined on the unit sphere of H such that if {¢,} is an orthonormal basis
of H then

Zf(‘»on) =w.

We denote f,, the frame function associated to p ([19]).

It is known that a real Gleason’s measure p verifying |u(S)| < K, S € S
(where S is the collection of subspaces in H), is represented by a self-adjoint
operator (|36]). An analogous result holds for a complex Gleason measure.

In order to extend real Gleason measure to complex Gleason measure, we
choose two real maps p1, p2: P(H) — R and consider

pe(P) = p(P) + ipz(P)
with the imaginary unit <. Now by Gleason’s theorem (see [19]), we have
p(P) = Tr(AP),
and
a(P) = Tx(BP),

where P is an orthogonal projector and A and B are self adjoint operators.
Then clearly, the map pc satisfies (3.1]) by its linearity and is written as

pe(P) = p(P) +ipe(P) = Tr(pP), p=A+iB,
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where A and B are self adjoint trace class operators associated with p; and
1o respectively.

THEOREM 3.11 (Gleason’s theorem for complex vector valued measures).
Let H be a separable Hilbert space (in three or more dimensions), and pc :
P(H) — C a complex vector valued measure that satisfies conditions (3.1)) and

(13.2) for two non-identical states 1), |p) with (p,1) # 0. Then
pe(P) = Tr(pP),

_ el )!¢><w|
(@, ) (¥, )

+(1-«

for some a € C.

Please refer to [29] for the detailed proof of Theorem

THEOREM 3.12. Consider p = A+ iB € Ly, where A and B are self
adjoint operators and p = |p|lu the polar decomposition of p. Then |p| defines
a positive measure and

Tr(pP)| < Tx(|p|P), P €P.

PROOF. Tr(pP) and Tr(|p|P) are well defined since p € L. Let p = u|p| =
|plu with |p| > 0 and u* = u~!. Let a be the positive square root of |p|.
Consider {e;} an orthonormal basis of H and P € P, then

|Tr(pP)| = |Tr(ua®P?)| = |Tr(PauaP)|

< |{uaPe;, aPe;)| <> |laPe]|* = Tx(|p|P). O

REMARK 3.13. From Theorem [3.12] a bounded complex Gleason measure
e is bounded by a positive measure. In this case, if puc is real then the
following decomposition is obtained

e = pé — b

with p1és = (o) + #0)/2 and pe = (pejp) = 1e)/2:
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4. Integral with respect to a complex Gleason measure

The notion of integral of an operator with respect to a Gleason measure
is required. To motivate this notion, we present some results from De Napoli
and Mariani ([I5), Section 3|) that works for complex Gleason measures.

Consider a self-adjoint operator that is a finite linear combination of pro-
jections:

where P; € P and P;P; = 0if i # j.

In analogy with standard measure theory, call these operators simple op-
erators. Then it is natural to define the integral of a simple operator with
respect to p by:

/AdM = Z)\iM(Pi)-

We shall extend this notion of integral to the class of self-adjoint bounded
operators. To do that refer to the spectral theorem, in the following formula-
tion:

THEOREM 4.1. To each (possibly unbounded) self-adjoint operator A in a
Hilbert space H corresponds a spectral measure EE = E s (defined on the Borel

sets of R) such that:
1) )
A= / NdE

in the sense that

Az = lim AEN)x
n—oo [_

and

D(A) = {x cH: /_Z N2 (E(dN)z, 7) < oo} .
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(2) For each Borel set U C R, E(U) commutes with any bounded operator
that commutes with A, and

E(U)A—/U)\dE.

(3) For any real Borel measurable function f(\) we have

= [ T iV dE
with
D) = w1 [ FOPE@.a) < oo},

(4) The spectral measure E is supported in the spectrum o(A) of A, i.e., for
every Borel set U C R, E(U) = E(UNao(A4)).

PROOF. Please refer to [14] for the proof of Theorem O

In the case of a simple operator, the spectral measure F 4 is given by:

Ea(U)= ) P.

N €U

Consider the measure o E4 on the Borel sets of R, then if A is a simple
operator,

(4.1) /Adu: /Oo Ad(po E4).

— 00

So for any self-adjoint operator A define [ Adu using equation (4.1)). In a
similar way, using more general versions of the spectral theorem, it is possible
to define the integral [ A du when A is a normal operator. Please refer to [14]
for more details.

REMARK 4.2. Following F. Riesz and Sz. Nagy (|33, Section 130]), if A
and B are two permutable self-adjoint operators, it follows that A and B
are permutable if F4(U) and Ep (V') are permutable for any measurable sets
U,V C R, with E4, Ep the spectral measures associated to A, B. In that case
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there exists a spectral measure E4 g defined for the Borel subsets of R2, such
that

EA’B(U X V) = EA(U)EB(V)

for all “measurable rectangles”. Furthermore,

A:// A dE 4 (A1, A2),
RZ

B:// A2 dEA (A1, A2).
RQ

ProroSITION 4.3. If A and B are permutable self-adjoint operators then

(4.2) /(A+ B)du = /Ad,LL+ /Bd,u.
PRrROOF. Consult [I5], Section 3| for the proof. O

REMARK 4.4. This property does not hold if A and B are not permutable,
as can be seen from the following example: We consider the Hilbert space
H = R?, and denote by Sy the 1-dimensional subspace generated by the vector
(cos@,sinf). Given a function f: [0,7/2) — [0,1] we can define a Gleason
measure p in H by

o £(0) if 0<60<m/2,
1(Se) = 1—f0-%) if 7/2<6<nm,

and (0) = 0, u(H) = 1. If we take A to be the projection onto Sy and B to
be the projection onto Sy /4, it can be easily seen that (4.2]) does not hold for
f in general.

REMARK 4.5. Let (X, M) be a measurable space. If E: M — P(H) is

a spectral measure and
A= / AdE,
X

(Az,y) = / NdE[z, y],

it follows that

where

Elz,y|(U) = (EU)z,y) .
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PROPOSITION 4.6. Let p1: S — R be a Gleason measure, and assume that
u is represented by the trace-class operator p, i.e.

w(S) =Tr(pPs) VS € S.

Then for any (not necessarily bounded) p-integrable self-adjoint operator A
in H we have that

/Ad,u =Tr(pA).
PRrOOF. Consult [15, Section 3| for the proof. O

In order to justify these formal computations, we may assume first that A
is a positive operator, and then for the general case, we use the decomposition
A=At - A~.

REMARK 4.7. It follows that when the Gleason measure p is represented
by a trace-class operator, the linearity property (4.2]) holds for any operators
A, B (even if they are not permutable). Please see [I5] for more details.

LEMMA 4.8. Let u be a finite non-negative Gleason measure and A
a bounded self-adjoint operator. If

m=m(A) = inf (Az,x),

lzll=1

M = M(A) = sup (Az,x)

llzll=1

are the lower and upper bounds of A respectively, then the following result is
obtained:

mAn(D) < [ Ady < M(AD),
In particular,
\ / Adu' < 14| ().

PRrROOF. Consult [I5], Section 3| for the proof. O

DEFINITION 4.9. Let u be a (non-negative) Gleason measure and A a self-
adjoint operator. We say that A = 0 a.e. with respect to p if u(Ker(A)*+) = 0.
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LEMMA 4.10. If A =0 a.e. with respect to p, then [ Adu =0.
PRrOOF. Consult [15, Section 3| for the proof. O

The generalization of all these results for complex Gleason measure can be
done as follows. Consider operators A; and As. Then all the above results can
be written for both A; and As, furthermore it can be considered, without loss
of generality, that both A; and Ay are positive. Next consider the operator
A = Ay +iA5. Then all the above results hold for A.

5. Lebesgue decomposition with respect to a representable
measure

In this section, we present a different approach for obtaining a Lebesgue
decomposition for complex Gleason measures, that applies when the measure
u is a representable measure. Following [I5, Section 5| we get:

THEOREM 5.1. Let u, A be two Gleason measures defined on a Hilbert
space H and assume that p is represented by a positive trace class operator
p1. Then, there exist two Gleason measures A\, and As such that

/\(P) = )‘a(P) + /\S(P)
for any projector that commutes with the projector Pr onto the range R(p1)
of p1, Aa L As, Ao K o and A is singular with respect to . Moreover, if A is

also a representable measure, this decomposition holds for any P € P(H).

PrOOF. Consult [I5, Section 5| for the proof. O

6. A version of the Radon-Nikodym theorem for complex Gleason
measures

We will proceed in a similar way as in [15], but first we will present some
results from [I5]. Let A be a normal operator, u a positive Gleason measure
and define

a(s) = [ Asdu= [ Aau
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where A|g is the operator APg, then A4 is a Gleason measure on the set of
A-invariant subspaces (with the identification of S with Pg we may think it
as the set of projectors such that PsA C APs). In fact, if S = €, . Sn, then

Ps=) Ps,
neN
and using Proposition [4.3] we see that
/ Adu = Z/ A du;
s neN’ Sn

APg, and APg; commute, because S;, S; are A-invariant subspaces.

We remark that in the special case in which p is a Gleason measure rep-
resented by a trace-class operator, we consider A4 to be defined for all closed
subspaces of H, since as observed before, in that case the linearity property

(4.2)) holds without restrictions.
LEMMA 6.1. A4 is absolutely continuous with respect to .
PROOF. Refer to [15, Section 6| for the complete proof. O

Now suppose that we are given two Gleason measures A, x such that A is
absolutely continuous with respect to p. It is natural to ask if A = A4 for
some self-adjoint operator A. Recall the following results in [15].

LEMMA 6.2. Let us assume that A and p are Gleason measures represented
by the trace-class operators p1 and ps respectively, then A < p if and only if
Ker(p2) C Ker(p1)

PROOF. Refer to [15] for the complete proof. O

THEOREM 6.3 (Radon-Nikodym theorem for complex Gleason measures).
Let A\, p be two positive representable Gleason measures, and p1,p2 be their
respective positive density operators (see [28], [38]), so that

A(S) = Tr(p1 Ps),

1(S) = Tr(p2Ps).
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Assume that X < . Then there exists a (non necessarily bounded) self-adjoint
operator A such that

for any closed subspace T of H.

PROOF. For a complete proof of Theorem please refer to [15]. O

REMARK 6.4. Under the assumptions of Lemmal[6.2] A and p are positive
Gleason measures. A similar result holds if A is assumed to be a complex
Gleason measure (let A = v + iv where ¢ and v are positive representable
Gleason measures), represented by an operator py. In that case, let B and C
be self-adjoint operators such that ¢(7T') = [ BPrdp and v(T) = [ CPrdy,
following the same proof as Theorem in [I5] we obtain:

ANT) = ¢(T) + iv(T) = / BPrdp + i / CPrdy = / (B +iC) Prdp.

REMARK 6.5. Gleason theorem can be seen as a version of the Radon-
Nikodym theorem.

Consider the Gleason measure A given by
A(S) = dim(8S).

It is clear that A is a non-negative Gleason measure (though it may take the
value +00). Then if A =3 A;Ps, is a simple self-adjoint operator,

/ AdA =) \idim(S;) = Tr(A).

This identity holds also for any operator A of trace class (i.e., A-integrable).
If 1 is another Gleason measure, it is clear that p is absolutely continuous
with respect to A since u({0}) = 0. Gleason theorem says that there exists a
self-adjoint operator p such that

u(S) = /pPs dA

for any closed subspace S. The condition that H should be separable means
that A should be a o-finite Gleason measure (hypothesis of the usual Radon-
Nikodym theorem). Furthermore as done previously this result can be ex-
tended to a vector-valued measure and, in particular, to a complex Gleason
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measure. For this particular case it would be enough to represent the complex
Gleason measure in binomial form with two non-negative real Gleason mea-
sures and continue in a similar fashion as in Remark for each measure,
then this would yield an operator p.

A Gleason’s measure on a family of commuting orthogonal projections
behaves as an ordinary measure on o-algebras, in the sense that it is possible
to define a variation.

7. Vector valued Nemytsky operator

We first present some results and definitions from [3]. We take (S, %, 1) to
be a complete o-finite measure space. Suppose that X and Y are real Banach
spaces with norms |||y and ||-||y-, respectively.

DEFINITION 7.1. A function g: S x X — Y is called a vector valued N -
function if it satisfies the conditions:
(1) For each u € X, the function z — g (z,u) is Y-measurable.
(2) There is a p-null set A such that for each z € S\ A, the function v —
g (x,u) is continuous.

It is therefore clear that, BP (X) is the space of X-measurable functions
f: 8 — X for which the function  — || f (z)||y € L*.

In the scalar case, conditions (1) and (2) in Definition [7.1] are referred to
as the Caratheodory’s conditions (see [22, p. 20| and the references therein).
For example,

(7.1) g (z,u) :Zai (@) lu =0 (2) ||l x + T (u)

is a vector valued N-function when a; € B*®(Y), b; € B'(X) and T €
L (X,Y), the space of linear and continuous operators from X into Y. We call
the N-function given by a vector valued piecewise linear N-function, by
analogy with the case of scalar piecewise linear N-functions (see [4, Defini-
tion 18]).

Let

M m: ¥ — X : vector valued measure satisfying
* 71 conditions 2(a), 2(b) and 2(c) in Theorem [2.20]
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The map A: B! (X) — My defined as A (f) = fdu is an isomorphism of real
vector spaces. Moreover we have the following result:

PROPOSITION 7.2 (|16}, p. 174, Proposition 10]). For f € B! (X),

|fdp| = || f]| du,

where || f|| denotes the scalar function x — ||f (z)| . As a consequence, Mx,
with the variation norm |[|m|| = |m|(S), is a Banach space and A becomes an
isometric isomorphism.

PROPOSITION 7.3. Given an N-function g: S x X = Y and given an X -
measurable function f: S — X, the function x — g (x, f (x)) from S into Y
is Y -measurable.

PROOF. For a proof of the result see [3]. O

DEFINITION 7.4. Given a vector valued N-function g, the Nemytsky oper-
ator Ny (f) is defined for an X-measurable function f as

(7.2) Ny(f)(z) =g (2, f ().

It is clear that Proposition implies that the Nemytsky operator N, maps
X-measurable functions to Y-measurable functions.

REMARK 7.5. It is known ([37, p. 155], [22, p. 20]), that (7.2) defines in
the scalar case a continuous and bounded operator from L! into itself if and
only if there exist a function a € L' and a number b > 0 such that

(7.3) lg (z,u)| < a(z)+blul

p-a.e. in S. A similar proof of this result can be established for the vector
valued case, if we write ((7.3) in the form

(7.4) lg (z,u)lly < a () +blullx
p-a.e. in S, with @ € L' and b > 0. Thus, for an N-function g satisfying (7.4)),
the Nemytsky operator N, is a bounded and continuous operator from B! (X))

into B! (V).

PROPOSITION 7.6. If g is a vector valued N -function satisfying (7.4), there
exists a unique operator N4: Mx — My such that the diagram
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B (xX) % BlY(Y)
Al LA

Mx My

is commutative. That is to say,

12

AoNy=NgoA
on B! (X).
PROOF. As in the scalar case (see [4, Proposition 15]), we propose
(7.5) Ny (fdp) =g (. f () dn.
The Radon-Nikodym theorem determines the function f in p-almost

everywhere. However, if h = f p-a.e., there is a p-null set A such that h (z) =
f (z) for x € S\ A. Then, for any F € X,

N, (fdp) (E) = /E (. f () dp

- / g (- () du =N, (hdp) (E) .
(S\A)NE

This observation and the properties of the Nemytsky operator Ny, imply that
the operator N, is well defined. Moreover,

AoNy(f)=g(, f(-)du
Ny (fdu) = NgoA(f),

for every f € B! (X). Finally, the operator N, is unique, for if there is another

operator, say Ng: Mx — My, that also makes the diagram commutative,
we will have

Ny (fdp) = Ny o A(f)

= Ng (fd/.t),

for every f € B! (X), or Ng = N, on My. This completes the proof of the
proposition. O
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With all these results we now define the map ¢ — N, as a functional
calculus. We denote N the family of vector valued N-functions g: S x X — X
satisfying the condition

(7.6) lg (z,u)llx < a(@)+blullx
p-a.e. in S, with a € L' and b > 0. We also define
N={N,:geN}.

PROPOSITION 7.7. (1) The spaces N and N are real vector spaces and the
map g — Ny from N into N is linear.

(2) BY(X) C N, in the sense that every function g € B'(X) defines an
N-function g (z) that satisfies (7.6). Moreover, given g € B* (X),

Ny (fdp) = gdp.

(3) The space N is closed under the composition operation

(910 92) (w,u) = g1 (v, g2 (7,u))

and

(7.7) Ngiog, = Ngl © Ngz-

PRrROOF. Clearly the spaces A" and N are real vector spaces. Moreover, if
OZ,B € R and g1, 92 GN,

Nagl+592 (fd:u) = [agl ('> f ()) + 692 ('7 f ())] d:u
= O‘Nyl (fd:u) + Bﬁgz (fdlj’) .

It is clear that the Bochner integrable functions define N-functions in N.
Moreover, given g € B! (X) and f € B! (X),

Ng (f) =g
and
Ny (fdp) = gdp,

according to Proposition
To see that the space A is closed under the composition operation o, we
observe that there exist p-null sets A; and A, such that for each x € S\ A4;,
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the map u — g; (z,u) is continuous from X into itself, for ¢ = 1,2. Thus, if
x €S\ (A1 Asz), the map u — ¢1 (, g2 (x,u)) is continuous as well. We now
fix u € X. Then, the function z — g; (z,u) from S into X is X-measurable,
so Proposition implies that the function x — ¢ (x, g2 (z,u)) is also X-
measurable. Furthermore,

g1 (z, 92 (z,u)) [ x < an(x)+b1llg2 (2, )]l x
< ay () + by (a2 () + b2 [|ull x)
= a1 (z) + biag (x) + biba |ul| -
So, g1 0 g2 € N. Finally, we prove (7-7).
Ngiogs (fdp) = g1 (92 (-, f (-))) dpa
= Ny, [Ny, (fdu)]
= (Ng, o Ng,) (fdp) .

This completes the proof of the proposition. O

8. The operator N, for vector valued piecewise linear N-functions

In this section we present some results in [3] on how to extend to vector
valued measures the Nemytsky operator N, associated to the piecewise linear
N-function g defined by ([7.1]). We begin with the following

LEMMA 8.1. If mi,mso: X — X are vector valued measures and my L
w,mo L p, then my +meo L .

PRrOOF. The following proof was extracted from [3] section 5. According

to Remark and Lemma[2.14] there exist partitions S = X UY =V UW,
where X, Y, V,W € 3", such that

my(X') =0, forallY' CY,Y'€e Z,

mo(V') =0, forallV'CV,V'e Z
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We consider now the partition S = (X NV) U (Y UW). For this partition,
p(YUW) < p(Y) +p(W) =0.
Ifwefix RCXNV,Re,
(m1 + m2)(R) = m1(R) +ma(R) =0,

proving that the measures m; + mo and p are mutually singular. This com-
pletes the proof of the lemma. O

The following result identifies the Lebesgue decomposition of N, (m):

ProrosiTION 8.2. If m € Fx and m = fdu + ms is the Lebesque decom-
position of m, then

n

Ng(m) =N, (fdu) + (Z ai) [ms| 4+ T o ms,

i=1

i=1

with ( 32 a5 ) bl + 7 (m.) L N, (7).

PROOF. Please refer to [3, Section 5] for the proof. O

9. Main results

In this section we first recall some results from [3, Section 6], then present
our main result; Theorem

LEMMA 9.1. Let G: [0,T] x S x X—X be a function satisfying the condi-

tions:

(1) |Gt z,u)|lx < a(x)+bllully, for some a € L* and b > 0, for p-a.e.
reS,0<t<T andu e X.

(2) The function x — G (t,x,u) is X-measurable for each 0 < t < T and
ue X.

(3) There exists C> 0 such that |G (t,z,u1) — G (t,z,u2)| x < C llur — ugl| x,
for0<t<T, up,us € X, and p-a.e. x € S.
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(4) There exists C > 0 such that
G (t1,2,u) — G (t2,2,u)| x < Clullx [t1 —t2],

for0<t1,to <T,ue X, and p-a.e. ¢ € S.
Then, the following properties hold:

a) For each 0 < t < T, the function Gy: S x X—X defined as Gy (x,u) =
G (t,z,u) is an N-function.

b) For each 0 <t < T, the Nemystky operator Ng, maps B! (X) to itself.

c¢) The function f (t,z) — Ng, (f (t,-)) (z) maps C[0,T; B! (X)] continuously
into itself.

PROOF. The following proof was extracted from [3] and closely follows the
proof of Lemma 21 in [4]. The proof of property a) is a direct application of
conditions 2 and 3 of Lemma while, in particular, the proof of b) follows
from condition 1 of Lemma [0.1] and directly from Remark [7.5] For the proof
of property c¢) we observe that by substituting L' for B! (X) and modifying
the norm to the corresponding space the proof of Lemma 21 in [4] holds and
proceeds in a similar manner to obtain the desired result. O

If the function G: [0, x S x X—X satisfies the hypotheses of Lemmal[9.1]
and m € C[0,T; Mx], we define

(9.1) A(m) (t) = Ng,(m (t)).
Before we proceed we state an important result.

THEOREM 9.2 (Banach fixed point theorem). Let (M,d) be a complete
metric space, then each contraction map f: M — M has a unique fized point.

PROOF. Please refer to [24, Section 2.3| for the proof. O

The next result is a well known extension of the Banach fixed point theo-
rem:

PROPOSITION 9.3. Let (M,d) be a complete metric space and consider a
map f: M — M. If there exists k € {1,2,...} such that the composite map
) is a contraction, then the map f has a unique fized point.

PRrROOF. By Theorem f*) has a unique fixed point, say m € M with
f®) (m) = m. Since

FED ) = f(fF) (m)) = f(m),
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it follows that f(m) is a fixed point of f*), and thus, by the uniqueness of m,
we have f(m) = m, that is, f has a fixed point. Since the fixed point of f is
necessarily a fixed point of f(*) it implies that m is unique. O

THEOREM 9.4. If we assume that the operator A is given by (9.1) and
the function G satisfies the conditions stated in Lemma[9.1], the initial value
problem

(9.2) { G+ A(T';T)l((ég - Snm for0<t<T,

will have one and only one solution in C1[0,T; Mx] for each mg € Mx.

PrOOF. We cite the proof included in [3], this is only a sketch of the proof
since it follows closely the proof of Theorem 23 in [4]. We observe that the
initial value problem (9.2) has the same solutions in C'[0,7; Mx] as the
integral equation

(9.3) m(t) = mo + /0 A(m) (s) ds.

To prove that (9.3) has one and only one solution in C* [0, T; M x] it suffices
to show that the operator 7 defined on C'[0,T; M x] as:

T (m) =myg +/0 A(m) (s)ds

has a unique fixed point. According to Proposition [0.3] the operator 7 has
a unique fixed point if 7(%) is a contraction in C [0,T; M| for some k €
{1,2,...}. The operator 7*) will be a contraction in C [0, T; Mx] for some
ke {12} if

kmk
(9.4) 175 (my) — T®(my)| < &L

< oy llma = ma),

for my,mq € C[0,T; Mx] and k € {1,2,...}. The estimate (9.4]) can be proved
by induction, completing the proof of Theorem O

REMARK 9.5. We observe that C[0,T'; M,] is isometrically isomorphic to
C[0,T; B'] endowed with the norm

1£l = sup [If (Ol
0<t<T

Indeed, || (fdu) (t) [|a, = 1f ()l g1 , for each 0 <& <T.
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It follows from Lemma [9.1] and Remark [9.5] that the operator A is contin-
uous from C [0, T; My] into itself.

Next, we present the definition of a positive-operator valued measure be-
fore moving on to discuss our main result. We recall that (S, %, 1) is a complete
o-finite measure space and X is a real Banach space with norm ||-||.

DEFINITION 9.6. A positive-operator valued measure (POVM) is a map-
ping F' whose values are bounded non-negative self-adjoint operators on a
Hilbert space H, that is, F': X — B(H )4 such that:

(1) F(0) =0, F(S) =Ig; and
(2) F(U;2, M;) =32, F(M;) whenever M; N M; =0 for i # j.

In short such an F is a non-negative countably additive measure on the
o-algebra 3.

In the following results, we construct a complex Gleason measure that will
work as a positive-operator valued measure.

THEOREM 9.7. A complex Gleason measure can be used as an operator
measure for the Nemytsky operator.

PROOF. Even though the proof follows from Theorems [6.3 and [9.4] we
will provide a detailed proof. We remark that a measure can be used as an
operator measure for the Nemytsky operator if given the Nemytsky opera-
tor with conditions as in Lemma [9.1] one can construct a complex Gleason
measure that will work as a positive-operator valued measure. Consider the
initial value problem given in . We know from Theorem that
has a unique solution, m € C*[0,T; Mx] (where C' [0,T; Mx] is the set of
vector-valued measures continuous in the interval [0, 7] satisfying properties
stated in Theorem . Following Theorem we let m be a representable
complex Gleason measure and let p; be its density operator, so that:

m(S) = Tr(p1Ps)

with p; positive. Let Pg = {P;; where P; is a projector such that P, A C
AP;}. Next we define n4: Pg — C by:

na(S) :/APsdm,

then by Theorem ny4 is a complex Gleason measure in the space of
A-invariant subspaces, thus we can write the complex Gleason measure
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m = p+ iv, where y, v are positive Gleason measures and obtain

na(S) = Aa(S) + ioa(S) = /APsdquz'/APsdu,

where A4 and o4 define Gleason measures by virtue of the results at the
beginning of section [6] Note also that by Lemmal[6.1] n 4 is absolutely contin-
uous with respect to m. Furthermore, by virtue of Theorem we can define
n: P¢ — C by:

n(T) =na(T) = /APTdm

for any closed subspace T of H. Thus n is a measure, in particular a complex
Gleason measure. To conclude, if we define an operator F' on C[0,T; M,;] by:

F(m) = / APpdm

and since m is a non-negative countably additive measure on the families of
projections in Pg, by Definition [0.6] we obtain that F is a positive-operator
valued measure. Thus we have constructed a complex Gleason measure that
works as a positive-operator valued function. Hence the proof is finished. [

The results obtained help to construct a functional calculus approach for
complex Gleason measures that will work as a positive-operator valued mea-
sure. In addition, the Nemytsky operator has the advantage of giving meaning
to nonlinear terms of a class of nonlinear evolution equations under general
conditions.

10. Applications to quantum mechanics and examples

Throughout the years, a rigorous development of the general formalism of
quantum mechanics has been achieved by taking advantage of Hilbert space
theory (see [1], [20], [21], [28], |38, [9], and [30]). In this section we intend to
bring some of the concepts and results previously presented to the context of
quantum mechanics and present some applications.
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10.1. Applications of measure theory and Hilbert spaces to wave
mechanics

The beginning of modern quantum mechanics, in which the famous physi-
cist Schrédinger was a major exponent, was marked by the paper in which he
proposed the formalism of wave mechanics, a concept that lies at the core of
quantum mechanics [30]. In this paper we can observe that when discussing
the physical interpretation of the so-called Schrodinger equation it is known
that for each interval I:

ﬂmzﬁwmmwm

is the probability of finding a system in the state i(z,t) within I at a given
time t.

Let (£2,B, 1) be a measure space, with the previous definition of proba-
bility it is natural to investigate square integrable functions, i.e. an extended
complex-valued function f(z), x € §, defined almost everywhere on §2 such
that f(z) is measurable and |f(x)|* is integrable on §:

/uwﬁmm
Q

exits and is finite ([30]). We consider the space L?(€2, u1) of all complex-valued
functions which are square integrable on ) with the equivalence relation given
by almost everywhere equality; moreover denote the family of all equivalence
classes with the usual symbol L?(€, ). Furthermore L?(£2, 1) becomes a vec-
tor space and a Hilbert space with the inner product of f,g € L?(, 1) defined
by:

U@=AFWM@ww,

where f*(z) denotes the complex conjugate.

With these concepts we shall introduce the structure used in quantum
mechanics, more specifically in wave mechanics, to describe a system of n
particles in which each particle is distinct. To start we assume that the n
particles in our system move in three dimensions, and we will denote ry the
position vector of the k'" particle. We can expand ri in terms of three or-
thonormal vectors p;, Py, P, in a reference system of coordinates in the real
Euclidean space R? as follows:

rk:xkpw+ykpy+zkpza kzla 25 3)"')”'
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In wave mechanics it is postulated that the state of a system of n parti-
cles is given by the function 9 (ry,...,r,; t) at any given time ¢, defined on
the configuration space R3" of coordinate vectors ry,... ,r,. Furthermore we
shall assume that ¢(ry,... ,r,; t) is once continuously differentiable in ¢, and
square integrable with respect to the measure space (R3",B3", 13") (where
B3" denotes the family of Borel sets in R3"), i.e. ¥(ry,... ,r,; t) € L2(R3"),
and normalized to verify:

/ l(ry, ... rp; ) dry ... dr, = 1.
R3n

In general, if a given function ¥ (ry,... ,r,; t) represents a state of the system
in question, then ¥ (ry,... ,r,;t) is called a wave function of the corresponding
system.

Note that the wave function ¢ (ry,... ,ry; t) by itself does not have any
physical meaning, rather we have that the measure given by:

P,(B) :/ l(ry,...,rn; ) dry ... dr,, BeB>"
B

is interpreted as a probability measure; P;(B) represents for every Borel set B,
the probability of having the outcome of a measurement at time ¢ of the posi-

tions rq, ... ,r, of the n particles of a system’s state given by ¢(r1,... ,ry; t)
within B.

In the context defined above it turns out that if a state is described
by the wave function ¥ (ry,... ,r,; t) at some given time ¢, then the func-
tion defined by ci1(r1,...,ry,; t), with the assumption that |¢] = 1 and
P(ry, ... ,rp; t) = ci(ry, ... ,ry; t) almost everywhere with respect to the

Lebesgue measure on R3", describes the same state. Furthermore, this im-
plies that each function in the equivalence class ¥(t) € L?(R3"), in which
(ry,... ,ry; t) is contained, would be described by the same wave function
Y(ry, ... ,ry; t). Finally, this previous result allows us to systematically for-
mulate one of the basic assumptions of wave mechanics in a convenient way:

PoOSTULATE 1: The state of a system of n different particles is described
at any time ¢ by a normalized vector 1(t) from the Hilbert space L?(R3").
The time-dependent vector function ci(t), |¢| = 1, represents the same state
as 1(t) (see Chapter II, section 5, p. 120 in [30]).

The reader may refer to [30] for more details, applications, interpretations
of Hilbert spaces and measure theory concepts and basic assumptions of wave
mechanics.
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POSTULATE 2: Given the equation:

n—1
h2
(101) =30 A+ V)| (0 r)
j=1
= Eb'w(rgl_’ R 7r;1—1)7
where M represents the mass of the 4t particle, V(ry,...,r,_4) the po-

tential of the particles interacting inside a system with no external forces,
2

A/ — M,g + 62,2 + 3 == and Ej, the internal energy of the system. S, is the set

of all elgenvalues of (10.1]) that are the only internal energy values for which

the n particle system of a bound state can assume. The closed linear subspace
H,()n) of L?(R3"), spanned by all ¢ € L?(R3") for which

TfJR(I‘/p . 7r;‘1—1) = ”(/)(I‘l, . ?rn)7 wR c L2(]R3(n—1))’

is an eigenfunction of (10.1)) for every R €R?, contains all the Hilbert vectors
which can represent, at a given time ¢, a bound-state of the n-particle system
interacting via the potential

V(ry,... ,rp_1)=V(ry, ..., rh_q1).

An eigenvalue Ej of , with eigenfunction ¢ € L?(R3("~1) is an
internal bounded energy if Ej € R (for details see pages 120-128 in [30]).

Next we present some results in quantum mechanics to justify the two
postulates discussed above.

THEOREM 10.1 (|30, Theorem 5.2, Chapter 5|). The inertial energy oper-
ator defined as

n—1 h2
(10.2) Hi=-Y" WA’ + V(... )

j=1
defines Hermitian operators when applied to twice continuously differentiable
functions, which together with their first derivatives vanish faster that |rk|71,
k=1,...,n, as|rg| = co.

PROOF. See page 127 in [30]. O
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Furthermore note that if 11,92 € L2(R3(™~1)) are eigenfunctions of (10.2)
Corresponding to the eigenvalues Eél) and Eém, respectively, then we also
have, by (10.2)), that H;iy, Hip € L?(R3™=1)), Thus as a consequence of

Theorem [10.1],
Eél)* (V1 [2) = (Hihr [h2) = (Y1 [Hivp2) = Eém (V1 [¢2) -

If we have 11 =14, and therefore Elgl) = Eéz) = F, following the relation

above we obtain Ej, = Ej}. Moreover given Elgl) # Eéz) we conclude (11 12 ) =0.
Lastly we state two theorems from quantum mechanics before proceeding
to present some concrete examples:

THEOREM 10.2 (|30, Theorem 5.3, Chapter 5|). Each eigenvalue E of the
internal energy operator H; (as defined above), belonging to an eigenfunction
Y € L2(R3=1) is a real number. Eigenfunctions corresponding to different
etgenvalues are mutually orthogonal.

It is clear, then, that for each eigenvalue there is at least one nonzero
eigenvector, and that eigenvectors corresponding to different eigenvalues are
orthogonal, that is, linearly independent. Also since L?(R3"~1) is separable,
any orthogonal system of vectors contains at most a countable number of
elements. As a conclusion we state our last theorem:

THEOREM 10.3 (|30, Theorem 5.4, Chapter 5|). The number of bound-
state energy eigenvalues is at most countably infinite, i.e., the point energy
spectrum S, contains a countable number of elements.

10.2. Example 1. Relationship between the Gleason measure
and the density operator

This example is presented in order to exemplify the relationship between
Gleason measures and the density operator in quantum mechanics.

Gleason measures are very important results in modern mathematical
foundations of quantum mechanics due to its strong implications on how prob-
abilities can be introduced into quantum mechanics by taking the trace of the
product between the projection operator and the density operator.

Suppose we have a system consisting of N orthonormal basis
{vi,i = 1,2,...}. If the system is characterized by a single wave function,
|t(t)) at time ¢, then we have an expansion of the pure state |¢(t)) in the
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orthonormal basis states:

(10.3) (1)) = Zki(t)lvz%

where the coefficients k;(t) are given by (v;|¢(t)). Assuming that the state
vectors [¢(t)) are normalized to unity then we have:

(10.4) (®)(t)) Z ki (2]

Let A be an observable (i.e. self-adjoint operator), then the matrix elements
of A in the basis are given as:

(10.5) Aij = (vj|Avi) = (Avj|vi) = (vj|Alvs).

Equation ((10.5)) follows closely from the quantum mechanics notation of inner
product. The expectation value of A at time ¢ in the pure state |1)(t)) is:

{4) = ()] Aly(t)
=3 > ki ®ki(t)A

- ZZ ’UJWJ ¢(75 |'Uz> Jiy

where * denotes the complex conjugate. (A) is a quadratic expansion in the
{k;} coefficients that corresponds to the weighted average of all possible out-
comes. The operator |¢(t))(¢(t)| has matrix elements which appears in the
calculation of (A).

The density operator is formally defined as:

(10.6) p(t) = [ (@) (W ()],

where |¢(t)) denotes a wave function. Please refer to section 2.2 of [10] for
properties of the density operator. We recall from section 2 of this paper that
the operator, (10.6)) is a Hermitian operator which has the matrix elements

pii(t) = (vslp()|vi) = k; (£)k7 (1),
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where * denotes the complex conjugate. Since ¢ (t) is normalized, we deduce

from ([10.4), that
1= Z k()2 = an(t) = Tr(p(t)),

where Tr is the trace. Thus, the mean value of the observable A expressed
using the density operator is given as:

ZZk k() A
= (A

(10.7) = Tr(p(t) A).

In general, the mean value of an arbitrary function F'(A) is similarly obtained
by replacing A in by F(A). Once p(t) is known, one can derive the
statistical distribution of the results of the measurement of A.

In particular, if one specifies a state |x), then the probability of finding
the system in the quantum state |x) is (x|p|x)-

The density operator is a practical tool when dealing with mixed states
(i.e. statistical mixtures in which we have imperfect information about the
system, for which we must perform statistical averages in order to describe
the quantum observables). The density operator enables one to calculate the
expectation of A and also provide information necessary to compute the prob-
ability of any outcome in any future measurement.

A practical application of the density operator formalism is to analyze the
elastic scattering of the spin of particles ([10]). This analysis can be applied
to the scattering of nucleons by pions. The density operator formalism is of
much essence since it provides a statistical measure when dealing with mixed
states as a result of the lack of information available on the system.

10.3. Example 2. The spin-1 particle

We present this example to emphasize the application of the density oper-
ator to the spin of a particle. Suppose the states of a system {|v1), |v2), |vs) }



202 Maria C. Mariani, Osei K. Tweneboah, Miguel A. Valles, Pavel Bezdek

form an orthonormal basis. If an observable A has the following properties:

Alvr) = 1vy),
Alvg) = 3|va),
Alvg) = —2vs),

then an expression for A in terms of its projection operators is given as:
(10.8) A = 1v1)(v1)] + 3lvz)(v2)| — 6lvs)(vs)].

Using ((10.5)), the matrix representing the observable ([10.8]) is given as:

Let the spin-1 particle be in the states of amount —2/4/38, 5/+/38 and 3/+/38
corresponding to the eigenvectors vy, vo and wvs respectively. Then the wave
function described by (10.3) is given as:

(109) () = o fon) + o) + o).

Given the state (10.9)), the sum (1(¢)|p(t)]1)(t)) enables one to compute the
probability of the spin-1 particle in the state (10.9)), where

2 =5 =3
o= 5 &y
19 38 38

p(t) is known as the density operator and was computed using (|10.6)).
The expectation value of the observable A, , expressed using the

density operator ([10.7)) is given as:

61

(A)(t) = 33

Thus the average value of A over the ensemble is 61/38. This value repre-

sents the average of a collection of results obtained when measuring some
observable A.
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10.4. Example 3. A complex Gleason measure in quantum
mechanics

Now consider a self-adjoint bounded linear operator A (i.e. observable)
with eigenvalues {\;|\;+1)A;} and corresponding eigenspaces {S;}. For eigen-
spaces {S;}, let 0; € S;,0; € Sj, then we conclude that {S;} are orthogonal
by Theorem [10.2}

The quantum mechanics notation is used in this section: (v;|v;) denotes
the inner product and (v;|AJv;) = (vi|Av;) = (Av;|vj) (A is hermitian) as
defined in . It is clear that when the operator A is written in the middle
of the inner product it is automatically assumed to be self-adjoint. For more
details on the quantum mechanics notation see for example [9].

Moreover we can restrict ourselves to the Hilbert space H given by the
direct sum of {S;}, we justify this using Theorem Let us assume a particle
in a superposition of pure states v; € S;, [|v;|| = 1, is defined by (10.3)), where
> kil = 1 and |k;|* = k[k; is called the probability amplitude of the state
v;. In other words the probability of the state v;. We can define a complex
Gleason measure in the following way:

ty(e)y (Pr) := Pilib(t)),

where P; is a projector on a subspace S;. f1)y(¢))y clearly defines a complex Glea-
son measure since it is additive on any given family of orthogonal projectors

{PZ},PlPJZOfOI"L#‘]

Il (1)) (Z Pz‘) = Zﬂlw(t»(Pi)

and has values in the complex plane. We can use the complex Gleason measure
to recover k; in the following way:

/Pidﬂw(t» = iy (1) = Pl (t)) = ki.

10.5. Example 4. Connection of complex and real Gleason
measures

Following example 3 in subsection [10.4] we will show the connection be-
tween the complex Gleason measure giving us k;, and the real Gleason measure
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giving |k;|? through the Nemytsky operator. Let A, v; be as in subsection m
and consider a finite superposition of pure states v; as in ((10.3)). Denote S; as:

S; = span(v;)

and P; the projector on the linear subspace ;. Using the quantum mechanics
notation, the projector P; will be described as:

by = (vil,
Bilp(t)) = (vl (2))-
To be consistent with notation introduced in section [7, we will take
X =C,
Y =R

and the measurable space will be the set S of all orthogonal subspaces S; with
sigma algebra generated by S;. Consider the function f: S — C defined as:

f(Si) = Pili(t)).

We can then write py (1), from section [10.4] as:

Py (Si) = (AF)(Si) = f(Si) - A(S;) = Pily(t)) - dim(S;) = Py[ab(1)),

where fiy(1)) € Mx, and A is the measure given in section |§|, that gives the
dimension of S;. We will define the following N-function g as:

9(Si, y) = (Pil(t))" -y

then g satisfies the N-function properties given in definition For fixed
y € C the function

S 908 y) = (B )y, S= Us.

i

is measurable. And for each S = (JS; the function

v g(S.y) = (L (Rl )y, 5= Usl,

A

1s continuous.
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The Nemytsky operator IV, is acting on f in the following way:

(Ngf)(Si) = g(Si, F(5:)) = g(Ss, Bilp(t))) = (Pl (2))) " (Pil()))

Now we can define a real Gleason measure on S as:

fijy(ty) (Si) = (AN f)(S;

)
= (Bilv ()" (Pilv(2))) - A(S))
= (Pi[y(8)))"(Pi[w(¢))) - dim(sS;)
= (B[ ()" (Pl (1))

and we obtain:

W)y (Si) = (AF)(Si) = Pl (t)) = ki,
[ (Si) = (AN £)(Si) = (Pil(0)*(Pilw(t))) = |kil?,

where |k;|? denotes the probability of the particle with wave function given
by |1(t)) being at the state v;.

10.6. Example 5. The electron spin

In order to recall the importance of complex and real Gleason measures,
we present an example involving an electron spin. Consider the observable A
associated with an electron spin that is given by the spin quantum number m;
(for details see [28]). Now, the observable A has a set of discrete eigenvalues
specifically, given by two values namely Ay and A}, with corresponding eigen-
vectors given by vy, vy respectively. These represents the two possible states
and values of an electron’s spin. Moreover, we let v; to represent an eigenvec-
tor in which the particle has a spin directed upwards and v, an eigenvector
with spin directed downwards. Now, given that a particle can be in a state
of spin up or down, consider the particle in a superposition of states with a

wave function described by ((10.3)) as:

[U(t)) = kv + kava,

where |k1|? + |k2|? = 1 follows from (10.4) and |k;|> = kik; (respectively
|k2|?) is called the probability amplitude of the state v, (respectively v3). In
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particular, let a particle be in a state of amount 12¢/13 in spin up and an
amount of 5/13 in spin down; its wave function is then given by:

12 )
[9(0) = T+ ave.

Now, if we let St (respectively S|) be the eigenspace corresponding to the
eigenvalue Ay (respectively A|), and define juys)y, fijp(r)) as in example 4

(section [10.5)), we then get

12

Hip @) (51) = (Af)(S1) = Prly(1)) = k1 = 5.

Thus,

(1)) (S1) = By () (AN £)(St)
= (Pry ()" (Pl (1))
= [ka|?
= kiky

(12 (12,
—\"13") \13’
144

=—~0.85
169

and similarly,

MwM%zMM&FHW@b@:%.

Thus,

) 25
[y (S)) = —= = 0.15,

169
where P; (respectively P)) is a projector on the subspace Sy (respectively S|).
Therefore, the probability that the particle described by the wave function
|1(t)) is at the pure state v, (respectively vs) is 0.85 (respectively 0.15). To
conclude this example we highlight that the possible values of the spin depend
solely on the type of particle we are dealing with, in this case for simplicity
we presented an electron to easily see the relation with Gleason measures.
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10.7. Example 6. The positive-operator valued measure

To further exemplify the role of a positive-operator valued measure in
quantum mechanics, we present the following simple example. Let H be a
Hilbert space, recall that a POVM is a mapping that takes an element of the
o-algebra of subsets of H and maps it to a positive operator. Furthermore
to every operator of this type, given a state there is a measure associated to
the operator via the scalar product. For example let us consider the problem
of measuring the orbital angular-momentum direction of an electron. The
outcomes of such experiment are determined by the quantum number m;
with possible values —I,...,0,...4 1, where [ is the orbital quantum number.
We can now define a positive-operator valued measure considering {2 to be
the Borel sigma algebra of the set {—[,...,0,... + [}, then the POVM is a
map

£:Q — B(H)

defined by:

E{iy) =P, E£W)=0, & (Uz) =3P, -l<i<+l

for each integer number ¢, where P; is the positive-operator associated to
the orbital angular-momentum direction measurement. Let p be the density
operator, associated with a given state and define:

1o(8) = THE(W)p) Vi) € Q.

Then pi, defines a measure and in particular a probability measure. Moreover,
if we take {—1 + 2} € Q then p,({—! + 2}) would be the probability that
when we measure p we will get the outcome —I + 2. Such relation clarifies the
necessity of the empty set being mapped to 0, the whole space to 1 and lastly
the operators being positive and add up to one.

We remark that the applications presented above are generalizations of
some classical examples presented to incorporate complex measures and posi-
tive-operator valued measures (see examples 1, 2, 5 and 6). However, for exam-
ples 3 and 4, we used the complex Gleason measure to define the probability
of a particle through the Nemytsky operator.

Acknowledgement. The authors thank the anonymous referee for the
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