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A NOTE ON THE SQUARE SUBGROUPS
OF DECOMPOSABLE TORSION-FREE ABELIAN GROUPS

OF RANK THREE

Mateusz Woronowicz

Abstract. A hypothesis stated in [16] is confirmed for the case of associative
rings. The answers to some questions posed in the mentioned paper are also
given. The square subgroup of a completely decomposable torsion-free abelian
group is described (in both cases of associative and general rings). It is shown
that for any such a group A, the quotient group modulo the square subgroup
of A is a nil-group. Some results listed in [16] are generalized and corrected.
Moreover, it is proved that for a given abelian group A, the square subgroup
of A considered in the class of associative rings, is a characteristic subgroup
of A.

1. Introduction

Probably the most natural issue concerning the abelian groups in the con-
text of defining the ring structure on them, is the following question: given an
abelian group A, does there exist a ring (A, ∗) satisfying A∗A 6= {0}? If the an-
swer is negative, then A is called a nil-group. Nil-groups were studied for a long
time by many authors (see, e.g., [13,15]) and there are several generalizations.
One of them is the concept of the square subgroup of an abelian group. Given
an abelian group A, the square subgroup �A of A can be understood as the
subgroup of A generated by squares of all possible rings defined on A (see, [6]).
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That notion has been originally introduced by A.E. Stratton and M.C. Webb
in [18] as a result of the reformulation of Feigelstock’s problem posed in [12].
Feigelstock has asked whether the fact that squares of all possible rings defined
on A are contained in some subgroup H of A implies that A/H is a nil group.
A.E. Stratton and M.C. Webb have shown that the answer to Feigelstock’s
question is positive if A is a torsion group or if H is a direct summand of A.
Moreover, the referee of [18] have pointed that the answer is negative in the
general case. A counterexample is surprisingly simple. Namely, it is sufficient
to consider a torsion-free nil group which is not divisible (for details, we refer
the reader to [18, Example]). However, the replacement of the subgroup H by
�A in Feigelstock’s problem made it much harder. The problem was unsolved
for 35 years although it appeared in papers related to this issue (see, [1,3–5]).
Negative answers for mixed and torsion-free abelian groups were given by
A. Najafizadeh, R.R. Andruszkiewicz and M. Woronowicz in 2015 and 2016
(see, [6, 7, 9, 17]). Previously, the square subgroup of a torsion-free abelian
group was investigated only in some special cases. Namely, A.M. Aghdam
and A. Najafizadeh have proved that for every indecomposable torsion-free
abelian group A of rank two which is not homogeneous, the quotient group
A/�A is a nil group (see, [4,5]). In particular, they have described the square
subgroups of these groups.

Recently, it turned out that knowledge related to the square subgroup
of an abelian group is useful for describing additive groups of commutative
rings (see, [8, Lemma 2.15 and Theorem 2.16]). Some new examples of non-
splitting groups and mixed SI-groups are also closely related to the topic
(see, [9, Lemma 4.2, Theorem 4.5] and compare with [9, Theorem 4.8]). For
all these reasons, it seems interesting to continue the study on the square
subgroup of an abelian group.

The direct inspiration to write this note was the paper entitled ‘On the
square subgroups of decomposable torsion-free abelian groups of rank three’
written by F. Hasani, F. Karimi, A. Najafizadeh and M.Y. Sadeghi (see, [16]).
The authors have studied there the square subgroup of a torsion-free abelian
group A = A1 ⊕ A2 of rank three, assuming that Ai is a group of rank i, A2

is not a nil group and either t(A1) ∈ T (A2) or t(A1) is incomparable to any
type belonging to T (A2). They have achieved interesting results in this field
which, in some cases, contribute to this area of research. However, the authors
left open descriptions of the square subgroup �A of A in the following cases:
(Q1) t(A1) = t0 and T (A2) = {t0, t1, t2}, where t0 < t1, t0 < t2, t21 = t1 and

t22 6= t2;
(Q2) t(A1) = t0 and T (A2) = {t0, t1, t2}, where t0 < t1, t0 < t2, t1 6= t2,

t21 = t1 and t22 = t2;
(Q3) T (A2) = {t1, t2} and either t(A1) = t1 or t(A1) = t2.
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(compare with comments listed after the proof of [16, Theorem 3.9]). We in-
vestigate all these situations especially for the case of associative rings, where
the square subgroup of an abelian group A is denoted by �aA. We present
complete descriptions of �aA and �(a)A for the cases (Q1) and (Q2), respec-
tively, and a partial description of �(a)A for the case (Q3) (see, Theorems
4.3, 4.5–4.7). In particular, for the associative case, we confirm a hypothesis
stated in [16] which is connected with (Q1). Furthermore, we give a descrip-
tion of the square subgroup of a completely decomposable torsion-free abelian
group (in both cases of associative and general rings). As a consequence, we
present generalizations of some results from [16] (see, e.g., Theorem 4.9) and
we show that for every completely decomposable torsion-free abelian group A,
the quotient group modulo A/�A is a nil-group. Moreover, we make a little
correction of [16, Theorem 3.7] (see, Remark 4.10) and we prove that �aA is
a characteristic subgroup of A.

2. Notation and preliminaries

Symbols D(A), Q, Z, P, N and N0 stand for the divisible hull of an abelian
group A, the field of rationals, the ring of integers, the sets of all prime num-
bers, positive integers and nonnegative integers, respectively. If {Ai : i ∈ I},
where I 6= ∅, is a family of abelian groups and i ∈ I, then Ai denotes the
subgroup of

⊕
i∈I Ai such that the support of an arbitrary element of Ai is

contained in the set {i}. If x ∈
⊕

i∈I Ai, then the support of x is denoted by
supp(x). The additive group of a ring R is denoted by R+. If X ⊆ R, then the
symbol [X] stands for the subring of R generated by X. The notation I � R
means that I is a two-sided ideal in R. The sign function is denoted by sgn.
All other designations are consistent with generally accepted standards (see,
e.g., [14, 15]).

Complete preliminary knowledge of all main issues related to this paper
is contained in [16] and in the second section of [10]. However, for the trans-
parency of the paper, we remind the reader of the most important facts. If A is
a torsion-free abelian group of rank three with a maximal independent system
{x, y, z}, then the symbols U0, V0 and W0 stand for the subgroups of Q+ such
that 〈x〉∗ = U0x, 〈y〉∗ = V0y and 〈z〉∗ = W0z (see, [16, Preliminaries]). The
following formula greatly simplifies the considerations related to the square
subgroups of an abelian group: that is,

(2.1) �(a)A =
∑

∗∈Mult(a) A

A ∗A
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where Mult(a)A means the set of all (associative) ring multiplications on the
group A (compare with [6, Remarks 1.2 and 1.10]). It follows from [6, Corollary
2.6] that if there exists an abelian group A satisfying �aA ( �A, then A is
reduced and non-torsion. For more detailed information on torsion-free groups
of rank two and the square subgroup of various abelian groups we refer the
reader to [1–3,6,7,17]. The most basic properties of types which will be used
often throughout the paper are listed in the following lemma.

Lemma 2.1. Let A, B and C be torsion-free abelian groups.
(i) If a and b are dependent elements of A, then t(a) = t(b).
(ii) t(a+ b) ≥ t(a) ∧ t(b) for all a, b ∈ A.
(iii) If A = B ⊕ C, b ∈ B and c ∈ C, then t(b+ c) = t(b) ∧ t(c).
(iv) If f ∈ Hom(A,B), then t

(
f(a)

)
≥ t(a) for every a ∈ A.

(v) t(a) · t(b) ≥ t(a) for all a, b ∈ A.
(vi) If R = (A, ?) is a ring, then t(a ? b) ≥ t(a) · t(b) for all a, b ∈ A.

The proofs of (i)–(v) can be found in [15, p. 109 and 110]. Property (vi)
is listed in [2, Lemma 1] (if a ? b = 0, then the assertion is obvious).

It is easily seen that [16, Proposition 3.2] remains true in the associative
case. Thus, we have the following:

Proposition 2.2. Let {Ai : i ∈ I} be a family of fully invariant subgroups
of an abelian group A such that A =

⊕
i∈I Ai. Then �(a)A =

⊕
i∈I �(a)Ai.

Proposition 2.2 together with [2, Theorem 4] implies that Theorems 3.4–3.9
of [16] remain true in the associative case. Generalizations of Theorems 3.5–
3.7 of [16] are presented as Theorem 4.9. In particular, some inconsistencies
of [16, Theorem 3.7] are noted and corrected there (see, Remark 4.10). Slightly
generalized results stated in [16, Theorems 3.4, 3.8 and 3.9] are presented
below.

Theorem 2.3. Let A2 be a torsion-free abelian group of rank two with
�A2 6= {0} and T (A2) = {t0, t1, t2} where t0 < t1, t0 < t2, t21 = t1 and t22 6= t2.
Let A1 be a torsion-free abelian group of rank one and let A = A1 ⊕A2.
(i) If the type t(A1) of A1 is non-idempotent and incomparable with all mem-

bers of T (A2), then �(a)A = {0} ⊕ 〈y〉∗ for some y ∈ A2 such that
t(y) = t1.

(ii) If t(A1) = t1, then �(a)A = A1 ⊕ 〈y〉∗ for some y ∈ A2 such that
t(y) = t1.

(iii) If t(A1) = t2, then �(a)A = {0} ⊕ 〈y〉∗ for some y ∈ A2 such that
t(y) = t1.
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3. On the square subgroup of a completely decomposable
torsion-free abelian group

It turns out that an important role in research related to the questions
mentioned in the Introduction, is played by knowledge concerning the square
subgroup of a completely decomposable torsion-free abelian group. It is stud-
ied in this section. Since every abelian torsion-free group of rank one can be
embedded into the group of rationals, we restrict our main considerations to
the direct sums of these subgroups. It is easily seen that if G is a nontrivial
subgroup of the group Q+, m = minG ∩ N and A = 1

m ·G, then A is a sub-
group of Q+ satisfying 1 ∈ A and A ∼= G. Therefore, it is sufficient to consider
only direct sums of subgroups of Q+ containing the number one.

The following concept plays a key role in the elementary classification of
nil subgroups of the group Q+ (see, [19]) and will be very useful in our next
considerations.

Definition 3.1. Let A be a subgroup of Q+ such that 1 ∈ A. Then we
define ΩA =

{
p ∈ P : p−1 ∈ A

}
, Ω∞A = {p ∈ ΩA : A = pA} and Ω0

A = ΩA\Ω∞A .

Remark 3.2. It follows from [19, Remark 4.1] that if A is a subgroup of

Q+ containing Z as a proper subset, then A =
〈

1
pαp : p ∈ Ω0

A

〉
+
[
1
q : q ∈ Ω∞A

]+
where αp = max {α ∈ N : p−α ∈ A}. If either Ω0

A = ∅ or Ω∞A = ∅, then the
group associated with the empty set is trivial. Thus, it is easily seen that if X
and Y are subgroups of Q+ such that 1 ∈ X ∩Y , then 〈xy : x ∈ X, y ∈ Y 〉 =
{xy : x ∈ X, y ∈ Y }. In other words, the subgroup XY of Q+ understood as
the group generated by all products xy where x ∈ X and y ∈ Y , is the set of
all these products.

Lemma 3.3. Let n be a positive integer and let A, B, C be subgroups of Q+

satisfying 1 ∈ A ∩B ∩ C and �B = {0}. If nAC ⊆ B, then {0} ⊕ {0} ⊕B ⊆
�a(A⊕ C ⊕B). If nA2 ⊆ B or nAB ⊆ B, then {0} ⊕B ⊆ �a(A⊕B).

Proof. Since nAC ⊆ B, we get Ω∞AC ⊆ Ω∞B . Consequently, P0 = ΩAC ∩
Ω0
B and P1 = ΩAC\ΩB are subsets of Ω0

AC satisfying P0∩P1 = ∅ and |P1| <∞.
If Ω0

AC 6= ∅, then for each p ∈ Ω0
AC there exists the maximal Mp ∈ N such

that p−Mp ∈ AC. Let P2 = {p ∈ P0 : p−Mp 6∈ B}. Then |P2| < ∞ because
nAC ⊆ B. For i = 1, 2 define:

λi =

{ ∏
p∈Pi

pMp if Pi 6= ∅,

1 if Pi = ∅.
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Let λ = λ1λ2. For the case Ω0
AC = ∅, we put λ = 1. Definition of λ implies

that λAC ⊆ B and, consequently, the multiplication (a1, c1, b1)∗ (a2, c2, b2) =
(0, 0, λa1c2) for all a1, a2 ∈ A, c1, c2 ∈ C and b1, b2 ∈ B, induces a nontrivial
ring structure on G = A⊕C⊕B. It is easy to check that the ring R1 = (G, ∗)
is associative. Take any p ∈ P and α ∈ N such that p−α ∈ B. Remark 3.2
together with (2.1) implies that it is sufficient to show that there exists an
associative ring R on G for which (0, 0, p−α) ∈ R2. We need only consider
three cases:
(i) p ∈ P0 \ P2. If α ≤ Mp, then p−α ∈ AC ∩ B. Moreover, λ−1 ∈ AC,

by [19, (ii) of Remark 4.1], and p - λ. We apply [19, (ii) of Remark 4.1]
again to obtain λ−1p−α ∈ AC. Consequently, in view of Remark 3.2,
we get (0, 0, p−α) = (0, 0, λλ−1p−α) ∈ R2

1. Now suppose that α > Mp

and define β = α −Mp. Then β > 0 and it follows from [19, (i) and
(ii) of Remark 4.1] that the multiplication (a1, c1, b1) ~ (a2, c2, b2) =(
0, 0, p−βλa1c2

)
provides a nontrivial ring structure on G. Let R2 =

(G,~). Then R2 is an associative ring. Since λ−1p−Mp ∈ AC, we get
(0, 0, p−α) =

(
0, 0, p−(β+Mp)

)
=
(
0, 0, p−βλλ−1p−Mp

)
∈ R2

2.
(ii) p ∈ P2. As λ−1 ∈ AC, the definition of λ implies that it is sufficient to

consider the multiplication (a1, c1, b1) ? (a2, c2, b2) = (0, 0, p−αλa1c2).
(iii) p ∈ ΩB \P0. Since λ−1 ∈ AC, it follows from [19, (i) and (ii) of Remark

4.1] that it is sufficient to consider the multiplication given by the same
formula as in (ii).

For the case nA2 ⊆ B we define P0 = ΩA ∩ Ω0
B, P1 = ΩA \ ΩB, P2 =

{p ∈ P0 : p−2Mp 6∈ B} where Mp = max{m ∈ N : p−m ∈ A}, and we proceed
analogously to the previous part of that proof.

Now suppose that nAB ⊆ B. As 1 ∈ B, we get nA ⊆ B. Thus n2A2 =
n
(
(nA)A

)
⊆ nBA ⊆ B and the assertion follows from the previous consider-

ations. �

The next proposition follows partially from the proof of Proposition 4.9
stated in [19]. However, the mentioned proof is quite technical, so we present
the complete reasoning for the transparency of the paper.

Proposition 3.4. Let I 6= ∅, let Ai be a subgroup of Q+ such that 1 ∈ Ai
for each i ∈ I, and let A =

⊕
i∈I Ai. Then �A =

⊕
i∈X Ai where X is the

subset of I containing all elements i for which there exist k, l ∈ I and n ∈ N
satisfying nAkAl ⊆ Ai. Moreover, �aA = �A.

Proof. If A is a nil group, then [19, Proposition 4.9] implies that X = ∅
and the assertion follows. Now suppose that A is not a nil group. Take any
∗ ∈ Mult(A) such that A ∗ A 6= {0}. Then, there exist a, c ∈ A and k, l ∈ I
satisfying πk(a) ∗ πl(c) 6= 0 where πj is the natural projection of the group
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A onto its subgroup Aj for j = k, l. It follows from [15, Theorem 119.1] that
there exists a ring R =

(
D(A),~

)
such that (A, ∗) is a subring of R. Take

any i ∈ supp
(
πk(a) ∗ πt(c)

)
. For j = k, l, let ϕj be the natural injection

of Q+ into D(A) such that ϕj (Q+) is the j-th direct summand of D(A),
let ψi be the natural projection of D(A) onto its i-th direct summand Qi
and let φ : Qi → Q+ be the natural isomorphism. Define ϑ = φ ◦ ψi and
q1 � q2 = ϑ

(
ϕk(q1) ~ ϕl(q2)

)
for all q1, q2 ∈ Q+. Since ϑ, ϕk, ϕl are additive

homomorphisms and ~ is a nonzero ring multiplication, we infer that the
multiplication � induces a nontrivial ring structure on Q+. Hence, by [19,
Remark 4.2], there exists q ∈ Q \ {0} such that q1 � q2 = q1 · q · q2 for all
q1, q2 ∈ Q+. Thus q · x · y = x � y = ϑ

(
ϕk(x) ∗ ϕl(x)

)
∈ Ai for all x ∈ Ak

and y ∈ Al, whence qAkAl ⊆ Ai. Consequently, there exists n ∈ N such
that nAkAl ⊆ Ai. Therefore i ∈ X. Thus πk(a) ∗ πl(c) ∈

⊕
i∈Y Ai, where

Y = X ∩ supp
(
πk(a) ∗πl(c)

)
. Consequently, A ∗A ⊆

⊕
i∈X Ai. Hence, by the

arbitrary choice of ∗ ∈ Mult(A) and by (2.1), we get �A ⊆
⊕

i∈X Ai.
Take any i ∈ X. If Ai is not a nil group then Ai ⊆ �aA, by [19, Theorem

4.8] and [6, Proposition 1.4 and Remark 1.10]. Next suppose that Ai is a nil
group. Since i ∈ X, there exist k, l ∈ I and n ∈ N such that nAkAl ⊆ Ai.
It follows from [19, Theorem 4.8] that we can exclude the case k = l = i. In
all other cases we get either {0} ⊕ Ai ⊆ �a(Ak ⊕ Ai) or {0} ⊕ {0} ⊕ Ai ⊆
�a(Ak ⊕ Al ⊕ Ai), by Lemma 3.3. Thus, in view of [6, Proposition 1.4 and
Remark 1.10], we get Ai ⊆ �aA. Consequently,

⊕
i∈X Ai ⊆ �aA. Finally,

�A = �aA =
⊕

i∈X Ai, by [6, Corollary 1.9]. �

Remark 3.5. Let A,B,C be subgroups of Q+ such that 1 ∈ A ∩ B ∩ C.
Notice that if there exists a positive integer n such that nAC ⊆ B, then
t(A) · t(C) ≤ t(B) (compare with the first section of [2]). Conversely, if
G1, G2, G3 are nontrivial torsion-free abelian groups of rank one, then there
exist subgroups A1, A2, A3 of Q+ such that 1 ∈ A1 ∩ A2 ∩ A3 and Ai ∼= Gi
for each i = 1, 2, 3. Hence, the condition t(G1) · t(G2) ≤ t(G3) implies that
t(A1) · t(A2) ≤ t(A3). Thus sA1A2 ⊆ A3 for some positive integer s.

The following result is a direct consequence of Remark 3.5 and Proposi-
tion 3.4.

Theorem 3.6. If A =
⊕

i∈I Ai is a completely decomposable torsion-free
abelian group, then �(a)A =

⊕
i∈X Ai where X is the subset of I containing

all elements i for which there exist k, l ∈ I such that t(Ak) · t(Al) ≤ t(Ai).

The foregoing theorem implies at once the following:

Corollary 3.7. If A is a completely decomposable torsion-free abelian
group, then A/�(a)A is a nil-group.
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4. Some answers to (Q1)–(Q3)

The following lemma will be useful in describing the square subgroup of
an abelian group in the case (Q1).

Lemma 4.1. Let A = A1 ⊕A2 where A1 is a torsion-free abelian group of
rank one with t(A1) = t0 satisfying t20 6= t0 and A2 is a torsion-free abelian
group of rank two such that T (A2) = {t0, t1, t2} where t0 < t1, t0 < t2, t21 = t1
and t22 6= t2. Then T (A) = T (A2). Moreover, if x ∈ A1 \ {0} and y, z ∈ A2

satisfy t(y) = t1 and t(z) = t2, then all rings on A satisfy the following
multiplication table:

(4.1) z2 = zy = yz = 0, y2 = ry, xy = sy, yx = s′y, xz = gz, zx = g′z

and

(4.2) x2 = qy or x2 = qz

where r, s, s′, g, g′, q ∈ Q.

Proof. The equality T (A2) = T (A) follows at once from (iii) of Lemma
2.1. By the same argument, we get A(t1), A(t2) ⊆ A2. If a ∈ A(t1)∩A(t2), then
t(a) ≥ t1 > t0 and t(a) ≥ t2 > t0. Moreover, t1 6= t2, so [11, Proposition 1]
implies that a = 0. Thus A(t1) +A(t2) = A(t1)⊕A(t2). Suppose, contrary to
our claim, that A(t1) is a rank two group. Then A(t1) is an essential subgroup
of A2, so A(t1) ∩ A(t2) 6= {0}, a contradiction. Therefore A(t1) is a rank
one group. The analogical reasoning shows that A(t2) is a rank one group
too. Consider an arbitrary ring R = (A, ·). Then A(t1), A(t2) � R, so yz =
zy = 0, y2 = ry, xy = sy, yx = s′y, xz = gz, zx = g′z and z2 = r′z
for some r, r′, s, s′, g, g′ ∈ Q. Since t22 6= t2, it follows from (vi) of Lemma
2.1 that r′ = 0 and, consequently, z2 = 0. Next, t20 6= t0, so if x2 6= 0,
then either t(x2) = t1 or t(x2) = t2, by (vi) of Lemma 2.1. Thus, in view of
A(t1) +A(t2) = A(t1)⊕A(t2), we obtain either x2 ∈ A(t1) or x2 ∈ A(t2). As
both these groups are of rank one, we get x2 = qy or x2 = qz for some q ∈ Q.
If x2 = 0, then it is sufficient to put q = 0. �

Corollary 4.2. If we replace the condition t22 6= t2 with the conjunction
t22 = t2 and t2 6= t1 in the foregoing lemma, then T (A) = T (A2) and every
ring R = (A, ·) satisfies zy = yz = 0 y2 = ry, z2 = r′z, xy = sy, yx = s′y,
xz = gz and zx = g′z for some r, r′, s, s′, g, g′ ∈ Q. Moreover, there exists
q ∈ Q for which x2 = qy or x2 = qz in the ring R.
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The answer to (Q1) for the associative case is the following.

Theorem 4.3. Let A = A1 ⊕A2 where A1 is a torsion-free abelian group
of rank one with t(A1) = t0 satisfying t20 6= t0 and A2 is a torsion-free abelian
group of rank two such that T (A2) = {t0, t1, t2} where t0 < t1, t0 < t2, t21 = t1
and t22 6= t2. If �A2 6= {0}, then either �aA = 〈y〉∗ or �aA = 〈y〉∗ ⊕ 〈z〉∗ for
some y, z ∈ A2 of types t1 and t2, respectively.

Proof. Take any x ∈ A1 \ {0} and y, z ∈ A2 such that t(y) = t1 and
t(z) = t2. Since A2 is a direct summand of A, [2, Theorem 4], [3, the proof of
Lemma 3.1] and [6, Proposition 1.4 and Remark 1.10] imply that 〈y〉∗ ⊆ �aA.
Moreover, it follows form Lemma 4.1 that every ring R with R+ = A satisfies
the conditions listed in (4.1) and (4.2). Consider an arbitrary associative ring
S = (A, ·). Then 0 = (x · x) · z = x · (x · z) = g2z, so g = 0. Similarly, g′ = 0
and, consequently, x · z = z · x = 0. Hence A1 · A2 = 〈x〉∗ · 〈y, z〉∗ ⊆ 〈y〉∗,
A2 ·A1 ⊆ 〈y〉∗, A2 ·A2 ⊆ 〈y〉∗ and either A1 ·A1 ⊆ 〈y〉∗ or A1 ·A1 ⊆ 〈z〉∗. Thus
S2 ⊆ 〈y〉∗ ⊕ 〈z〉∗. In particular, S2 ⊆ 〈y〉∗ if x2 = qy. Hence, by (2.1), we get
�aA ⊆ 〈y〉∗ if x2 = qy in every associative ring on A, or �aA ⊆ 〈y〉∗ ⊕ 〈z〉∗
if x2 = qz and q 6= 0 is possible in some associative ring on A. First suppose
that x2 = qz and q 6= 0 (in the ring S). Then the multiplication

(ux, a)} (u′x, a′) = (0, uu′qz)

for all u, u′ ∈ U0 and a, a′ ∈ A2, provides a nontrivial associative ring structure
on the group A (we use the notation related to the external direct sums for
the transparency of the formula). In particular, U2

0 q ⊆ W0. Obviously, q = k
n

for some k ∈ Z \ {0} and n ∈ N satisfying GCD(k, n) = 1. Define α = |k|
and m = sgn(k) · n. Then α ∈ N and αU2

0 ⊆ W0. Moreover, the function
? : A×A→ A given by

(4.3) (ux, a) ? (u′x, a′) = (0, αuu′z)

for all u, u′ ∈ U0 and a, a′ ∈ A2, is the m-th multiple of } in the group
Mult(A). Therefore (A, ?) is a nontrivial associative ring. Moreover, W0z =
〈z〉∗. Thus, in view of (4.3) and by the proof of Lemma 3.3, we get 〈z〉∗ ⊆ �aA.
Hence, by (2.1) and by the already proven inclusion 〈y〉∗ ⊆ �aA, we obtain
〈y〉∗ ⊕ 〈z〉∗ ⊆ �aA. Finally, �aA = 〈y〉∗ ⊕ 〈z〉∗.

Now suppose that x2 = qy in every associative ring with the additive
group A. Then, for any such a ring P we have P 2 ⊆ 〈y〉∗ and, consequently,
�aA = 〈y〉∗. �
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Corollary 4.4. Let A be an abelian group satisfying all the assumptions
of Theorem 4.3 except for �A2 6= {0}. If x2 = qz with q 6= 0 in some associa-
tive ring on A, then �aA = 〈z〉∗.

Proof. We retain all designations from the proof of Theorem 4.3. Notice
that the conditions listed in (4.1) and (4.2) imply that A2 � S. Moreover,
�A2 = {0}, so y2 = 0 in the ring S. Next, x · (x · y) = s2y and (x · x) · y =
q(z · y) = 0, by (4.1), so s = 0. Consequently, xy = 0. Analogously, yx = 0.
Moreover, x · z = z · x = 0, by the proof of Theorem 4.3. Combining this with
(4.1) we get S2 =

(
U2
0 q
)
z. Hence �aA ⊆ 〈z〉∗ and U2

0 q ⊆W0. Therefore, just
as in the proof of Theorem 4.3 we obtain 〈z〉∗ ⊆ �aA. Finally,�aA = 〈z〉∗. �

The next result is an answer to (Q2).

Theorem 4.5. Let A = A1 ⊕A2 where A1 is a torsion-free abelian group
of rank one with t(A1) = t0 satisfying t20 6= t0 and A2 is a torsion-free abelian
group of rank two such that T (A2) = {t0, t1, t2} where t0 < t1, t0 < t2, t1 6= t2,
t21 = t1 and t22 = t2. If �A2 6= {0}, then �(a)A = A2.

Proof. It follows from [11, Proposition 1] that types t1 and t2 are in-
comparable. Hence, by [3, the proof of Lemma 3.3] and [2, Theorem 4] we
get �(a)A2 = A2. Moreover, A2 is a direct summand of A, so A2 ⊆ �(a)A,
by [6, Proposition 1.4 and Remark 1.10]. On the other hand, �(a)A ⊆ 〈y, z〉∗,
by Corollary 4.2 and (2.1). Furthermore, A2 = 〈y, z〉∗, so �(a)A = A2. �

The next two theorems describe the square subgroup of an abelian group
in some cases related to (Q3).

Theorem 4.6. Let A = A1 ⊕A2 where A1 is a torsion-free abelian group
of rank one and A2 is an indecomposable torsion-free abelian group of rank
two such that T (A2) = {t1, t2} and t1 < t2. If �A2 6= {0}, t(A1) = t1 and
t21 6= t1, then �(a)A = 〈z〉∗ for some z ∈ A2 with t(z) = t2.

Proof. Take any x ∈ A1 \ {0} and y, z ∈ A2 such that t(y) = t1 and
t(z) = t2. It follows from [3, the proof of Theorem 4.2] and [2, Theorem
4] that �(a)A2 = 〈z〉∗. Hence, by [6, Proposition 1.4 and Remark 1.10] we
obtain 〈z〉∗ ⊆ �(a)A. Moreover, A(t2) ⊆ A2, by (iii) of Lemma 2.1. Suppose,
contrary to our claim, that A(t2) is a group of rank two. Then it is an essential
subgroup of A2. Hence ny ∈ A(t2) for some n ∈ N. Since y and ny are
dependent elements of A2, (i) of Lemma 2.1 implies that t(ny) = t1. Therefore
t1 ≥ t2, a contradiction. Thus A(t2) is a rank one group and, consequently,
A(t2) = 〈z〉∗. Moreover, t21 6= t1, so (vi), (v) and (iii) of Lemma 2.1 imply that
in an arbitrary (associative) ring R = (A, ·) we have x2, x · y, y · x, y2 ∈ 〈z〉∗.
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Furthermore, z · A,A · z ⊆ 〈z〉∗, because A(t2) � R. Thus R2 ⊆ 〈z〉∗ and,
consequently, �(a)A ⊆ 〈z〉∗. Finally, �(a)A = 〈z〉∗. �

Theorem 4.7. Let A = A1 ⊕A2 where A1 is a torsion-free abelian group
of rank one and A2 is an indecomposable torsion-free abelian group of rank
two such that T (A2) = {t1, t2} and t1 < t2. If t21 6= t1, t22 = t2, �A2 6= {0}
and t(A1) = t2, then �(a)A = A1 ⊕ 〈z〉∗ for some z ∈ A2 with t(z) = t2.

Proof. Take any x ∈ A1 \ {0} and y, z ∈ A2 such that t(y) = t1 and
t(z) = t2. Just as in the proof of Theorem 4.6 we obtain 〈z〉∗ ⊆ �(a)A.
Moreover, A1 ⊆ �(a)A, by [19, Theorem 4.8] and [6, Proposition 1.4 and
Remark 1.10], so A1 ⊕ 〈z〉∗ ⊆ �(a)A. Using methods similar to those of the
preceding proofs, we infer that A(t2) is a group of rank two with a maximal
independent system {x, z}. Thus A(t2) = A1 ⊕ 〈z〉∗. Consider an arbitrary
(associative) ring R = (A, ·). Since t21 6= t1, (vi) and (iii) of Lemma 2.1 imply
that y2 ∈ A(t2). Furthermore, x2, x · y, y · x ∈ A(t2) and z · A,A · z ⊆ A(t2),
because A(t2) � R. Therefore R2 ⊆ A(t2) and, consequently, �(a)A ⊆ A(t2).
Finally, �(a)A = A1 ⊕ 〈z〉∗. �

Remark 4.8. If t(A1) = t0 is incomparable to neither t1 nor t2, then
�(a)A = �(a)A1⊕�(a)A2, by [16, Proposition 3.2 and Lemma 3.3] and Remark
2.2. Moreover, it follows from [3, the proof of Theorem 4.1] and [2, Theorem 4]
that �(a)A2 = 〈z〉∗. Hence, by [19, Theorem 4.8], we obtain �(a)A = A1⊕〈z〉∗
if t20 = t0, or �(a)A = 〈z〉∗ if t20 6= t0.

Notice that Theorem 3.6 together with Proposition 2.2 and [16, Lemma
3.3] gives some generalizations of [16, Theorems 3.5–3.7]. Namely, we have the
following:

Theorem 4.9. Let B be a torsion-free abelian group of rank two with
T (B) = {t0, t1, t2} where t0 < t1, t0 < t2, t21 = t1, t22 6= t2, and let {Ai : i ∈ I}
be a nonempty family of nontrivial torsion-free abelian groups of rank one such
that the type of each Ai is incomparable to every member of T (B). If �B 6=
{0}, then �(a)

((⊕
i∈I Ai

)
⊕B

)
=
(⊕

i∈X Ai
)
⊕〈y〉∗ where y is some element

of B with t(y) = t1 and X =
{
i ∈ I : t(Ak) · t(Al) ≤ t(Ai) for some k, l ∈ I

}
.

Remark 4.10. In view of Theorem 4.9, Proposition 2.2 and [16, Lemma
3.3], the assumption that t(Ai) and t(Aj) are incomparable for all distinct
i, j ∈ I, is necessary in [16, Theorem 3.7].
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5. Other results

It follows from [6, Lemma 1.8] that for a given abelian group A, the square
subgroup �A is a fully invariant subgroup of A. Now we prove the comple-
mentary result for the associative case.

Proposition 5.1. If A is an abelian group, then the square subgroup �aA
is a characteristic subgroup of A.

Proof. Take any a, b ∈ A. Let f be an automorphism of A and let ∗ be
any associative ring multiplication on A. An easy computation shows that the
function ? : A×A→ A given by

x ? y = f
(
f−1(x) ∗ f−1(y)

)
for all x, y ∈ A,

is an associative ring multiplication on A. Therefore f
(
f−1(a) ∗ f−1(b)

)
∈

�aA. Hence, by (2.1), we get f(�aA) ⊆ �aA. �

Remark 5.2. We remind the reader that the set

I(A) =
{
ϕ(A) : ϕ ∈ Hom

(
A,End(A)

)}
plays an important role in studying subgroups that are always ideals (cf. [15,
p. 279]). It follows from (2.1) that for any abelian group A, the square sub-
group �(a)A is an ideal in every (associative) ring R with the additive group
A. Hence, by [15, Theorem 117.2], we conclude that �A is I(A)-admissible
subgroup of A, i.e., I(A)�A ⊆ �A.

References

[1] Aghdam A.M., Square subgroup of an Abelian group, Acta. Sci. Math. 51 (1987), 343–
348.

[2] Aghdam A.M., Rings on indecomposable torsion free groups of rank two, Int. Math.
Forum 1 (2006), no. 3, 141–146.

[3] Aghdam A.M., Najafizadeh A., Square subgroups of rank two Abelian groups, Colloq.
Math. 117 (2009), no. 1, 19–28.

[4] Aghdam A.M., Najafizadeh A., Square submodule of a module, Mediterr. J. Math. 7
(2010), no. 2, 195–207.

[5] Aghdam A.M., Najafizadeh A., On the indecomposable torsion-free abelian groups of
rank two, Rocky Mountain J. Math. 42 (2012), no. 2, 425–438.



Square subgroups of some torsion-free groups 331

[6] Andruszkiewicz R.R., Woronowicz M., Some new results for the square subgroup of an
abelian group, Comm. Algebra 44 (2016), no. 6, 2351–2361.

[7] Andruszkiewicz R.R., Woronowicz M., A torsion-free abelian group exists whose quo-
tient group modulo the square subgroup is not a nil-group, Bull. Aust. Math. Soc. 94
(2016), no. 3, 449–456.

[8] Andruszkiewicz R.R., Woronowicz M., On additive groups of associative and commu-
tative rings, Quaest. Math. 40 (2017), no. 4, 527–537.

[9] Andruszkiewicz R.R., Woronowicz M., On the square subgroup of a mixed SI-group,
Proc. Edinburgh Math. Soc. 61 (2018), no. 1, 295–304.

[10] Beaumont R.A., Wisner R.J., Rings with additive group which is a torsion-free group
of rank two, Acta. Sci. Math. Szeged 20 (1959), 105–116.

[11] Feigelstock S., On the type set of groups and nilpotence, Comment. Math. Univ. St.
Pauli 25 (1976), 159–165.

[12] Feigelstock S., The absolute annihilator of an abelian group modulo a subgroup, Publ.
Math. Debrecen 23 (1976), 221–224.

[13] Feigelstock S., Additive groups of rings, Vol. 1, Pitman Advanced Publishing Program,
Boston, 1983.

[14] Fuchs L., Infinite abelian groups, Vol. 1, Academic Press, New York, London, 1970.
[15] Fuchs L., Infinite abelian groups, Vol. 2, Academic Press, New York, 1973.
[16] Hasani F., Karimi F., Najafizadeh A., Sadeghi M.Y., On the square subgroups of de-

composable torsion-free abelian groups of rank three, Adv. Pure Appl. Math. 7 (2016),
no. 4, 259–265.

[17] Najafizadeh A., On the square submodule of a mixed module, Gen. Math. Notes 27
(2015), no. 1, 1–8.

[18] Stratton A.E., Webb M.C., Abelian groups, nil modulo a subgroup, need not have nil
quotient group, Publ. Math. Debrecen 27 (1980), 127–130.

[19] Woronowicz M., A note on additive groups of some specific associative rings, Ann.
Math. Sil. 30 (2016), 219–229.

Institute of Mathematics
University of Białystok
Ciołkowskiego 1M
15-245 Białystok
Poland
e-mail: mworonowicz@math.uwb.edu.pl


