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A NOTE ON ADDITIVE GROUPS OF SOME SPECIFIC
ASSOCIATIVE RINGS

Mateusz Woronowicz

Abstract. Almost complete description of abelian groups (A,+, 0) such that
every associative ring R with the additive group A satisfies the condition: every
subgroup of A is an ideal of R, is given. Some new results for SR-groups in
the case of associative rings are also achieved. The characterization of abelian
torsion-free groups of rank one and their direct sums which are not nil-groups
is complemented using only elementary methods.

1. Introduction

S. Feigelstock studied additive groups of rings whose all subrings are two-
sided ideals, which resulted in [8]. Such groups are called SI-groups. In [5] we
have noted and corrected some inconsistencies in Feigelstock’s paper and we
have presented new results concerning the structure of SI-groups. The aim of
the first part of that note is to continue our studies with stronger assumptions.
Namely, we investigate abelian groups A such that every associative ring R
with the additive group A satisfies the condition: every subgroup of A is an
ideal of R. Such groups are called SGI-groups. We give a full description
of torsion SGI-groups. We also prove that there does not exist any mixed
SGI-group. Moreover, we prove that the only up to isomorphism torsion-
free SGI-group which is not a nil-group, is the group of integers. Similar
abelian groups were studied also by A.R. Chekhlov who did not assume the
associativity of rings (cf. [6]). Therefore, he obtained his result in a different
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way than we did (e.g., his main tool was the tensor product of abelian groups).
It turns out that if [7, Conjecture 2.1.4] is true, then the associativity of rings,
so important for many algebraists, does not matter for these groups.

SGI-groups are related to SR-groups studied, for example by A.M. Agh-
dam, F. Karimi and A. Najafizdeh in [2]. An SR-group is an abelian group
whose all subgroups are subrings of any (not necessarily associative) ring de-
fined on it. An associative ring R such that any subgroup of its additive group
is a subring of R is called an S-ring (cf. [14]). This work motivates the concept
of the S-group understood as an abelian group with the property SR restricted
to the class of associative ring. We prove some new results for S-groups which
allow the conclusion that the properties SGI and S are equivalent. In partic-
ular, we prove that the concepts of SR-group and S-group are equivalent for
torsion and mixed groups.

In the second part of the paper, we complement the characterization of
abelian torsion-free groups of rank one which are not nil-groups. Since every
abelian torsion-free group of rank one can be embedded into the group of
rationals, we restrict our considerations to subgroups of the group of rationals.
We introduce new simple tools which are useful to prove that a nontrivial
subgroup A of the group of rationals is not a nil-group if and only if there
exists a ring R = (A,+, ∗) with a unity. Moreover, we give a simple tool
useful to verify whether a direct sum of abelian groups of rank one is a nil-
group (cf. Proposition 4.9 and [7, Corollary 2.1.3]). Our proofs are much more
elementary than the proofs previously known.

The topic has long history in algebra. At the same time, it does not lose
relevance in modern science. First of all, we note that there are different
articles which have been written not only by S. Feigelstock and A. Chekhlov
but also by other algebraists lately: Pham Thi Thu Thuy, E. Kompantseva,
(cf. [12, 13, 15, 16]).

Symbols Q, Z, P, N stand for the field of rationals, the ring of integers, the
set of all prime numbers, the set of all natural numbers understood as the set
of all positive integers, respectively. In this paper, only abelian groups with
a traditionally additive notation applied for them, will be considered. If A is
an abelian group, then the torsion part of A and the divisible hull of A are
denoted by T (A) and D(A), respectively. The set of all ring multiplication on
A is denoted by Mult(A). If a ∈ A, then symbols o(a) and 〈a〉 stand for the
order of a and the cyclic group generated by a, respectively. If {Ai : i ∈ I},
where I 6= ∅, is a family of abelian groups and i ∈ I, then Ai denotes the
subgroup of

⊕
i∈I Ai such that the support of an arbitrary element of Ai is

contained in the set {i}. By Z(n) and Zn we denote the cyclic group of order
n and the ring of integers modulo n, respectively. The two-sided ideal I of
a ring R is denoted by I C R. The symbol R+ stands for the additive group
of the ring R. If X ⊆ R, then the symbol [X] stands for the subring of R
generated by X. Every abelian group (A,+, 0) can be provided with a ring
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structure in a trivial way by defining a ∗ b = 0, for all a, b ∈ A. Such a ring
is called a null-ring and it is denoted by A0. We assume that subrings of Q
possess a unity. The sign function is denoted by sgn. The greatest common
divisor of integers k and l is denoted by GCD(k, l). Throughout the paper the
symbol · means the standard multiplication of the field Q.

We remind the reader that an abelian group A is called a nil-group (nila-
group) if on A there does not exist any nonzero (associative) ring multipli-
cation. It follows from [5, Remark 2.6] and [7, Conjecture 2.1.4] that if the
concepts of nila-group and nil-group are not equivalent, then there exists
a torsion-free nila-group of rank more than one which is not a nil-group. The
concept connected with nil-groups is a square subgroup which can be un-
derstood as follows: given abelian group A, the square subgroup �A of A is
the smallest subgroup B of A satisfying the condition: if R is any ring with
R+ = A, then R2 ⊆ B. If we restrict our consideration to associative rings R
with R+ = A, then we write �aA. More information about square subgroups
is available in [1, 3].

The next two section follow partially from results achieved in [5, 8] and
they are related to the notion of SR-group introduced in [2].

2. S-groups

We remind the reader that an abelian group A is called an SR-group if
in every (not necessarily associative) ring R with R+ = A any subgroup of A
is an ideal of R. If we restrict our consideration to associative rings, then A
is called an S-group. This name is associated with S-rings that were studied
by J.D. O’Neill in [14]. Some generalizations of S-rings and S-groups were
also partially investigated by S. Feigelstock in [9] under names C2-rings and
SC2-groups. To the best of our knowledge, issues related to SR-groups and
S-groups have never been researched thoroughly enough, so we give some
facts of them below. Moreover, we prove some new results on S-groups and
SR-groups which will be useful to prove that the concepts of the S-group and
the SGI-group are equivalent.

Theorem 2.1. A torsion abelian group A is an S-group if and only if Ap
is either cyclic or divisible for every prime p.

Proof. Compare with [9, Theorem 3.1]. �

Remark 2.2. Proposition 5.4 of [2] remains true for S-groups, i.e., a direct
summand of an S-group is an S-group.
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Observe that [2, Proposition 5.2] can be somewhat generalized.

Proposition 2.3. Let R be a ring with R+ = A and let M be a left
R-module. If R2 ◦M 6= {0}, then A⊕M is not an S-group.

Proof. Since R2 ◦M 6= {0}, there exist r1, r2 ∈ R and m ∈M such that
(r1r2)◦m 6= 0. It is easily seen that the function ∗ : (A⊕M)×(A⊕M)→ A⊕M
given by:

(a1,m1) ∗ (a2,m2) =
(
0, (a1a2) ◦m)

)
is a ring multiplication. Moreover, (0, x) ∗ (a, y) = (a, x) ◦ (0, y) = (0, 0),
for all a ∈ A, x, y ∈ M , so P = (A ⊕ M,+, ∗, 0) is an associative ring.
Define T = A ⊕ {0}. Then T is a subgroup of P+, (r1, 0), (r2, 0) ∈ T and
(r1, 0) ∗ (r2, 0) =

(
0, (r1r2) ◦ m)

)
6∈ T . Hence T is not a subring of P and

consequently A⊕M is not an S-group. �

Corollary 2.4. For every nontrivial abelian group A, the group Z+⊕A is
not an S-group. Moreover, if m ≤ n are positive integer, then Z(pn)⊕Z(pm)
is not an S-group (that follows also from Theorem 2.1).

Theorem 2.5. An abelian torsion-free group A is an S-group if and only
if either A ∼= Z+ or A is a nila-group.

Proof. Suppose that A is a torsion-free S-group which is not a nila-
group. Let R be an associative ring such that R+ = A and R2 6= {0}. It follows
from [14, Lemma 2.5] that there exists an ideal I of R such that I2 = {0} and
R+ = I+ ⊕ 〈x〉, for some x ∈ R such that x2 6= 0. Thus A ∼= I+ ⊕Z+. Hence,
by Corollary 2.4 we get I = {0}. Therefore A ∼= Z+. The opposite implication
is obvious. �

Remark 2.6. Notice that the above theorem is the partial answer to the
question posed at the end of [2]. The answer is only partial, because we restrict
our consideration to the class of associative rings.

Lemma 2.7. Let p and n be a prime and a positive integer, respectively. If
A is a non-torsion abelian group, then G = Z+

pn ⊕A is not an S-group.

Proof. Define R = Zpn ⊕A0. Take any a ∈ A such that o(a) =∞. Then
(1, a)2 = (1, 0). Suppose, contrary to our claim, that (1, 0) = k(1, a), for some
k ∈ Z. Then k1 = 1 and ka = 0. As o(a) = ∞ we have k = 0. Hence 0 = 1
in the ring Zpn , which is a contradiction. Thus,

〈
(1, a)

〉
is not a subring of R

and consequently G is not an S-group. �
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The next lemma is a consequence of the construction of a ring multiplica-
tion given in the proof of [8, Theorem 10]. We present a complete proof for
the transparency of the paper.

Lemma 2.8. Let p be a prime and let A be a non-torsion abelian group.
Then G = Z(p∞)⊕A is not an S-group.

Proof. Take any x ∈ Z(p∞) and a ∈ A such that o(x) = p2 and o(a) =
∞. Obviously, the function ψ : 〈a〉 × 〈a〉 → Z(p∞) defined by the formula
ψ(ka, la) = (kl)x, for all k, l ∈ Z, is bilinear. Therefore [10, Theorem 59.1] im-
plies the existence of a unique homomorphism ϕ : 〈a〉⊗〈a〉 → Z(p∞) satisfying
ψ = ϕ◦ e. Let ı be the restriction of idA⊗A to 〈a〉⊗〈a〉. Then ı is a monomor-
phism. Moreover, the group Z(p∞) is injective by [10, Theorem 24.5]. Thus
there exists a homomorphism φ : A⊗A→ Z (p∞) satisfying ϕ = φ ◦ ı. Notice
that φ(a⊗ a) = (φ ◦ ı)(a⊗ a) = ϕ(a⊗ a) = (ϕ ◦ e)(a, a) = ψ(a, a) = x. Thus,
the multiplication (x1, a1) ∗ (x2, a2) = (φ (a1 ⊗ a2) , 0) for all x1, x2 ∈ Z(p∞)
and a1, a2 ∈ A, induces a nontrivial associative ring structure R on G. Since
(0, a) ∗ (0, a) = (x, 0) 6∈ {0} ⊕ A, we infer that R is not an S-ring. Therefore
G is not an S-group. �

Proposition 2.9. Let A be an S-group. Then Ap is a direct summand of
A for each prime p. In particular, if A is an S-group then Ap is an S-group
for each prime p.

Proof. Take any p ∈ P. Let D(p) denote the maximal divisible subgroup
of Ap. Then A = D(p)⊕H for some subgroup H of A. Hence Ap = D(p)⊕Hp.
If Hp = {0}, then Ap = D(p) and consequently Ap is a direct summand of A.
Now, suppose that Hp 6= {0}. Since Hp is a reduced group, it follows from
[10, Corollary 27.3] that there exist n ∈ N and a subgroup K of A such that
A = D(p)⊕Z(pn)⊕K. IfKp 6= {0}, then we apply [10, Corollary 27.3] again to
infer that Z(pn)⊕Z(pm) is a direct summand of A for somem ∈ N. Thus, A is
not an S-group, by Remark 2.2 and Corollary 2.4, which is a contradiction.
Therefore Kp = {0}, whence Ap = D(p) ⊕ Z(pn) and finally Ap is a direct
summand of A.

The last statement is a direct consequence of the first part of the proof
and Remark 2.2. �

Theorem 2.10. There does not exist any mixed S-group.

Proof. Suppose, contrary to our claim, that G is a mixed S-group. Then,
it follows from Proposition 2.9 that there exists p ∈ P such that Gp 6= {0}
and G = Gp ⊕ H, for some subgroup H of G. Moreover, Gp is an S-group.
Hence, by Theorem 2.1 we need only consider two cases:
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(i) Gp = Z(pn), for some n ∈ N. Then G is not an S-group, by Lemma 2.7,
which is a contradiction.

(ii) Gp is divisible. Then Z(p∞)⊕H is a direct summand of G, which is not
an S-group, by Lemma 2.8. Thus G is not an S-group, by Remark 2.2,
which is a contradiction. �

Corollary 2.11. Since every SR-group is an S-group, we infer that there
does not exist any mixed SR-group. Combining this with Theorem 2.5 and
Corollary 3.4 we conclude that the concepts of SR-group and S-group are
equivalent exactly if [7, Conjecture 2.1.4] holds.

Remark 2.12. Since Theorem 2.10 remains true for SC2-groups, we infer
that in [9, Theorem 3.4] we can assume that n > 2.

3. SGI -groups

Definition 3.1. An abelian group A is called an SGI-group if every
associative ring R with R+ = A has the property that every subgroup of A is
an ideal of R.

Remark 3.2. In [5] we have introduced a new necessary terminology to
describe SI-groups. We remind the reader that an abelian group A is called
an SIH -group, if every associative ring R with R+ = A is an H-ring (i.e., an
associative ring in which all subrings are two-sided ideals). Since we do not
assume that rings are unital, ideals of them are subrings. Hence the property
S, in conjunction with property SIH gives precisely the property SGI. For
preliminary knowledge on SIH -groups we refer the reader to [5, 8].

Remark 3.2, Theorem 2.1 and [8, Theorem 7] imply at once the following.

Theorem 3.3. An abelian p-group A is an SGI-group if and only if either
A is divisible or A = Z(pn) for some positive integer n. Moreover, a torsion
abelian group A is an SGI-group if and only if all its p-primary components
Ap are SGI-groups.

Corollary 3.4. For any torsion abelian group A the following conditions
are equivalent:
(i) A is an SR-group;
(ii) A is an S-group;
(iii) A is an SGI-group.
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Corollary 3.5. It follows from Remark 3.2 and Theorem 2.5 that an
abelian torsion-free group is an SGI-group if and only if it is an S-group.
The classification of torsion-free SGI-groups follows also from [5, Theorem
3.10].

Corollary 3.6. Theorem 2.10 and Remark 3.2 imply at once that there
does not exist any mixed SGI-group.

Corollaries 3.4, 3.5 and 3.6 give at once the following.

Theorem 3.7. An abelian group is an SGI-group if and only if it is an
S-group.

4. Nil-subgroups of the group of rationals

A main tool which is used to describe the subgroups of Q+ is the theory of
types (cf. [11, Chapter 85]). We introduce new simple tools which are useful
to verify whether a subgroup A of Q+ is a nil-group or A = �A. We will use
only elementary number theory and very straightforward algebra.

Remark 4.1. It is a well-known fact that the equation ax+ by = c, where
a, b, c ∈ Z, has integer solutions if and only if GCD(a, b) | c. That simple fact
implies the following useful propositions.
(i) Let {0} 6= A ≤ Q+ and let m = minA ∩ N. If k ∈ Z and n ∈ N satisfy

k 6= 0, GCD (k, n) = 1 and k
n ∈ A, then

m
n ∈ A. Moreover, m | k.

(ii) Let A ≤ Q+, let p1 < p2 < . . . < ps be primes and let α1, α2, . . . , αs ∈ N.
If k ∈ Z and GCD (k, pi) = 1 for each i = 1, 2, . . . , s, then k∏s

i=1 p
αi
i

∈ A
if and only if k

p
αi
i

∈ A, for each i = 1, 2, . . . , s.

(iii) If ∅ 6= P ⊆ P, then
∑
p∈P

[
1
p

]+
=
[

1
p : p ∈ P

]+.
Remark 4.2. If {0} 6= A ≤ Q+, m = minA ∩ N and B = 1

m · A, then
B ≤ Q+, B ∼= A and 1 ∈ B. If ∗ is any nonzero ring multiplication on
B, then q1 ∗ q2 6= 0 for some q1, q2 ∈ B. Let ki ∈ Z \ {0}, ni ∈ N satisfy
GCD(ki, ni) = 1 and qi = ki

ni
for i = 1, 2, and let q = 1 ∗ 1. Then (k1k2)q =

(k1k2)(1∗1) = (k1 ∗k2) = (n1n2)(q1 ∗q2) 6= 0 so q 6= 0. If a, c ∈ Z and b, d ∈ N,
then (bd)

(
1
b ∗

1
d

)
= q, whence 1

b ∗
1
d = 1

b · q ·
1
d and finally a

b ∗
c
d = a

b · q ·
c
d .

Therefore (B,+, ∗) is a subring of the field (Q,+,~) with x ~ y = x · q · y
(which is isomorphic to the field Q). Thus, every ring multiplication on A is
commutative and associative.
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Definition 4.3. Let {0} 6= A ≤ Q+ and let m = minA∩N. The set of all
primes p such that mp ∈ A is denoted by ΩA. Define Ω∞A = {p ∈ ΩA : A = pA}
and Ω0

A = {p ∈ ΩA : A 6= pA}.

Example. If A =
〈

7
18

〉
+
[

1
20

]+, then ΩA = {2, 3, 5}, Ω∞A = {2, 5} and
Ω0
A = {3}.

Remark 4.4. If p ∈ Ω0
A, then (i) and (ii) of Remark 4.1 imply that there

exists the maximal α ∈ N such that m
pα ∈ A.

Remark 4.5 ([4, Lemma 2.5]). Let {0} 6= A ≤ Q+ and let p ∈ P. Then
p ∈ Ω∞A if and only if m

[
1
p

]+ ≤ A, where m = minA ∩ N.

Directly from Remarks 4.1, 4.4 and 4.5 we obtain the following.

Corollary 4.6. Let A be a subgroup of Q+ such that 1 ∈ A, |Ω0
A| <∞,

Ω0
A 6= ∅ and Ω∞A 6= ∅. Let n =

∏
p∈Ω0

A
pαp , where αp is the maximal natural

number such that 1
pαp ∈ A for each p ∈ Ω0

A. Then A =
〈

1
n

〉
+
[

1
p : p ∈ Ω∞A

]+.
Proposition 4.7 ([4, Proposition 3.3]). If A is a nontrivial subgroup of

Q+ such that
∣∣Ω0
A

∣∣ =∞, then A is a nil-group.

The next result shows that the description of non-nil-subgroups of Q+ can
be obtained in an elementary way, without using types and the tensor product
of abelian groups.

Theorem 4.8. Let A be a nontrivial subgroup of Q+. The following con-
ditions are equivalent:
(i) A is not a nil-group;
(ii) |Ω0

A| <∞;
(iii) A ∼= 〈x〉+ S+, where x ∈ Q+ and S is some subring of the field Q;
(iv) there exists a ring R with a unity such that R+ = A;
(v) �A = �aA = A;
(vi) t(A)2 = t(A), where t(A) denotes the type of A (cf. [11], Chapter 85);
(vii) there exists a ring R with R+ = A such that R ∼= n

[
p−1
i : i ∈ I

]
, for

some n ∈ N and {pi : i ∈ I} ⊆ P such that GCD(n, pi) = 1, for all
i ∈ I;

(viii) if B = 1
m ·A, where m = minA∩N, then n(B ·B) ⊆ B for some n ∈ N.

Proof. Implications (i) ⇒ (ii) and (vi) ⇒ (vii) follows directly from
Proposition 4.7 and [11, Theorem 121.1], respectively. Theorem 121.1 of [11]
implies also (v) ⇒ (vi), because from �A = A and A 6= {0} it follows that A
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is not a nil-group. If (ii) holds, the first part of Remark 4.2 and Corollary 4.6
imply that A ∼=

〈
1
n

〉
+
[

1
p : p ∈ Ω∞A

]+ for some n ∈ N. Moreover, x∗y = x ·n ·y
is a ring multiplication on

〈
1
n

〉
+
[

1
p : p ∈ Ω∞A

]+ and 1
n is a unity of that

multiplication. This completes proofs of (ii) ⇒ (iii) and (iii) ⇒ (iv). If R is
a ring with a unity such that R+ = A, then R2 = R so �A = A. Moreover,
every torsion-free ring of rank one is associative, so �aA = �A. This com-
pletes the proof of (iv)⇒ (v). If (vii) holds, then A is not a nil-group, by [11,
Theorem 121.1], so B also is not a nil-group by the first part of Remark 4.2.
Hence by already proved implication (i) ⇒ (ii) we infer (as above) that there
exists n ∈ N such that x ∗ y = x · n · y is a ring multiplication on B. Hence
n(B · B) = B ∗ B ⊆ B. This completes the proof of (vii) ⇒ (viii). To prove
the implication (viii) ⇒ (i) suppose that A is a nil-group. Then B is also
nil-group so

∣∣Ω0
B

∣∣ = ∞. Let r ∈ N. Take any p ∈ Ω0
B such that p - r. If

α = max
{
s ∈ N : 1

ps ∈ B
}
, then r 1

p2α ∈ (r (B ·B)) \B. �

Proposition 4.9. Let I 6= ∅, let Ai be a subgroup of Q+ such that 1 ∈ Ai,
for each i ∈ I, and let A =

⊕
i∈I Ai. If �A 6= {0}, then n (Ai ·Aj) ⊆ Ak for

some i, j, k ∈ I and n ∈ N. Moreover, if there exist i, j, k ∈ I and n ∈ N such
that n (Ai ·Aj) ⊆ Ak, then there exists an associative and commutative ring
R with R+ = A, which is not a null-ring. In particular, �aA 6= {0}.

Proof. Let ∗ denote an arbitrary nonzero ring multiplication on A. Then
there exist i, j, k ∈ I and a, c ∈ A such that πk

(
πi(a) ∗ πj(c)

)
6= 0, where

πt denotes the natural projection of A onto At, for t = i, j, k. It follows
from [11, Theorem 119.1] that there exists a ring R =

(
D(A),+,~

)
such

that (A,+, ∗) is a subring of R. Let ϕt be the natural injection of Q+ into
D(A) such that ϕt (Q+) is the t-th direct summand of D(A), for t = i, j,
and let φ : Ak → Ak be the natural isomorphism. Define ϑ = φ ◦ πk and
q1 � q2 = ϑ

(
ϕi(q1) ~ ϕj(q2)

)
for all q1, q2 ∈ Q+. As ϑ, ϕi, ϕj are additive

homomorphisms and ~ is a nonzero ring multiplication we infer that � is
a nonzero ring multiplication on Q+. Hence by Remark 4.2 there exist 0 6=
l ∈ Z and m ∈ N such that q1 � q2 = q1 · lm · q2 for all q1, q2 ∈ Q+. Let
s = sgn(l) · m. Then the ring multiplication � on the group Q+ given by
q1 � q2 = q1 · |l| · q2, for all q1, q2 ∈ Q+, is the s-th multiple of � in the group
Mult(Q+). Hence, for all x ∈ Ai and y ∈ Aj we have |l|(x · y) = x � y =

s(x� y) = sφ

(
πk

(
πi
(
ϕi(x)

)
∗ πj

(
ϕj(x)

)))
∈ Ak. Thus it is sufficient to put

n = |l|.
If �Ai 6= {0} for some i ∈ I, then the assertion is obvious. Suppose that

�Ai = {0} for all i ∈ I. It follows from Theorem 4.8 that we can exclude the
case i = j = k. Therefore we need only consider three cases:
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(i) i = j and i 6= k. Then (a1, c1) ∗ (a2, c2) =
(
0, n(a1 · a2)

)
is a nonzero

commutative ring multiplication on Ai⊕Ak. If R = (Ai⊕Ak,+, ∗), then
R ∗ (R ∗ R) = (R ∗ R) ∗ R = {0} so R is an associative ring. Since the
group Ai ⊕ Ak can be embedded into A in a natural way, we are able
to construct an associative and commutative ring S with S+ = A using
the natural projection of A onto Ai, the multiplication ∗ defined above
and the natural injection of Ak into A. Therefore the assertion follows.

(ii) i 6= j and k = i. Then n (Ai ·Aj) ⊆ Ai. As 1 ∈ Ai we get Aj ⊆ Ai · Aj
so nAj ⊆ n(Ai ·Aj). Hence n2(Aj ·Aj) = n

(
(nAj) ·Aj

)
⊆ (Ai ·Aj) ⊆ Ai

and the assertion follows from (i) of that proof.
(iii) The elements i, j, k are pairwise distinct. A simple computation shows

that (a1, b1, c1) ∗ (a2, b2, c2) =
(
0, 0, n(a1 · b2 + b1 · a2)

)
is a nonzero asso-

ciative and commutative ring multiplication on Ai ⊕Aj ⊕Ak. Similarly
as in (i) we infer that the assertion follows. �

Example. If A =
〈

1
p : p ∈ P

〉
and B =

〈
1
p2 : p ∈ P

〉
, then Ω0

A = Ω0
B = P

so �A = �B = {0}, by Theorem 4.8. Since A ·A ⊆ B, Proposition 4.9 implies
that �a(A⊕B) 6= {0}.

Remark 4.10. The ring multiplications constructed in the proof of Propo-
sition 4.9 are useful to proving [2, Theorem 5.9] in an elementary way, without
using types of torsion-free groups of rank one.
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