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EXPONENTIAL CONVERGENCE FOR MARKOV SYSTEMS

Maciej Ślęczka

Abstract. Markov operators arising from graph directed constructions of iter-
ated function systems are considered. Exponential convergence to an invariant
measure is proved.

1. Introduction

We are concerned with Markov operators corresponding to Markov sys-
tems introduced by Werner ([12], [11]) and independently by Mauldin and
Urbański ([8]). They are graph directed constructions generalizing iterated
function systems with place dependent probabilities (see [1], [7]). The action
of a Markov system can be roughly described as follows. Consider a metric
space X partitioned into finite number of subsets X = X1 ∪X2 ∪ . . . ∪XN .
Every subset Xi is placed at the vertex of a directed multigraph. Edges of a
multigraph are identified with transformations which are chosen at random
with place dependent probabilities. The existence of an attractive invariant
measure for Markov systems was proved by Werner and, in more general set-
ting, by Horbacz and Szarek [4].

In the present paper we prove the exponential rate of convergence to an
invariant measure for such systems. We use the coupling method developed by
Hairer in [2], [3] and adapted to random iteration of functions in [10], [5] and
[13]. Our main tool is a general criterion for the existence of an exponentially
attractive invariant measure established in [6].

Received: 28.05.2015. Revised: 15.06.2015.
(2010) Mathematics Subject Classification: 60J05, 37A25.
Key words and phrases: Markov operator, invariant measure.



140 Maciej Ślęczka

The paper is organized as follows. Section 2 introduces basic definitions
needed throughout the paper. Markov systems are described in Section 3. The
main theorem of this paper is formulated in Section 4 and proved in Section 5.

2. Notation and basic definitions

Let (X, d) be a Polish space, i.e. a complete and separable metric space and
denote by BX the σ-algebra of Borel subsets of X. By Bb(X) we denote the
space of bounded Borel-measurable functions equipped with the supremum
norm, Cb(X) stands for the subspace of bounded continuous functions. By
Mfin(X) and M1(X) we denote the sets of nonnegative Borel measures on
X such that µ(X) < ∞ for µ ∈ Mfin(X) and µ(X) = 1 for µ ∈ M1(X).
Elements ofM1(X) are called probability measures. Elements ofMfin(X) for
which µ(X) ≤ 1 are called subprobability measures. By suppµ we denote the
support of the measure µ. We also define

ML
1 (X) =

{
µ ∈M1(X) :

∫
L(x)µ(dx) <∞

}
where L : X → [0,∞) is an arbitrary Borel measurable function and

M1
1(X) =

{
µ ∈M1(X) :

∫
d(x̄, x)µ(dx) <∞

}
,

where x̄ ∈ X is fixed. The definition of M1
1(X) is independent of the choice

of x̄.
The spaceM1(X) is equipped with the Fourtet–Mourier metric:

‖µ1 − µ2‖FM = sup
{∣∣∣∫

X

f(x)(µ1 − µ2)(dx)
∣∣∣ : f ∈ F

}
,

where

F = {f ∈ Cb(X) : |f(x)− f(y)| ≤ 1 and |f(x)| ≤ 1 for x, y ∈ X}.

The space (M1(X), ‖ · ‖FM ) is complete (see [9]). By ‖ · ‖ we denote the total
variation norm. If a measure µ is nonnegative then ‖µ‖ is simply the total
mass of µ.
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Let P : Bb(X) → Bb(X) be a Markov operator, i.e. a linear operator sat-
isfying P1X = 1X and Pf(x) ≥ 0 if f ≥ 0. Denote by P ∗ the dual operator,
i.e operator P ∗ : Mfin(X)→Mfin(X) defined as follows

P ∗µ(A) :=

∫
X

P1A(x)µ(dx) for A ∈ BX .

We say that µ∗ ∈M1(X) is invariant for P if∫
X

Pf(x)µ∗(dx) =

∫
X

f(x)µ∗(dx) for every f ∈ Bb(X)

or, alternatively, we have P ∗µ∗ = µ∗.
By {Px : x ∈ X} we denote the transition probability function for P , i.e.

the family of measures Px ∈M1(X), x ∈ X, such that maps x 7→ Px(A) are
measurable for every A ∈ BX and

Pf(x) =

∫
X

f(y)Px(dy) for x ∈ X and f ∈ Bb(X),

or equivalently P ∗µ(A) =
∫
x
Px(A)µ(dx) for A ∈ BX and µ ∈Mfin(X).

3. Markov systems

Let (X, d) be a Polish space of the form X =
⋃N
j=1Xj , where Xj are

nonempty Borel subsets such that sup{d(x, y) : x ∈ Xi, y ∈ Xj} > 0 for i 6= j.
Assume that for each j ∈ {1, . . . , N} there exists a finite subset Nj ⊂ N and
Borel measurable maps

wjn : Xj → X, n ∈ Nj ,

such that

∀j∈{1,...,N}∀n∈Nj∃m∈{1,...,N} wjn(Xj) ⊂ Xm.

Furthermore, for each j ∈ {1, . . . , N} and n ∈ Nj there exist Borel measurable
functions pjn : Xj → [0, 1] such that

∑
n∈Nj pjn(x) = 1 for x ∈ Xj , j ∈

{1, . . . , N}. Following Werner (see [12]), we call V = {1, . . . , N} the set of
vertices, and the subsets X1, . . . , XN the vertex sets. Further, we call

E = {(j, n) : j ∈ {1, . . . , N}, n ∈ Nj}
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the set of edges and write

pe := pjn and we := wjn for e = (j, n) ∈ E.

For an edge e = (j, n) ∈ E we denote by i(e) := j the initial vertex of e,
the terminal vertex t(e) of e is equal to m if and only if we(Xj) ⊂ Xm.
The quadruple (V,E, i, t) a directed multigraph. We have E =

⋃N
i=1Ej where

Ej = {e ∈ E : i(e) = j}. A sequence (e1, . . . , er) of edges is called a path if
t(ek) = i(ek+1) for k = 1, . . . , r − 1.

We call the family (Xi(e), we, pe)e∈E a Markov system. A Markov system is
irreducible if and only if its directed multigraph is irreducible, that is, there is
a path from any vertex to any other. An irreducible Markov system has period
p if the set of vertices can be partitioned into p nonempty subsets V1, . . . , Vp
such that for all e ∈ E

i(e) ∈ Vi ⇒ t(e) ∈ Vi+1 mod p

and p is the largest number with this property. A Markov system is aperiodic
if it has period 1.

We define Markov operator on Bb(X) by

(3.1) Pf(x) =
∑
e∈E

pe(x)f(we(x)) for x ∈ X, f ∈ Bb(X).

an its dual operator acting on measures by

P ∗µ(A) =
∑
e∈E

∫
w−1
e (A)

pe(x)µ(dx) for A ∈ BX , µ ∈M1(X).

4. Main result

We will show that operator (3.1) has an exponentially attractive invariant
measure, provided the following conditions hold:
B1 There exists α ∈ (0, 1) such that for j ∈ {1, . . . , N} and x, y ∈ Xj∑

e∈Ej

pe(x)d(we(x), we(y)) < αd(x, y).
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B2 There exists l > 0 such that for j ∈ {1, . . . , N} and x, y ∈ Xj∑
e∈Ej

|pe(x)− pe(y)| ≤ ld(x, y).

B3 There exist M > 0 such that for j ∈ {1, . . . , N}, e ∈ Ej and x, y ∈ Xj

d(we(x), we(y)) ≤Md(x, y).

B4 There exist δ > 0 such that for e ∈ E

pe|Xi(e) > δ.

B5 For each j ∈ {1, . . . , N} there exists x̄j ∈ Xj such that

sup
e∈Ej

d(we(x̄j), x̄j) <∞.

B6 The Markov system (Xi(e), we, pe)e∈E is aperiodic.

Theorem 4.1. If Markov system (Xi(e), we, pe)e∈E satisfies assumptions
B1–B6 then its Markov operator P possesses a unique invariant measure
µ∗ ∈M1

1(X), moreover, there exists q ∈ (0, 1) and C > 0 such that

‖P ∗nµ− µ∗‖FM ≤ qnC(1 +

∫
X

L(x)µ(dx))

for µ ∈M1
1(X), n ∈ N, where L(x) = d(x, x̄j) for x ∈ Xj , j ∈ {1, . . . , N}.

Example. Let the set V of vertices consists of two elements a and b and
let E = {(a, a), (a, b), (b, a), (b, b)} be the set of edges. The multigraph (E, V )
is aperiodic. Put Xa = [2, 4]× [1, 3] ⊂ R2, Xb = [0, 2]× [3, 5] ⊂ R2 and define
maps we, e ∈ E as follows

wab(x, y) =
(1

2
x+

1

2
y,

1

2
x+

1

2
y +

7

2

)
,

waa(x, y) =
(1

2
x+

1

2
y + 2,

1

2
x+

1

2
y +

3

2

)
,

wba(x, y) =
(1

2
x+

1

2
y + 2,

1

2
x+

1

2
y +

1

2

)
,

wbb(x, y) =
(1

2
x+

1

2
y + 1,

1

2
x+

1

2
y +

3

2

)
.
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Let pab(x) = paa(x) = 1
2 for x ∈ Xa and pab(x) = paa(x) = 0 for x ∈ Xb.

Similarly, pba(x) = pbb(x) = 1
2 for x ∈ Xb and pba(x) = pbb(x) = 0 for x ∈ Xa.

Then wab(Xa) = [1, 2]× [4, 5] ⊂ Xb, waa(Xa) = [3, 4]× [2, 3] ⊂ Xa, wbb(Xb) =
[1, 2]×[3, 4] ⊂ Xb, wba(Xb) = [2, 3]×[2, 3] ⊂ Xa, so (Xa, Xb, (we)e∈E , (pe)e∈E)
define the Markov system. ConditionsB1–B6 are fulfilled (with α = 1

2 inB1),
so Theorem 4.1 gives the existence of an exponentially attractive invariant
measure µ∗. It can be shown (see [8, Example 5.2.1]) that the support of this
measure [2, 4]× {3} ∪ {2} × [3, 5] cannot be obtained as the limit set for any
conformal iterated function system (i.e. not the graph directed one).

5. Proof of the main result

5.1. An exponential convergence theorem

Let T : Bb(X)→ Bb(X) be a Markov operator with transition probability
function {Px : x ∈ X}. We assume that there exists the family {Qx,y : x, y ∈
X} of sub-probabilistic measures on X2 such that maps (x, y) 7→ Qx,y(B) are
measurable for every Borel B ⊂ X2 and

Qx,y(A×X) ≤ Px(A) and Qx,y(X ×A) ≤ Py(A)

for every x, y ∈ X and Borel A ⊂ X.
Define on X2 the family of measures {Rx,y : x, y ∈ X} which on rectangles

A×B are given by

Rx,y(A×B) =
1

1−Qx,y(X2)
(Px(A)−Qx,y(A×X))(Py(B)−Qx,y(X×B)),

when Qx,y(X
2) < 1 and Rx,y(A×B) = 0 otherwise. The family {Bx,y : x, y ∈

X} of measures on X2 defined by

(5.1) Bx,y = Qx,y + Rx,y for x, y ∈ X

is a coupling (see [2], [3]) for {Px : x ∈ X}, i.e. for every B ∈ BX2 the map
X2 3 (x, y) 7→ Bx,y(B) is measurable and

Bx,y(A×X) = Px(A), Bx,y(X ×A) = Py(A)

for every x, y ∈ X and A ∈ BX .
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Now we list assumptions on Markov operator T and transition probabilities
{Qx,y : x, y ∈ X}.
A0 T is a Feller operator, i.e. T (Cb(X)) ⊂ Cb(X).
A1 There exists a Liapunov function for T , i.e. a continuous function L : X →

[0,∞) such that L is bounded on bounded sets, limx→∞ L(x) = +∞ (for
bounded X this condition is omitted) and for some λ ∈ (0, 1), c > 0

TL(x) ≤ λL(x) + c for x ∈ X.

A2 There exist F ⊂ X2 and α ∈ (0, 1) such that suppQx,y ⊂ F and

(5.2)
∫
X2

d(u, v)Qx,y(du, dv) ≤ αd(x, y) for (x, y) ∈ F.

A3 There exist δ > 0, l > 0, and ν ∈ (0, 1] such that

(5.3) 1− ‖Qx,y‖ ≤ ld(x, y)ν and Qx,y(D(αd(x, y))) ≥ δ

for (x, y) ∈ F , where D(r) = {(x, y) ∈ X2 : d(x, y) < r} for r > 0.
A4 There exist β ∈ (0, 1), C̃ > 0 and R > 0 such that for

κ( (xn, yn)n∈N0 ) = inf{n ∈ N0 : (xn, yn) ∈ F and L(xn) + L(yn) < R}

we have

Ex,yβ−κ ≤ C̃ whenever L(x) + L(y) <
4c

1− λ
,

where Ex,y denotes here the expectation with respect to the Markov chain
starting from (x, y) and with transition function {Bx,y : x, y ∈ X}.
The next theorem (see [6]) is the essential tool in proving Theorem 4.1.

Theorem 5.1. Assume A0–A4. Then operator T possesses a unique in-
variant measure µ∗ ∈ ML

1 (X) and there exist q ∈ (0, 1) and C > 0 such
that

‖T ∗nµ− µ∗‖FM ≤ qnC
(

1 +

∫
X

L(x)µ(dx)
)

for µ ∈ML
1 (X) and n ∈ N0.

The proof of the following lemma may be found in [6].
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Lemma 5.1. Let (Y yn )n∈N0 with y ∈ Y be a family of Markov chains on a
metric space Y. Suppose that V : Y → [0,∞) is a Liapunov function for their
transition function {πy : y ∈ Y }, i.e. there exist a ∈ (0, 1) and b > 0 such
that ∫

Y

V (x)πy(dx) ≤ aV (y) + b for y ∈ Y.

Then there exist λ ∈ (0, 1) and C0 > 0 such that for

ρ((yk)k∈N0
) = inf

{
k ≥ 1 : V (yk) <

2b

1− a

}
we have

Eyλ−ρ ≤ C0(V (y0) + 1) for y ∈ Y.

5.2. Proof of Theorem 4.1

We are going to verify assumptions of Theorem 5.1. The family {Px : x ∈
X} of probability measures on X is defined by

Px =
∑
e∈E

pe(x)δwe(x) for x ∈ X,

where δx is the Dirac measure at x, is the transition probability function for
P . Define the family {Qx,y : x, y ∈ X} of subprobability measures on X2 by

Qx,y =
∑
e∈E

min{pe(x), pe(y)}δ(we(x),we(y)) for x, y ∈ Xj

and Qx,y = 0 for x ∈ Xi, y ∈ Xj , i 6= j, i, j ∈ {1, . . . , N}. It is clear that

Qx,y(A×X) ≤ Px(A) and Qx,y(X ×A) ≤ Py(A)

for every x, y ∈ X and A ⊂ X. Let {Bx,y : x, y ∈ X} be as in (5.1).
Conditions B2 and B3 imply that Markov operator P satisfies A0. Ob-

serve, that for x ∈ Xj

PL(x) =
∑
e∈Ej

pe(x)d(we(x), x̄t(e)) ≤ αd(x, x̄j) + c,
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where c = supj∈{1,...,N} supe∈Ej d(we(x̄j , x̄j) + supi,j∈{1...,N} d(x̄i, x̄j) < ∞,
by B5. This implies that L is a Liapunov function for P and A1 is fulfilled.
Moreover, we haveML

1 (X) =M1
1(X).

Define F =
⋃N
i=1Xj ×Xj ⊂ X ×X. Assumption B1 gives A2. From B4

we obtain δ > 0 such that

Qx,y(D(αd(x, y))) ≥
∑

e∈Ej : d(we(x),we(y))<αd(x,y)

pe(x)pe(y) ≥ δ2

for (x, y) ∈ F . Moreover, since

‖Qx,y‖+
∑

e∈Ej : pe(x)≥pe(y)

|pe(x)− pe(y)| = 1

for x, y ∈ Ej , j ∈ {1, . . . , N}, assumption B2 implies A3.
Observe that for e ∈ E, x ∈ Xi(e), B3 gives

(5.4) L(we(x)) = d(we(x), x̄t(e)) ≤ML(x) + c.

By Lemma 2.5 in [4] assumption B6 implies that for every j, k ∈ V there exist
s ∈ N and paths (e1, . . . , es), (ẽ1, . . . , ẽs) such that

i(e1) = j, i(ẽ1) = k and t(es) = t(ẽs).

For r > 0 define D̃(r) = {(x, y) ∈ X2 : L(x) + L(y) < r}. For every (x, y) ∈
D̃( 4c

1−α) inequality (5.4) gives

(5.5) (wes ◦ · · · ◦ we1(x), wẽs ◦ · · · ◦ wẽ1(y)) ∈ D̃(R) ∩ F

with R = Ms 4c
1−α + 2cM

s−1
M−1 .

Fix (x0, y0) ∈ D̃( 4c
1−α). Let (Xn, Yn)n∈N0 be the Markov chain starting at

(x0, y0) and with transition probability {Bx,y : x, y ∈ X}. Let Px0,y0 be the
probability measure on (X2)∞ induced by (Xn, Yn)n∈N0 and let Ex0,y0 be the
expectation with respect to Px0,y0 . Define the time ρ : (X2)∞ → N0 of the
first visit in D̃( 4c

1−α)

ρ((xn, yn)n∈N0) = inf{n ∈ N0 : (xn, yn) ∈ D̃( 4c
1−α)}

and the time of the n-th visit in D̃( 4c
1−α)

ρ1 = ρ,

ρn+1 = ρn + ρ ◦ Tρn for n > 1,
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where Tn((yk)k∈N0) = (yk+n)k∈N0 . The strong Markov property implies that

Ex0,y0(λ−ρ ◦ Tρn |Fρn) = EXρn ,Yρn (λ−ρ) for n ∈ N,

where Fρn is σ -algebra in (X2)∞ generated by ρn. Since (Xρn , Yρn) ∈ D̃( 4c
1−α),

Lemma 5.1 gives

Ex0,y0(λ−ρn+1) = Ex0,y0(λ−ρnEx0,y0(λ−ρ ◦ Tρn |Fρn))

= Ex0,y0(λ−ρnEYρn (λ−ρ))

≤ Ex0,y0(λ−ρn)[C0( 4c
1−α + 1)].

Taking a = C0( 4c
1−α + 1) we obtain

Ex0,y0(λ−ρn+1) ≤ an+1.

Define

κ̂((xn, yn)n∈N0) = inf{n ∈ N0 : (xn, yn) ∈ D̃( 4c
1−α) and (xn+s, yn+s) ∈ F},

and σ = inf{n ≥ 1 : κ̂ = ρn}, where s is as in (5.5). For x ∈ Xi, y ∈ Xj , where
i 6= j, we have Bx,y = Px ⊗ Py, so B4 together with (5.5) give Px0,y0(σ =
k) ≤ (1 − p)k−1 for k ≥ 1, where p = (δ)2s. Let β > 1. Hölder inequality
implies that

Ex0,y0(λ−
κ̂
β ) ≤

∞∑
k=1

Ex0,y0(λ−
ρk
β 1{σ=k})

≤
∞∑
k=1

[Ex0,y0(λ−ρk)]
1
β Px0,y0(σ = k)1−

1
β

≤
∞∑
k=1

a
k
β (1− p)(k−1)(1−

1
β )

= (1− p)(
1
β−1)

∞∑
k=1

[( a

1− p

) 1
β

(1− p)
]k
.

Choosing sufficiently large β and setting γ = λ
1
β we obtain

Ex0,y0(γ−κ̂) ≤ C̃

for some C̃ > 0. The observation that κ ≤ κ̂+ s gives A4 and completes the
proof.
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